	Basic textbook:
Methods of Quantum Information Processing	1. Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang (Cambridge, 2000)
(with an emphasis on optical implementations)	
Adam Miranowicz	Review articles on quantum-optical computing:
e-mail: miran@amu.edu.pl http://zon8.physd.amu.edu.pl/∼miran	 Linear optical quantum computing, P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J. P. Dowling, G.J. Milburn, free downloads at http://arxiv.org/quant-ph/0512071.
summer semester 2008	2. Linear optics quantum computation: an overview, C.R. Myers, R. Laflamme, free downloads at http://arxiv.org/quant-ph/0512104.
	3. Quantum optical systems for the implementation of quantum information processing, T.C. Ralph, free downloads at http://arxiv.org/quant-ph/0609038.
	 Quantum mechanical description of linear optics J. Skaar, J.C.G. Escartin, H. Landro, Am. J. Phys. 72, 1385-1391 (2005).
z Zeywords	⁴ Other Textbooks on Quantum Computing
• dijantijim logic gates	1. Quantum Computing by Joachim Stolze, Dieter Suter
• quantum entanglement	2. Approaching Quantum Computing by Dan C. Marinescu, Gabriela M. Marinescu
• quantum cryptography	3. Introduction to Quantum Computation and Information edited by Hoi-Kwong Lo, Tim Spiller, Sandu Popescu
• quantum teleportation	4. Quantum Computing by Mika Hirvensalo
 quantum algorithms quantum error correction 	5. Explorations in Quantum Computing by Colin P. Williams, Scott H. Clearwater
 quantum tomography 	6. <i>Quantum Information Processing</i> edited by Gerd Leuchs, Thomas Beth
• solid-state implementations of quantum computing	7. Quantum Computing by Josef Gruska
	8. <i>Quantum Computing and Communications</i> by Sandor Imre, Ferenc Balazs

Keywords

 \mathfrak{c}

24. 23 22. 21. Quantum Information by Gernot Alber et al 20. Quantum Computing: Where Do We Want to Go Tomorrow 19. Experimental Aspects of Quantum Computing 17. Scalable Quantum Computers: Paving the Way to Realization 16. Quantum Computation and Quantum Communication by Mladen Pavicic 15. A Short Introduction to Quantum Information and Quantum Computation 14. Lectures on Quantum Information 13. Quantum Optics for Quantum Information Processing 12. Principles of Quantum Computation And Information: Basic Tools And 18. Fundamentals of Quantum Information edited by Dieter Heiss Quantum Computation edited by Samuel J. Lomonaco, Jr. *Temple of Quantum Computing* by Riley T. Perry (free downloads at www.toqc.com) The Physics of Quantum Information edited by Dirk Bouwmeester, Artur K. Ekert, Anton Zeilinger edited by Henry O. Everitt edited by Samuel L. Braunstein, Hoi-Kwong Lo by Michel Le Bellac by Giuliano Benenti, Giulio Casati, Giuliano Strini (free downloads at www.cs.umbc.edu/~lomonaco) edited by Samuel L. Braunstein edited by Dagmar Bruß, Gerd Leuchs edited by Paolo Mataloni Special Topics by Giuliano Benenti 6

(free downloads at www.theory.caltech.edu/people/preskill/ph229).

- $|g\rangle$ ground state
- $|e\rangle$ excited state
- physical notation

$$|g\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}, \quad |e\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

information notation

$$|g\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad |e\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

Pauli matrices

$$\equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \hat{\sigma}_y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \hat{\sigma}_z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

 $\sigma_x^{\hat{\sigma}}$

• rasing $(\hat{\sigma}^{\dagger})$ and lowering $(\hat{\sigma})$ energy operators,

= atomic-transition operators

d>

$$=\frac{\hat{\sigma}_x+i\hat{\sigma}_y}{2}=|e\rangle\langle g|,\quad \hat{\sigma}=\frac{\hat{\sigma}_x-i\hat{\sigma}_y}{2}=|g\rangle\langle e|,\quad \hat{\sigma}_z=\hat{\sigma}^\dagger\hat{\sigma}-\hat{\sigma}\hat{\sigma}^\dagger=|e\rangle\langle e|-|g\rangle\langle g|$$

qubit = quantum bit

- ∞
- the smallest unit of quantum information
- whose two basic states are conventionally labelled $|0\rangle$ and $|1\rangle$ physically realized by a 2-level quantum system

- By contrast to classical bits,

a qubit can be in an arbitrary superposition of '0' and '1':

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

with normalization condition $|\alpha|^2 + |\beta|^2 = 1$.

matrix representation of qubit states:

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

 $|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$

S

- 25. Lecture Notes for Physics: Quantum Information and Computation by John Preskill

- 9. An Introduction to Quantum Computing Algorithms
- 10. Quantum Computing by M. Nakahara, Tetsuo Ohm

by Arthur O. Pittenger

11. Principles of Quantum Computation and Information - Vol.1

Pauli
$$\hat{Z}$$
 gate = phase flip
 $\hat{z} \equiv \hat{\sigma}_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 $\hat{Z}|k\rangle = (-1)^k |k\rangle, \quad k = 0, 1$
 $\hat{Z}|\alpha|0\rangle + \beta|1\rangle) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ -\beta \end{bmatrix} = \alpha|0\rangle - \beta|1\rangle$
Pauli \hat{Y} gate = phase flip + bit flip
 $\hat{Y} \equiv \hat{\sigma}_X = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
 $\hat{Y}|k\rangle = i(-1)^k |1 \oplus k\rangle, \quad k = 0, 1$
example
 $\hat{Y}(\alpha|0\rangle + \beta|1\rangle) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = i \begin{bmatrix} -\beta \\ \alpha \end{bmatrix} = -i\beta|0\rangle + i\alpha|1\rangle$
 $\hat{Y}(\alpha|0\rangle + \beta|1\rangle) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = i \begin{bmatrix} -\beta \\ \alpha \end{bmatrix} = -i\beta|0\rangle + i\alpha|1\rangle$
 $\hat{Y}|0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
Phase gate
 $\hat{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
Hadamard gate
 $\hat{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
Hadamard gate
 $\hat{\beta} = \begin{bmatrix} 1 & 1 \\ 0 & i \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 0 & i \end{bmatrix} = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \equiv |+\rangle$
 $\hat{H}|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 0 & i \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} = 0$

d-dimensional quantum states, generalized qubits

$$|\psi\rangle_d = \sum_{n=0}^{d-1} c_n |n\rangle$$

with normalization condition

$$\sum_{n=1}^{d-1} |c_n|^2 = 1$$

$$h - 100 h = 0.00$$

$$3D$$
 qudit = qutrit

$$5D$$
 qudit = (qu)quintit

optical qudits are spanned in *d*-dimensional Fock space

÷

quantum (logic) gates

basic quantum circuits operating on a small number of qubits they are for quantum computers what classical logic gates are in conventional computers

Pauli \hat{X} gate = quantum NOT gate = bit flip

$$\begin{split} \hat{X} &\equiv \hat{\sigma}_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ \hat{X} | k \rangle = | 1 \oplus k \rangle, \quad k = 0, 1 \\ \text{examples} \\ \hat{X} | 1 \rangle = \hat{X} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = | 0 \rangle \\ \hat{X} | \alpha \rangle + \beta | 1 \rangle) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \beta | 0 \rangle + \alpha | 1 \rangle \end{split}$$

 $\hat{H}|-\rangle = |1\rangle$

6

qubit rotations

14

rotations on Bloch sphere

$$\begin{split} \hat{R}_{\mathbf{n}}(2\theta) &\equiv \exp\left(-i\theta\mathbf{n}\cdot\hat{\boldsymbol{\sigma}}\right) \\ &= \hat{\sigma}_{I}\cos\theta - i\mathbf{n}\cdot\hat{\boldsymbol{\sigma}}\sin\theta \\ &= \hat{\sigma}_{I}\cos\theta - i(n_{x}\hat{\sigma}_{x} + n_{y}\hat{\sigma}_{y} + n_{z}\hat{\sigma}_{z})\sin\theta, \end{split}$$

• Pauli matrices (and identity matrix)

$$\hat{\sigma}_x \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = |0\rangle\langle 1| + |1\rangle\langle 0|,$$
$$\hat{\sigma}_y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = -i|0\rangle\langle 1| + i|1\rangle\langle 0|,$$
$$\hat{\sigma}_z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|,$$
$$\hat{\sigma}_I \equiv \hat{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |0\rangle\langle 0| + |1\rangle\langle 1|,$$

 $\hat{\boldsymbol{\sigma}} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)$

• rotations about k = x, y, z axes – special cases of $\hat{R}_{n}(\theta)$ $\hat{R}_{k}(\theta) = \exp\left(-i\frac{\theta}{2}\hat{\sigma}_{k}\right) = \hat{\sigma}_{I}\cos\frac{\theta}{2} - i\hat{\sigma}_{k}\sin\frac{\theta}{2}$

15

or explicitly

$$\hat{X}(\theta) \equiv \hat{R}_x(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$\hat{Y}(\theta) \equiv \hat{R}_y(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$\hat{Z}(\theta) \equiv \hat{R}_z(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

• Do we need all XYZ-rotations? No!

e.g. we can omit Z-rotation as

$$\hat{Z}(\theta) = \hat{X}(\frac{\pi}{2})\hat{Y}(\theta)\hat{X}(-\frac{\pi}{2}) = \hat{Y}(\frac{\pi}{2})\hat{X}(-\theta)\hat{Y}(-\frac{\pi}{2}).$$

• any single-qubit gate

can be written as a decomposition ZY (or, equivalently, XY or XZ) $\hat{U} = e^{i\alpha}\hat{R}_{\mathbf{n}}(\theta) = e^{i\alpha}\hat{Z}(\theta_1)\hat{Y}(\theta_2)\hat{Z}(\theta_3)$

Bloch vector (Pauli vector) for a qubit

• in any pure state

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

we have

 $\mathbf{r}_{\text{Bloch}} \equiv (r_x, r_y, r_z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

• in any mixed state

$$\hat{\boldsymbol{\sigma}} = \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix}$$
$$= \frac{1}{2} (\hat{\sigma}_I + \mathbf{r}_{Bloch} \cdot \hat{\boldsymbol{\sigma}}) \quad \text{(so-called Pauli basis)}$$
$$= \frac{1}{2} (\hat{\sigma}_I + r_x \hat{\sigma}_x + r_y \hat{\sigma}_y + r_z \hat{\sigma}_z)$$

we get

 $\mathbf{r}_{\mathrm{Bloch}} = \langle \boldsymbol{\sigma} \rangle$

 $= \operatorname{Tr}[\hat{\rho}\hat{\sigma}]$ = $(\operatorname{Tr}[\hat{\rho}\hat{\sigma}_{x}], \operatorname{Tr}[\hat{\rho}\hat{\sigma}_{y}], \operatorname{Tr}[\hat{\rho}\hat{\sigma}_{z}])$

||

 $(2\text{Re}\rho_{21}, 2\text{Im}\rho_{21}, \rho_{11} - \rho_{22})$

 $\operatorname{Tr}[\hat{\rho}\hat{\sigma}_x] = \operatorname{Tr}[\frac{1}{2}(\hat{\sigma}_I + r_x\hat{\sigma}_x + r_y\hat{\sigma}_y + r_z\hat{\sigma}_z)\hat{\sigma}_x]$

$$= \frac{1}{2} \text{Tr} [\hat{\sigma}_I \hat{\sigma}_x + r_x \hat{\sigma}_x \hat{\sigma}_x + r_y \hat{\sigma}_y \hat{\sigma}_x + r_z \hat{\sigma}_z \hat{\sigma}_x]$$

$$= \frac{1}{2} (\operatorname{Tr}[\hat{\sigma}_I \hat{\sigma}_x] + r_x \operatorname{Tr}[\hat{\sigma}_x \hat{\sigma}_x] + r_y \operatorname{Tr}[\hat{\sigma}_y \hat{\sigma}_x] + r_z \operatorname{Tr}[\hat{\sigma}_z \hat{\sigma}_x])$$

$$= \frac{1}{2} (\operatorname{Tr}[\hat{\sigma}_x] + r_x \operatorname{Tr}[\hat{\sigma}_I] + r_y \operatorname{Tr}[-i\hat{\sigma}_z] + r_z \operatorname{Tr}[i\hat{\sigma}_y])$$

$$=\frac{1}{2}(0+2r_x+0+0)$$

 $= r_x$

moreover

$$Tr[\hat{\rho}\hat{\sigma}_{x}] = Tr\left(\begin{bmatrix}\rho_{11} & \rho_{12}\\\rho_{21} & \rho_{22}\end{bmatrix} \cdot \begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}\right)$$
$$= Tr\begin{bmatrix}\rho_{12} & \rho_{11}\\\rho_{22} & \rho_{21}\end{bmatrix}$$
$$= \rho_{12} + \rho_{21} = \rho_{21}^{*} + \rho_{21} = 2\text{Re}\,\rho_{21} = 2\text{Re}\,\rho_{12}$$

Properties:

 $|\mathbf{r}_{Bloch}| = 1$ – for pure state, $|\mathbf{r}_{Bloch}| < 1$ – for mixed state

Kronecker tensor product

18

let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

then

$$A \otimes B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, a_{12} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, a_{22} \begin{bmatrix} b_{21} & b_{22} \\ b_{21} & b_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} \\ a_{21}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{12} \\ a_{21}b_{21} & a_{11}b_{12} & a_{22}b_{21} & a_{12}b_{22} \\ a_{21}b_{21} & a_{11}b_{22} & a_{22}b_{21} & a_{12}b_{22} \\ a_{21}b_{21} & a_{11}b_{22} & a_{22}b_{21} & a_{12}b_{22} \end{bmatrix}$$

two-qubit pure states

 $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

notation of two-mode states

$$|\psi\rangle = |\psi'\rangle_A \otimes |\psi''\rangle_B \equiv |\psi'\rangle_A |\psi''\rangle_B \equiv |\psi'\psi''\rangle_{AB} \equiv |\psi'\psi''\rangle$$

matrix representation

$$|00\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \otimes \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix},$$
$$|11\rangle = \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix},$$

matrix representation

 $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

$$= \alpha \begin{bmatrix} 1\\0 \end{bmatrix} \otimes \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 1\\0 \end{bmatrix} \otimes \begin{bmatrix} 0\\1 \end{bmatrix} + \gamma \begin{bmatrix} 0\\1 \end{bmatrix} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} \otimes \begin{bmatrix} 1\\0 \end{bmatrix} + \delta \begin{bmatrix} 0\\1 \end{bmatrix} \otimes \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$\otimes \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 1\\0 \end{bmatrix} \otimes \begin{bmatrix} 0\\1 \end{bmatrix} + \gamma \begin{bmatrix} 0\\1 \end{bmatrix} \otimes \begin{bmatrix} 1\\0 \end{bmatrix} + \delta$$

$$= \alpha \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + \beta \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} + \gamma \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} + \delta \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}$$

$$\delta \neq \beta \alpha$$

 Universal set of gates for quantum computing rotations of single qubits 	
• any nontrivial two-qubit gate (e.g., CNOT, NS, CZ)	
CZ and CNOT gates	シモジ
CZ = controlled phase gate (CPhase) = controlled sign gate (CSign)	TO EVE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The avesdropping
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALICE BOB
or equivalently $CZ: q_1,q_2\rangle \rightarrow (-1)^{q_1q_2} q_1,q_2\rangle$	
where $q_k = 0, 1$ and $q_1 \oplus q_2 = \mod (q_1 + q_2, 2)$.	
22	basic cryptographic terms (I)
Introduction to quantum-optical cryptography	Plaintext
basic cryptographic terms	a string of numbers (letters) of our digital alphabet
auantum key distribution	a computation which is usually quick and easy to perform
BB84 protocol	Decryption
security and no-cloning theorem	quick and easy computation is only when some
a note	otherwise it is very long and time consuming computatio
quantum cryptography is, probably, the most important application of quantum optics nowadays	a set of instructions to encrypt and decrypt a message, e.g., randomly chosen series of numbers known

to Alice and Bob only

	νŪ	ບ	Ч	0	Ŋ	Μ	١N	•
	05	10	15	20	25	30	35	40
	ט	Бц	R	Ň	ጽ	>	۰N	•
•	04	60	14	19	24	29	34	39
	Д	ਸਿ	Ь	z	Ø	Þ	N	۰.
	03	08	13	18	23	28	33	38
	А	ы	н	Σ	ቧ	н	ĸ	Т
•	02	07	12	17	22	27	32	37
	A	А	н	нJ	۰	v⁄v	×	I
	01	90	11	16	21	26	31	36

symmetric algorithms

first paper on quantum cryptography	eavesdropping on quantum system
1983 (1970 İ)	Eve cannot clone the information
by Stephen Wiesner	as she does not know the state
first description of quantum coding	
How to print banknotes, which cannot be counterfeited	
How to combine two messages such that by reading one of them,	monitoring disturbs
the other is automatically destroyed	
eavesdropping on classical system	no-cloning theorem
two steps:	It is impossible to make a copy of an unknown quantum state.
1. Eve makes a copy (clone) of	[Wootters, Żurek and Dieks (1982)]
the information carrier	This is one of the most fundamental theorems of
2. and reads information from the copy	quantum mechanics and quantum information
passive monitoring of	➤ quantum cryptography is secure
classical information is possible	➤ superluminal communication by using entangled states is impossible
	guantum teleportation seems to be also impossible ???

cipher	Sum: 17 25 25 20 49 41 19 49 11 41 40 49 34 42 47 52 45 36 29 Sum mod (40): 17 25 25 20 09 01 19 09 11 01 40 09 34 02 07 12 05 36 29	L6 19 24 03 13 24 07 25 10 23 20 19 22 38 14 16 12 16 11 Cleartext: A D A M _ M I R A N O W I C Z _ Z O N plaintext: 01 06 01 17 36 17 12 24 01 18 20 30 12 04 33 36 33 20 18	example of Vernam protocol Key is a series of random numbers:	key a series of randomly chosen number physically safe not shorter than the length of message Vernam cipher is unbreakable if the above conditions are satisfied. 	= one-time pad algorithm addition modulo N (e.g. 40)	Vernam cipher/protocol (1918) = Che Guevara cipher
measurement	+ \mathbf{X} + + \mathbf{X} \mathbf{X} + + \mathbf{X} + \mathbf{X} \mathbf{X} + + \mathbf{X} Bob's base $ \ \ - \ \ / \ \ \ / \ - \ \ \ \ - \ \ \ \ \ $	2. Bob randomly chooses the measurement base 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 $\begin{vmatrix} - \\ - \\ \end{vmatrix}$ $\begin{vmatrix} / \\ / \\ \end{vmatrix}$ $\begin{vmatrix} / \\ - \\ \end{vmatrix}$ $\begin{vmatrix} / \\ - \\ \end{vmatrix}$ polarization of Alice's photons	BB84 (2)	<pre>1.Alice sends photons 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + + x + x x x + x + + x x + x base - \ / / \ / - \ \ - \ polarization 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 bit</pre>	convention $\left \begin{array}{c} (\alpha = 90^{\circ}) \\ \alpha = 135^{\circ} \end{array} \right => \begin{array}{c} \text{bit 1} \\ 1 \\ \alpha = 0^{\circ} \end{array}$ $- \begin{array}{c} (\alpha = 0^{\circ}) \\ \alpha = 0^{\circ} \end{array} \right => \begin{array}{c} \text{bit 0} \\ 1 \\ \alpha = 45^{\circ} \end{array}$	BB84 (1)

BB84 (3)	BB84 (5)
3. Alice and Bob publicly compare bases	5. Alice and Bob publicly check results for some photons say 1, 5, 10, 14th.
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + + x + x x x + x + x x + x Alice's bases + x + + x x + + x x + + x Bob's bases	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 1 • • 1 0 0 • 1 0 0 • 1 • 0 1 Alice's series 1 • • 1 0 0 • 1 0 0 • 1 • 0 1 Bob's series ox ox ox ox ox
BB84 (4)	6 They reject the hits for the tested photons
4. Alice and Bob keep only those results obtained for the same bases	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 * • • 1 * 0 • 1 0 * • 1 * 0 • 1 • * • 1 * 1 * •
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 1 • • 1 0 0 • 1 0 0 • 1 • 0 1 Alice's series	* 1 * 0 . 1 0 * . 1 . * 1 Bob's series
1100.100.1.01 Bob's series	thus the secret key known only to Alice and Bob is
	10101

	the probability is surprisingly high!	ANSWER $P = \frac{3}{4}$	What is the probability that a single photon was measured by Eve, but Alice and Bob have not realized it?	(e.g. by using another calcite crystal) QUESTION	46 Eve's strategy of eavesdropping (I)		 privacy amplification via e.g. Bennett-Brassard-Robert, Ekert et al. or Horodecki et al. schemes 	3. If the subset reveals eavesdropping, all the data of Alice and Bob are rejected and the BB84 protocol is repeated.	(b) testing parity e.g 20 times $\Rightarrow (1/2)^{20} \sim 0.000001$	2. Methods:(a) testing bit after bit
								Polarizatior Probability	Base	
		P2 -	ד ס	for so for	Se	_	Alice +		ALICe	
,,,=(3/4) ¹⁰	₂₀ =(3/4) ¹⁰	$0^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-1$	$p_2 = (3/4)^2$	1 photor	curity of	1/2*1/2	× €	/ 1/2*1/2	X e	1/2
00 ~10-12	$10 \sim 10^{-13}$	~ 0.003	~ 0.56	ר P ₁ =3/4 אר P ₁ =(3/	BB84	1/2	+ b	 1/2	- + 0b	
U U	' <i>3</i>			′4) ⁿ		= 1/8		= 1/8		= 1/2

Test of agreement

1. Alice and Bob compare arbitrary subset of their data.

(Obviously, the tested subset is then not used for the key.)

+

Alice

+ Eve

+ Bob

strategy of eavesdropping

information is physical "Information is inevitably tied to	a physical representation and therefore to restrictions and possibilities related to the laws of physics"	[R. Landauer]	classical cryptography is a branch of mathematics	quantum cryptography is	a branch of physics - mainly of quantum optics	52 quantum entanglement	= inseparability = Verschränkung = entwinement (Schrödinger 1935)	it is a quantum phenomenon in which the quantum states of two or more objects (possibly spatially separated) have to be described with reference to each other. definition	A bipartite pure state is separable if $ \psi_{AB}\rangle = \psi_A\rangle \otimes \psi_B\rangle$ entangled if $ \psi_{AB}\rangle \neq \psi_A\rangle \otimes \psi_B\rangle$	A bipartite mixed state is separable if $\rho_{AB} = \sum_i p_i \rho_A^i \otimes \rho_B^i$ entangled if $\rho_{AB} \neq \sum_i p_i \rho_A^i \otimes \rho_B^i$ where $\sum_i p_i = 1$ and $p_i \ge 0$ for all <i>i</i> .
famous protocols of quantum key distribution	1984 Bennett-Brassard protocol (BB84)	1991 Ekert protocol based Bell's inequality (E91)	1992 Bennett-Brassard-Mermin protocol a la Ekert protocol but without Bell's inequality	1992 Bennett protocol using any two nonorthogonal states (<mark>B92</mark>)	2004 Englert et al. protocol claimed to be the most efficient nowadays (Singapore protocol)	quantum algorithms and cryptography	1985 Deutsch (Deutsch-Jozsa / DJ) algorithm: How to see both sides of a coin simultaneously?	1994 Shor algorithm for number factorization: How to break cryptosystems of RSA, Rabin, Williams, Blum-Goldwasser,?	1994 Shor algorithm for finding discrete logarithms: How to break ElGamal cryptosystem?	1997 Grover algorithm for searching databases: How to search the keys more effectively?

GHZ (Greenberger-Horne-Zeilinger) states

$$|\Phi_{W}\rangle = \frac{1}{\sqrt{3}} \left(|100\rangle + |010\rangle + |001\rangle \right)$$
$$|\Psi_{W}\rangle = \frac{1}{\sqrt{3}} \left(|011\rangle + |101\rangle + |110\rangle \right)$$

w states

$$|\Phi_{W}\rangle = \frac{1}{\sqrt{3}} \left(|100\rangle + |010\rangle + |001\rangle \right)$$

$$|\Psi_{W}\rangle = \frac{1}{\sqrt{3}} \left(|011\rangle + |101\rangle + |110\rangle \right)$$

$$\left|\Psi_{W}\right\rangle = \frac{1}{\sqrt{3}} \left(\left| 011 \right\rangle + \left| 101 \right\rangle + \left| 110 \right\rangle \right)$$

$$\begin{split} |\Psi^{(-)}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ -1\\ -1\\ 0 \end{bmatrix}, \quad |\Psi^{(+)}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}, \\ |\Phi^{(-)}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ -1\\ -1 \end{bmatrix}, \quad |\Phi^{(+)}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ 0\\ 1\\ 1 \end{bmatrix}, \end{split}$$
Bell states in matrix representation

 $= \frac{1}{\sqrt{2}} ([10000000]^T + [00000001]^T) = \frac{1}{\sqrt{2}} [10000001]^T$

 $=\frac{1}{\sqrt{2}}\left(\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}\otimes\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\1\end{bmatrix}\otimes\begin{bmatrix}0\\1\end{bmatrix}\otimes\begin{bmatrix}1\\1\end{bmatrix}\right)$

a GHZ state in matrix representation

 $|\Psi'\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$

Applications of quantum entanglement (I)	59 examples of separable states
	example 1
in quantum information theory:	
• dense coding [Bennett and Wiesner'92]	$ \psi\rangle = \frac{1}{\sqrt{2}}(10\rangle + 11\rangle)$
• quantum teleportation [Bennett et al.'93]	V 2 mroof:
• entanglement swapping [Żukowski et al.'93]	1 1 $ 0\rangle_{D} + 1\rangle_{D}$
• superfast [Shor'94] and fast [Grover'97] algorithms	$ \psi\rangle = \frac{1}{\sqrt{2}} (1\rangle_A 0\rangle_B + 1\rangle_A 1\rangle_B) = \frac{1}{\sqrt{2}} 1\rangle_A (0\rangle_B + 1\rangle_B) = 1\rangle_A \frac{1^{2/B}}{\sqrt{2}} = 1\rangle_A +\rangle_B$
• quantum error correction [Shor'95, Steane'96]	$\left + \right $
in quantum cryptography:	example 2
• quantum key distribution [Ekert'91, Bennett et al.'92]	
• privacy amplification [Bennett et al.'96, Deutsch et al.'96]	$ \psi\rangle = \frac{1}{2}(00\rangle + 01\rangle + 10\rangle + 11\rangle)$
• secret sharing [Żukowski et al.'98]	proof:
• quantum authentication [Ljunggren et al.'00]	$ \psi\rangle = \frac{1}{2} [0\rangle_A (0\rangle_B + 1\rangle_B) + 1\rangle_A (0\rangle_B + 1\rangle_B)] = \frac{1}{2} (0\rangle_A + 1\rangle_A) (0\rangle_B + 1\rangle_B)$
• quantum watermarking [Imoto et al. 05]	
	$=\frac{ 0/A+ 1/A}{\sqrt{2}}\cdot\frac{ 0/B+ 1/B}{\sqrt{2}}\equiv +\rangle_A +\rangle_B$
8	
Applications of quantum entanglement (II)	example of inseparable state
in quantum communication:	
• to simplify communication complexity [Cleve & Buhrman'97]	$ \psi\rangle = \frac{ 01/-110/}{\sqrt{2}}$
in quantum state engineering:	mundf that it amund ha multan an a mundmat atata
• telecloning [Murao et al. 99]	
• remote state preparation [Bennett et al.'01]	$\frac{1}{\sqrt{2}} = (a 0\rangle + b 1\rangle) \otimes (a' 0\rangle + b' 1\rangle)$
to increase precision of quantum measurements:	$= aa' 00\rangle + ab' 01\rangle + ba' 10\rangle + bb' 11\rangle$
• quantum noise reduction in spectroscopy [Wineland et al.'92]	where
• to improve frequency standards [Huelga et al. '97]	$ a ^{2} + b ^{2} = a' ^{2} + b' ^{2} = 1$
• better clock synchronization [Jozsa et al.'00, Chuang'00]	$a,a',b,b'\in\mathcal{C}$
• interferometric lithography beyond diffraction limit [Boto et al.'00]	So we get set of equations
classical limit: $\lambda/2$	$aa'=0$ $ab'=$ $\frac{1}{ba'}$ $\frac{ba'}{ba'}$ $\frac{1}{bb'}$ $\frac{bb'}{bb}$
quantum limit: $\lambda/(2N)$ for N-photon absorption	$aa = 0, ab = -\frac{\sqrt{2}}{\sqrt{2}}, aa = -\frac{\sqrt{2}}{\sqrt{2}}, ab = 0$
	which admits no solution.

$$\begin{aligned} & \text{example of inseparable (Bell-like) state} & \text{fill} & \text{fill we to generate Bell states from } [00] \quad \# 1 \\ & |e| = \frac{1}{2}(|0|) + |0|) + |10| = |11| \\ & \text{prof:} \\ & |e| = \frac{1}{2}(|0|) + |11| + |11| \\ & |e| = \frac{1}{2}(|0|) + |11| \\ & |e|$$

Generation of Bell states general formula (k, l = 0, 1)

65

$$J_{\text{CNOT}}H_A|kl\rangle = \frac{|0l\rangle + (-1)^k |1, 1 \oplus l\rangle}{\sqrt{2}} = |\text{Bell}_{kl}\rangle$$

obviously, we can obtain Bell states by:

$$U'_{\mathrm{CNOT}}H_B|lk
angle=|\mathrm{Bell'}_{kl}
angle$$

qubit A
$$|l\rangle$$

qubit B $|k\rangle$
 H
CNOT

99

CNOT and SWAP gates

0.	out		00	10	01	11
SWAE	-u i	 	00	01	10	11
	out		00	11	10	01
CNOT	-u i	 	00	01	10	11
L.	out		00	01	11	10
CNO	in		00	01	10	11

 $|\psi_{\rm in}\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle \equiv c_0|0\rangle + c_1|1\rangle + c_2|2\rangle + c_3|3\rangle$ $\hat{U}_{\text{CNOT}}|\psi_{\text{in}}\rangle = c_0|00\rangle + c_1|01\rangle + c_3|10\rangle + c_2|11\rangle \equiv c_0|0\rangle + c_1|1\rangle + c_3|2\rangle + c_2|3\rangle$ $\hat{U}_{\text{CNOT}}^{\prime}|\psi_{\text{in}}\rangle = c_0|00\rangle + c_3|01\rangle + c_2|10\rangle + c_1|11\rangle \equiv c_0|0\rangle + c_3|1\rangle + c_2|2\rangle + c_1|3\rangle$ $\hat{U}_{\text{SWAP}}|\psi_{\text{in}}\rangle = c_0|00\rangle + c_2|01\rangle + c_1|10\rangle + c_3|11\rangle \equiv c_0|0\rangle + c_2|1\rangle + c_1|2\rangle + c_3|3\rangle$

in matrix representation **CNOT and SWAP gates**

$$\hat{\gamma}_{\text{CNOT}} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_3 \\ c_3 \\ c_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_3 \\ c_1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ c_1 \\ c_3 \\ c_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_3 \\ c_1 \\ c_1 \\ c_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_1 \\ c_1 \\ c_1 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_2 \\ c_1 \\ c_1 \end{bmatrix}$$

Generation of Bell states

 \succ decay of a particle with spin 0 into 2 particles with spin %

$$\begin{split} |\Psi\rangle_{xy} &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_x |\downarrow\rangle_y - \left| \downarrow \right\rangle_x \right| \uparrow \rangle_y \right) \\ & \text{light generated by parametric down conventer (PDC II)} \\ |\Psi\rangle_{xy} &= \frac{1}{\sqrt{2}} \left(|H\rangle_x |V\rangle_y + e^{i\chi} |V\rangle_x |H\rangle_y \right) \\ |\Phi\rangle_{xy} &= \frac{1}{\sqrt{2}} \left(|H\rangle_x |H\rangle_y + e^{i\chi} |V\rangle_x |V\rangle_y \right) \end{split}$$

> output light of beam splitter 50:50 with a single input photon

$$ig|\Phiig>_{xy}=rac{1}{\sqrt{2}}ig(|0ig>_xig|1ig>_y+e^{iarkappa}ig|1ig>_xig|0ig>_yig)$$

projection of separable state onto entangled one

from a mystery to a physical resource Entanglement

69

- An entangled wave-function does not describe the physical reality in a complete way. [Einstein,Podolsky,Rosen]
- For an entangled state is the best possible knowledge of the whole does not include the best possible knowledge of its parts. [E. Schrödinger]
- Entanglement is a "fundamental resource of Nature, of comparable imsource." [M. Nielsen, I. Chuang] portance to energy, information, entropy, or any other fundamental re-

70

Entanglement is...

- a correlation that is stronger than any classical correlation. [J. Bell]
- a correlation that contradicts the theory of elements of reality. [D. Mermin]
- a trick that quantum magicians use to produce phenomena that cannot be imitated by classical magicians. [A. Peres]
- a resource that enables quantum teleportation. [C. Bennett]
- a global structure of the wavefunction that allows for faster algorithms. [P. Shor]
- a tool for secure communication. [A. Ekert]
- the need for first applications of positive maps in physics. [Horodecki family]

[collected by Dagmar Bruß, quant-ph/0110078]

Measurement of entangled spins and Bell inequalities

Stern-Gerlach filter

 $N_{++}(\alpha,\beta)$ – number of outcomes when spin +1 was measured in filter 1 at angle α and in filter 2 at angle β

N – total number of outcomes

probability $P_{++}(\alpha,\beta) = N_{++}(\alpha,\beta)/N$

QM predictions

72

for electrons in singlet state

$$|\psi^{(-)}\rangle = \frac{|\uparrow\rangle_1|\downarrow\rangle_2 - |\downarrow\rangle_1|\uparrow\rangle_2}{\sqrt{2}} \equiv \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$

then

$$P_{++}(\alpha,\beta) = P_{--}(\alpha,\beta) = \frac{1}{2}\sin^2\left(\frac{\alpha-\beta}{2}\right)$$
$$P_{+-}(\alpha,\beta) = P_{-+}(\alpha,\beta) = \frac{1}{2}\cos^2\left(\frac{\alpha-\beta}{2}\right)$$

1. $\alpha = \beta$ ∜ spins of opposite values

$$P_{+-}(\alpha,\beta) = P_{-+}(\alpha,\beta) = \frac{1}{2}\cos^2\left(\frac{\alpha-\beta}{2}\right)$$
cases:

$$+ \alpha \implies$$
 measurement of 2 independent spins

2. $\beta =$

₩

 $P_{++}(\alpha,\alpha) = P_{--}(\alpha,\alpha) = 0,$

 $P_{+-}(\alpha,\alpha) = P_{-+}(\alpha,\alpha) = \frac{1}{2}$

$$= \frac{\pi}{2} + \alpha \implies \text{measurement of 2 independent spins}$$
$$\Rightarrow P_{++}(\alpha, \beta) = P_{+-}(\alpha, \beta) = P_{-+}(\alpha, \beta) = P_{--}(\alpha, \beta) = \frac{1}{4}$$

	Aspect et al. tests of Bell-CHSH inequalities (1984)	$-\operatorname{PM}_{A^+} \widehat{I}_{A^+} \widehat{I}_{A^-} \widehat{S}_{B^-} \widehat{I}_{B^+} \widehat{I}_{B^+} \widehat{P}_{M^-}$			
73	• Bell inequality for 3 series of measurements	$N_{++}(\alpha,\beta) + N_{++}(\beta,\gamma) \ge N_{++}(\alpha,\gamma)$	$P_{++}(\alpha,\beta)+P_{++}(\beta,\gamma)\geq P_{++}(\alpha,\gamma)$	 violation of Bell inequality 	occurs, e.g., for $\alpha = 0, \beta = \pi/4, \gamma = \pi/2$

Mathematica:

LHS = $\sin^2(\pi/8) = 0.146 \dots RHS = 0.25$

P[a_, b_] := 1/2*Sin[(a - b)/2]^2 LHS = P[0, Pi/4] + P[Pi/4, Pi/2] RHS = P[0, Pi/2]

74

Bell assumptions

1. reasoning by induction

- from large number of measurements probability can be determined
- this is very natural assumption

2. realism

- physical objects have properties independent of whether we measure them or not

3. locality

- measurement by filter in position 1 does not influence the result of measurement by filter in a distant place 2

- the world is nonrealistic or/and nonlocal • violation of a Bell inequality implies that
- "the deepest discovery in history of science" [Stapp]

as enables to decide experimentally a dispute between Einstein and Bohr.

Key:

C – correlation systems

S - source of photons

 P_A , P_B – polarizing beam splitters = optical analogues of Stern-Gerlach filters $\hat{I}_k \sim \hat{n}_k - \mathrm{intensity} \ \mathrm{of} \ k\mathrm{th} \ \mathrm{beam}$

PM - photon multipliers

• What is measured in the experiment?

76

$$E(\phi_A, \phi_B) = \frac{\langle (\hat{I}_{A+} - \hat{I}_{A-})(\hat{I}_{B+} - \hat{I}_{B-}) \rangle}{\langle (\hat{I}_{A+} + \hat{I}_{A-})(\hat{I}_{B+} + \hat{I}_{B-}) \rangle}$$

$$= \frac{\langle \hat{I}_{A+}\hat{I}_{B+} \rangle + \langle \hat{I}_{A-}\hat{I}_{B-} \rangle - \langle \hat{I}_{A+}\hat{I}_{B-} \rangle - \langle \hat{I}_{A-}\hat{I}_{B+} \rangle}{\langle \hat{I}_{A+}\hat{I}_{B+} \rangle + \langle \hat{I}_{A-}\hat{I}_{B-} \rangle + \langle \hat{I}_{A-}\hat{I}_{B-} \rangle + \langle \hat{I}_{A-}\hat{I}_{B+} \rangle}$$

at any angles ϕ_A, ϕ_B .

Bell inequality according to Clauser-Horne-Shimony-Holt

 $\left|\frac{S}{1}\right|$

where

$$S = E(\phi'_A, \phi'_B) - E(\phi'_A, \phi''_B) + E(\phi''_A, \phi''_B) + E(\phi''_A, \phi''_B)$$

should be satisfied for realistic local theories.

$$^{(-)}\rangle = \frac{|H\rangle_A|V\rangle_B - |V\rangle_A|H\rangle_B}{\sqrt{2}}$$

Ę

QM predicts that

$$E(\phi_A, \phi_B) = P_{++}(\phi_A, \phi_B) + P_{--}(\phi_A, \phi_B) - P_{+-}(\phi_A, \phi_B) - P_{-+}(\phi_A, \phi_B)$$

where $P_{jk}(\phi_A, \phi_B)$ in the former slides

maximal violation of Bell inequality

 $\max|S| = 2\sqrt{2}$

which can be obtained for the following angles of polarizers

$$\phi_A'=0, \ \phi_B'=\frac{\pi}{4}, \ \phi_A''=\frac{\pi}{2}, \ \phi_B''=3\frac{\pi}{4}$$

as

$$S = -3\cos^{2}\left(\frac{\pi}{8}\right) + \cos^{2}\left(\frac{3\pi}{8}\right) + 3\sin^{2}\left(\frac{\pi}{8}\right) - \sin^{2}\left(\frac{3\pi}{8}\right) = -2\sqrt{2} \approx -2.8$$

• Note: the same setup of Aspect was used for testing violation of Schwarz inequality

possible loopholes of Bell's inequalities (BI)

82

- in the present experimental BI tests
- in the proof or assumptions of BI
- in the BI interpretation

I. experimental loopholes

there has been no loophole-free experimental test of BI

1. detection efficiency and fair-sample assumption:

None experimental test does not detect 100% the particle pairs emitted. Thus it is not clear that the pairs registered are a fair sample of all pairs emitted.

2. causality:

The choice of measurement settings of Alice and Bob should be truly random and placed at sufficient physical distance

1. independence assumption:

There are physical processes independent of the Bell experiment that can be used as an effective source of **randomness**.

III. interpretational loopholes

Accepting that Bell's theorem is true then either locality or realism might be false.

1. universe is non-local but real

e.g. **Bohmian hidden variable theory** is explicitly non-local and contextual, but still fairly natural looking.

2. operationalism of quantum mechanism (QM) the standard Copenhagen interpretation:

QM is just a set of recipes for calculating probabilities of measurement results.

It says nothing about an underlying physical reality, which may not even exist, and therefore nothing about its locality.

08

loopholes in Aspect's et al. experiment (1982)

1. a fair-sample assumption

All experiments so far detect only a small subset of all pairs created thus it is necessary to assume that the pairs registered are a fair sample of all pairs emitted.

2. causality

(i) no true randomization

Analyzers were not randomly rotated during the flight of the particles.

Aspect et al. switched the directions of polarization analysers after the photons left the source, but they used periodic sinusoidal switching, which is predictable.

(ii) no true space-like separation

The necessary space-like separation of the observations was not achieved by sufficient physical distance between the measurement stations.

• **BI test more ideal than ever by Zeilinger** et al. (PRL 1998) on "Violation of Bell's inequality under strict Einstein locality conditions".

Def. 1. A state ρ_{AB} is separable iff

$$\rho_{AB} = \sum_i p_i \rho_A^i \otimes \rho_B^i$$

Def. 2. A state ρ_{AB} is separable iff where $\sum_i p_i = 1$ and $p_i \ge 0$ for all *i*.

$$o_{AB} = \sum p_i |\psi^i_A\rangle\langle\psi^i_A| \otimes |\psi^i_B\rangle\langle\psi^i_B|$$

where $\sum_i p_i = 1$ and $p_i \ge 0$ for all i.

These definitions are equivalent, as ρ^i_A (and ρ^i_B) can be expanded in terms eigenvectors

$$ho^j_A = \sum q_j |\psi^j_A
angle \langle \psi^j_A |$$

where $\sum_{j} q_{j} = 1$ and $q_{j} \ge 0$ for all *i*.

82

General definition of bipartite entanglement

it can be written or approximated (in, e.g., trace norm) by A state $\hat{\rho}_{AB}$ is separable iff

$$\hat{
ho}_{AB} = \sum_i p_i
ho_A^i \otimes
ho_B^i$$

where $\sum_i p_i = 1$ and $p_i \ge 0$ for all i.

systems of finite dimensions

If $\hat{\rho}_{AB}$ acts in finite-dimensional Hilbert spaces then the approximation part is redundant.

 $\hat{1} \otimes \hat{1} \equiv \hat{1}_2 \otimes \hat{1}_2 = \hat{1}_4 = |00\rangle \langle 00| + |01\rangle \langle 01| + |10\rangle \langle 10| + |11\rangle \langle 11| = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

and maximally mixed state

 $\left|\Psi^{(\pm)}\right\rangle = \frac{\left|01\right\rangle \pm \left|10\right\rangle}{\sqrt{2}}$

the Werner state is entangled

and violates Bell inequality $B(\hat{\rho}_W) > 0$ for all $\frac{1}{\sqrt{2}}$

 $E(\hat{\rho}_W) > 0$ for all $\frac{1}{3}$

trace norm

 $||\hat{A}|| = \operatorname{Tr}|\hat{A}| = \operatorname{Tr}(\sqrt{\hat{A}^{\dagger}\hat{A}})$

(an we decompose Bell states
into separable states?
e.g. the 'triplet' state
$$|\Psi^{(+)}\rangle\langle\Psi^{(+)}| = \sum_{i=1}^{5} p_i |a_i\rangle\langle a_i| \otimes |b_i\rangle\langle b_i|$$

 $p_1 = p_2 = p_3 = \frac{2}{3}, \quad p_4 = p_5 = -\frac{1}{2}$
 $|a_1\rangle = |b_1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$
 $|a_2\rangle = |b_2\rangle = \frac{|0\rangle + e^{i2\pi/3}|1\rangle}{\sqrt{2}}$
 $|a_3\rangle = |b_3\rangle = \frac{|0\rangle + e^{-i2\pi/3}|1\rangle}{\sqrt{2}}$

$$a_4 \rangle = |0\rangle, |b_4 \rangle = |1\rangle, |a_5 \rangle = |1\rangle, |b_5 \rangle = |0\rangle$$

note that $p_4 = p_5 < 0$

thus it is not a *convex* combination of product states and the state is entangled.

Werner state

$$= \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)}$$

$$) = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)} |$$

$$\dot{p} = rac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)}|$$

$$\hat{\boldsymbol{\mu}} = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p | \boldsymbol{\Psi}^{(\pm)} \rangle \langle \boldsymbol{\Psi}^{(\pm)} |$$

$$\dot{z} = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)} |$$

$$) = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)} |$$

$$\hat{\rho}_W^{(\pm)} = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)}$$

$$\frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)} |$$

$$\hat{\rho}_W^{(\pm)} = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)}|$$
 is mixture of maximally entangled state

$$\dot{p} = \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)} \rangle$$

$$= \frac{1-p}{4} \hat{1} \otimes \hat{1} + p |\Psi^{(\pm)}\rangle \langle \Psi^{(\pm)}$$

properties of Werner states

78

- 1. They are so-called maximally entangled mixed states (MEMS)
- any unitary operations, • entanglement $E(\rho_W)$ cannot be increased by
- for a given **linear entropy** (and vice versa) • entanglement $E(\rho_W)$ is maximal

[Ishizaka, Hiroshima'00, Munro et al.'01]

2. Original Werner state exhibits $U \otimes U$ invariance:

$$\hat{U}\otimes\hat{U}\hat{
ho}_W^{(-)}=\hat{
ho}_W^{(-)}$$

3. All entangled Werner states (even for $p \in (1/3, 1/\sqrt{2})$) including teleportation [Popescu'94, Lee,Kim'00] can be used for quantum-information processing

nonlocality

there is no local unhidden variable model of their behavior. quantum states are called **nonlocal** if

Thus a **measurement of the whole** can reveal

than any sequence of classically coordinated measurements of the parts. more information about the system's state

that cannot be reliably distinguished by a pair of separated observers

ignorant of which of the states has been presented to them,

There are orthogonal sets of product states of **two qutrits**

[Bennett et al. 1999]

1. nonlocality without entanglement

even if the observers are allowed to communicate by LOCC.

local quantum operations and classical communication

Note: LOCC = LQCC

2. entanglement without nonlocality	• but the atom is entangled with the cat via the apparatus
₽	so the state is 1 ,
nonlocality and violation Bell-inequality	$\frac{1}{\sqrt{2}} \left(u\rangle_{\text{atom}} \text{alive} \rangle_{\text{cat}} + d\rangle_{\text{atom}} \text{dead} \rangle_{\text{cat}} \right)$
are often identified	Copenhagen interpretation
(although there are some serious doubts about it)	to understand it, one has to include the observer or measurement process:
2'. entanglement without violating Bell inequality	the "quantum chamber" has to be opened to check the state of the "cat".
[Werner 1989]	(modern) definition of Schrödinger cat (state)
two-qubit mixed states can be entangled without violating Bell inequality	it is a superposition of two macroscopically distinct states
e.g. Werner states and isotropic states for	Noto the definition on he candid to a cincle mode, thus not necessarily has
$p \in (1/3, 1/\sqrt{2})$	to be related to entanglement
are entangled and satisfy Bell inequality	• e.g. superposition of two coherent states
thus they can be described in terms realistic local theories	$ \psi angle = \mathcal{N}[lpha angle + e^{iarphi} -lpha angle]$
	where \mathcal{N} is a normalization constant assuming $\alpha \in \mathcal{R}$:
Note: two-qubit pure states violate Bell inequality iff they are entangled.	$\mathcal{N} = [2 + 2\cos\varphi\exp(-2\alpha^2)]^{-1/2}$
90 Schrödinger cat paradox	92 special cases of Single-mode Schrödinger cats :
questions	– even coherent state for $\varphi = 0$:
- how to interpret superposition of states and entanglement?	$\frac{1}{1.1} \text{af } I = 1 1 \sum_{n=1}^{\infty} \alpha^{2n} \frac{1}{10.1} = 101$
- can we talk about of superposition, entanglement or smearing of classical objects?	$ \psi_+\rangle = \mathcal{N}_+(\alpha\rangle + -\alpha\rangle) = \frac{1}{\sqrt{\cosh(\alpha^2)}} \sum_{n=0}^{\infty} \frac{1}{\sqrt{(2n)!}} 2n\rangle \equiv \mathbf{U}\rangle_{\mathbf{L}}$
 gedanken experiment of Schrödinger cat 	– odd coherent state for $\varphi = \pi$:
image a chamber containing:	$ \alpha > -\sqrt{\left(\alpha - -\alpha \right)} - \frac{1}{\sqrt{\left(\alpha - -\alpha \right)}} - \frac{1}{\sqrt{\left(\alpha - -\alpha \right)}} + \frac{1}{ \alpha - \alpha }$
– a cat	$ \psi_{-j} - \omega_{-j} \alpha_j - -\alpha_j - \frac{1}{\sqrt{\sinh(\alpha^2)}} \sum_{n=0}^{\infty} \frac{1}{\sqrt{(2n+1)!}} \alpha_n + 1 = 1/L}$
- a bottle with poison gas	$\mathbf{V}_{\mathbf{v}}$ and $\mathbf{V}_{\mathbf{v}}$ of the fraction $E_{\mathbf{v}}$, $\mathbf{v} = 1 - 10$.
- radioactive atom	- Intre-Stutel states for $\varphi = \pm \pi/2$:
- automatic device to release the poison when the atom decays	$ \psi_{ m YS} angle = rac{1}{\sqrt{2}}(lpha angle \pm i -lpha angle)$
• state of the isolated atom after a time equal to its half-time is	• Note: the shove states are not mixtures of coherent states
$rac{1}{\sqrt{2}} \Big(u angle + d angle \Big)$	$\hat{\rho}_{\text{mix}} = \frac{1}{2} (\alpha\rangle \langle \alpha + -\alpha\rangle \langle -\alpha) \neq \psi\rangle \langle \psi $
where $ d\rangle$ – decayed state, $ u\rangle$ – undecayed state.	4

type II parametric down converter

type I parametric down converter

type II parametric down converter

this is how all four Bell states can be obtained including:

$$|\psi^{(+)} = \frac{1}{\sqrt{2}}(|V\rangle, |H\rangle, -|H\rangle, |V\rangle);$$

$$|\psi^{(+)} = \frac{1}{\sqrt{2}}(|V\rangle, |H\rangle, -|I\rangle, |V\rangle);$$

$$|\psi^{(+)} = \frac{1}{\sqrt{2}}(|I\rangle, |I\rangle, -|I\rangle, |V\rangle);$$

$$|\psi^{(+)} = \frac{1}{\sqrt{2}}(|I\rangle, |I\rangle) = \frac{1}{\sqrt{2}}(|I\rangle, |$$

another matrix representation of qubit states

103

 $|\Psi^{(+)}\rangle = \frac{1}{\sqrt{2}}(|V\rangle_s|H\rangle_i + |H\rangle_s|V\rangle_i) \rightarrow \frac{1}{\sqrt{2}}(|H\rangle_s|H\rangle_i + |V\rangle_s|V\rangle_i) = |\Phi^{(+)}\rangle$

– use phase shifter or simply rotate crystal to change α :

$$|\Psi^{(+)}\rangle \rightarrow |\psi^{(\alpha)}\rangle = \frac{1}{\sqrt{2}} (|V\rangle_s|H\rangle_i + e^{i\alpha}|H\rangle_s|V\rangle_i)$$

• this is h

the experin using cryst

stanc

- place half-wave plate (HWP) on the path of one beams: 101 How to generate other polarization Bell states?

let's use the orthonormal basis

$$|0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \quad |1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

then

 $\langle 0|1\rangle = \frac{1}{2}[1,1] \begin{bmatrix} 1\\ -1 \end{bmatrix} = 0$

identity resolution

$$\frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\-1 \end{bmatrix} \begin{bmatrix} 1,-1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\-1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 1&0\\0&1 \end{bmatrix}$$
NOT gate

$$\hat{X} = |0\rangle\langle 1| + |1\rangle\langle 0| = \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 1,-1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\-1 \end{bmatrix} \begin{bmatrix} 1\\-1 \end{bmatrix} \begin{bmatrix} 1,1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1&-1\\1&-1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1&1\\-1&-1 \end{bmatrix} = \begin{bmatrix} 1&0\\0&-1 \end{bmatrix}$$

Further questions

109

Quantum no-deleting theorem:

$$\begin{split} IS &= \hat{U}_{del} |\psi\rangle |\psi\rangle |A\rangle \\ &= \hat{U}_{del} (a|H\rangle + b|V\rangle) \otimes (a|H\rangle + b|V\rangle) |A\rangle \\ &= \hat{U}_{del} [a^2|H\rangle |H\rangle + ab(|H\rangle |V\rangle + |V\rangle |H\rangle) + b^2 |V\rangle |V\rangle]|A\rangle \end{split}$$

[it might be you...]

4. quantum no-deleting for mixed states ???

BIT 0

and

SO

as

How to send 2 bits of information by transmitting I qubit?
1. Also and Bob share 2 gubits in an EPR state
$$g$$
.
 $(\phi^{-}) = \frac{[0,1]\alpha_{B} + [1,1]1\alpha_{B}}{\sqrt{2}}$
2. If Also wants to send a message
01 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
01 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
01 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
11 - then flips braice of her qubit (Pauli Z gare) $\Rightarrow Z(\phi^{-}) = [\phi^{-})$
12 - then flips braice qubit A flip man EPR pain:
 $(\phi^{-}) = [0,1]\alpha_{-} + (1,1)\beta_{-} + (1,2)\beta_{-}

117

(super)dense coding [Bennett and Wiesner 1992]

119

 $\hat{U}_{\text{CNOT}} \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{|0, 0 \oplus 0\rangle + |1, 1 \oplus 1\rangle}{\sqrt{2}} = \frac{|00\rangle + |10\rangle}{\sqrt{2}} = \frac{|0\rangle + |1\rangle}{\sqrt{2}} |0\rangle = |+, 0\rangle$

3. Bob applies CNOT to remove entanglement between qubits A and B:

Explanation of teleportation Problem: How to teleport state of qubit 1 to qubit 3 ? Problem: How to teleport state of qubit 1 to qubit 3 ? Assumption: qubits 2 & 3 are in the singlet state $ in\rangle_1 \otimes \Phi_A\rangle_{23} = (a 0\rangle_1 + b 1\rangle_1) \otimes \frac{ 0\rangle_2 1\rangle_3 - 1\rangle_2 0\rangle_3}{\sqrt{2}}$ $= -\frac{1}{2} \Phi_A\rangle_{12} \otimes (a 0\rangle_3 + b 1\rangle_3) - \frac{1}{2} \Phi_B\rangle_{12} \otimes (a 0\rangle_3 - b 1\rangle_3)$ $+\frac{1}{2} \Phi_C\rangle_{12} \otimes (a 1\rangle_3 + b 0\rangle_3) + \frac{1}{2} \Phi_D\rangle_{12} \otimes (a 1\rangle_3 - b 0\rangle_3)$	Model I Design $\Phi_{A}\rangle_{12} \Rightarrow \langle a 0\rangle_{3} + b 1\rangle_{3}$ OK $\Phi_{B}\rangle_{12} \Rightarrow \langle a 0\rangle_{3} - b 1\rangle_{3}$ DK $\Phi_{B}\rangle_{12} \Rightarrow \langle a 0\rangle_{3} - b 1\rangle_{3}$ DK $\Phi_{C}\rangle_{12} \Rightarrow \langle a 0\rangle_{3} - b 0\rangle_{3}$ Diffip $ x\rangle \rightarrow x\oplus 1\rangle$ $\Phi_{C}\rangle_{12} \Rightarrow \langle a 1\rangle_{3} - b 0\rangle_{3}$ Diffip $ x\rangle \rightarrow - x\oplus 1\rangle$ $\Phi_{D}\rangle_{12} \Rightarrow \langle a 1\rangle_{3} - b 0\rangle_{3}$ Diffip $ x\rangle \rightarrow - x\oplus 1\rangle$ Where $ \Phi_{A}\rangle = \Psi^{(-)}\rangle, \Phi_{B}\rangle = \Psi^{(+)}\rangle, \Phi_{C}\rangle = \Phi^{(-)}\rangle, \Phi_{D}\rangle = \Phi^{(+)}\rangle, \Phi^{(+)}\rangle = \Phi^{(+)}\rangle$
 121 What is quantum teleportation? a method to transfer (information about) unknown quantum states over large distances via entangled particles and transmission of some classical information. emarks: e Teleportation is a transfer of information about a quantum system without measuring it! Teleportation is not a transfer of an object itself, neither its energy etc. Teleportation is not a transfer of an object itself, neither its energy etc. Teleportation is not a transfer of an object itself, neither its energy etc. Teleportation is not a transfer of an object itself, neither its energy etc. Teleportation is not a transfer of an object itself, neither its energy etc. Teleportation communication via teleportation is impossible. (why?) Super-luminal communication via teleportation is impossible. (why?) Teleportation can provide the quantum channel for communication between quantum computers. Universal quantum computers. Universal quantum computers. Universal quantum computers. Universal quantum computers. 	branch for the formation for t

Remarks:

$$\begin{aligned} & \text{12} & \text{Tr} \mathbf{n}^2 & \text{tr}$$

- a projective measurement in the Bell-state basis (on particles 1 and 2). Now, Alice performs a Bell-state measurement (BSM)

thus we have
$$\begin{split} &\|\Psi^{(-)}\rangle_{23} = \frac{1}{2} \left(-|\Psi^{(-)}\rangle_{12} |\phi\rangle_3 - |\Psi^{(+)}\rangle_{12} \hat{Z} |\phi\rangle_3 + \hat{X} |\Phi^{(-)}\rangle_{12} |\phi\rangle_3 + |\Phi^{(+)}\rangle_{12} (-i\hat{Y}) |\phi\rangle_3 \right) \\ &= -\frac{1}{2} \left(|\Psi^{(-)}\rangle_{12} |\phi\rangle_3 + |\Psi^{(+)}\rangle_{12} \hat{Z} |\phi\rangle_3 - \hat{X} |\Phi^{(-)}\rangle_{12} |\phi\rangle_3 + |\Phi^{(+)}\rangle_{12} (i\hat{Y}) |\phi\rangle_3 \right) \end{split}$$

$$\begin{split} |\phi\rangle_{1}|\Psi^{(-)}\rangle_{23} &= \frac{1}{2} \Big({}_{12}\langle HH| + {}_{12} \langle VV| \Big) \Big(a|HHV\rangle - a|HVH\rangle + b|VHV\rangle - b|VVH\rangle \Big) \\ &= \frac{1}{2} \Big(a_{12}\langle HH|HHV\rangle - b_{12}\langle VV|VVH\rangle \Big) \\ &= \frac{1}{2} (a|V\rangle_{3} - b|H\rangle_{3}) = \frac{1}{2} (-i\hat{Y})|\phi\rangle_{3} \\ \text{nce} \left(-i\hat{Y} = \hat{X}\hat{Z} \right) \\ nce \left(-i\hat{Y} = \hat{X}\hat{Z} \right) \\ &-i\hat{Y}|\phi\rangle_{3} = -i \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix} = -b|H\rangle + a|V\rangle \end{split}$$

128

 $\begin{bmatrix} b \\ a \end{bmatrix} = b |H\rangle + a |V\rangle$

$$\begin{split} & | \Big) \Big(a | HHV \rangle - a | HVH \rangle + b | VHV \rangle - b | VVH \rangle \Big) \\ & + b_{12} \langle VV | VVH \rangle \Big) \\ & \frac{1}{2} \hat{X} | \phi \rangle_3 \end{split}$$

teleportation across the River Danube experiment of Zeilinger at al. (2004) Key:	qubit – polarization states $ H\rangle$ and $ V\rangle$ of photon F – optical fibre (length 800m) – quantum channel	RF - unit - classical channel PL - pulsed laser (wavelength 394 nm. rate 76 MHz)	BBO – β -barium borate used to generate entangled photon pair (wavelength 788 nm) by spontaneous parametric down-conversion (PDC)	EOM – electro-optic modulator to perform Bob's unitary operation	\mathbf{PC} – polarization controller to correct extra rotation of polarization in fibres	BS – beam splitter	PBS – polarizing beam splitter	teleportation of optical aubits	using quantum scissors	Alice $\vec{\leq} \mathbf{D}_1(1 \text{ photon})$ Bob	$ \operatorname{out} \rangle = \alpha 0 \rangle + b 1 \rangle$	D, (no photon)	² BS1 BS2	$ in \rangle = a 0 \rangle + b 1 \rangle 0 \rangle$
								130		Δ	D_4			

 $|\phi\rangle_3$

129

131

q-circuit for quantum teleportation

where $m,n\in\{0,1\}$ and BSM stands for the Bell state measurement

 $|\phi\rangle_3$

or more explicitly

ш

≁

Η

 $|\phi\rangle_1$

u

BSM BSM	laser mode $\omega_n^{(L)} \land \omega_n^{(C)}$ cavity mode
entandlement swappi	3-level atom
5. Thus, although Alice and Claire never interacted wi particles A and C are now entangled.	La
4. Claire, as in the standard teleportation protocol, appropriation to C . So, the state of B_1 is teleported to C .	I _b () A _a
3. Bob performs BSM on his particles B_1 and B_2 and in his measurement results.	
2. Initially particles A and B_1 are entangled, and so B_2	
1. Alice has particle A, Bob two particles B_1, B_2 , and C	
quantum repeaters can be based on entanglement swapp Simple description	
Remarks:	Alicja 🖉 Bob
what is the entanglement swappur a method to establish perfect entanglement between	teleportation via cavity decay

What is the entanglement swapping?

remote parties

- um state
- ping
- Claire particle C.
- and C.
- nforms Claire about
- plies proper unitary
- ith each other, their

 \bigvee_{n}^{n}

 e_n

	efficient quantum computation with linear optics is possible!	a motto		οριικάι τωο-quoit gates	optical single-qubit gates	conditional measurements	scattering matrices	linear-optical elements	encoding optical qubits	питописион ю ппеаг-ориса фианили сотфинив			142	Key: T - theory, E - experiment		F 2006 two-on-hit talenortation - Zhang Dan at al	F. 2006 unconditional telenortation between light and matter - Polzik et al	E 2004 unconditional teleportation of atomic states - (i) Barrett, Wineland at al. and (ii) Riebe, Blatt at al.	T 1999 universal quantum computation via teleportation - Gottesman and Chuang	E 1998 optical entanglement swapping - Zeilinger et al.	E 1998 unconditional optical teleportation - Furusawa, Kimble, Polzik et al.	E 1997 limited (conditional) optical teleportation - Zeilinger et al.	T 1993 entanglement swapping - Żukowski, Zeilinger, Horne, Ekert	T 1993 quantum teleportation - Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters	T 1982 quantum no-cloning - Wootters, Żurek and Dieks	T 1935 quantum entanglement - Schrödinger, and Einstein, Podolsky, Rosen	teleportation - theory and experiments
$ x_{L} - v = v_{h}, x_{v} - pnoton with vertical potalizationor vice versa$	$ 0\rangle_L = H\rangle = 1_h, 0_v\rangle$ - photon with horizontal polarization	encoding in polarization modes of qubits	 polarization qubits 	or vice versa	$ 1\rangle_L = 0\rangle \otimes 1\rangle = 01\rangle$ – photon in the second mode	$ 0\rangle_L = 1\rangle \otimes 0\rangle = 10\rangle$ – photon in the first mode	encoding in spatial modes	$ 1\rangle_L = 1\rangle - \text{single-photon state}$ • two-rail mubits	$ 0\rangle_L = 0\rangle - \text{vacuum}$	logical values of qubits are encoded by number of photons	 single-rail qubits 	How to encode optical qubits	144	"Experimental one-way quantum computing"	[4] Zeilinger et al. [Nature 2005]:	"A one-way quantum computer"	[3] Briegel and Raussendorf [PRL 2001]:	"[Experimental] demonstration of an all-optical quantum controlled-NOT gate"	[2] O'Brien et al. [Nature 2003]:	"A scheme for efficient quantum computation with linear optics"	[1] Knill, Laflamme and Milburn [Nature 2001]:	 photodetectors Yes! 	• single-photon sources	 phase shifters 	beam splitters	Can we construct a quantum computer composed only of:	¹⁴³ What can be interesting about linear optics?

the most general form of BS matrix

$$\mathbf{S} = e^{i\theta_0} \begin{bmatrix} t \exp(i\theta_t) & r \exp(i\theta_r) \\ -r \exp(-i\theta_r) & t \exp(-i\theta_t) \end{bmatrix}$$

where

- t [probability] amplitude of transmission
- r [probability] amplitude of reflection
- $T \equiv \tau = t^2 \text{transmittance} = \text{transmittivity} = \text{transmission coefficient}$
- $R \equiv \rho = r^2 \text{reflectance} = \text{reflectivity} = \text{reflection coefficient}$

$$1 = T + R = t^2 + r$$

 $\theta_{t,r,0}$ – phase shifts

scheme of (asymmetrical) PC

146

 $\hat{a}_{1,2}$ – annihilation operators for input modes

 $\hat{b}_{1,2}$ – annihilation operators for output modes

 $|\psi_{
m out}
angle$ - output state,

 $|\psi_{
m in}
angle$ - input state, e.g. $|\psi_{
m in}
angle=|n_1
angle_1|n_2
angle_2\equiv|n_1,n_2
angle$

convention

light transmitted from any side of BS does not change its phase light reflected from the 'black' surface does not change its phase the phase of light reflected from the **'white'** surface is π -shifted

equivalent schemes of BS

145

linear optical multiport (MP)

S – scattering matrix

transformations of states and operators in MP

$$|\psi_{\text{out}}\rangle = U |\psi_{\text{in}}\rangle$$

 $\hat{a}_i \rightarrow \hat{b}_i = \hat{U}^{\dagger} \hat{a}_i \hat{U} = \sum_{j=1}^N S_{ij} \hat{a}_j$

where

 S_{ij} – elements of unitary scattering matrix S

 \hat{U} – unitary operator describing evolution of N input modes \hat{a}_j- annihilation operator for the $j{\rm th}$ input mode

 \hat{b}_j- annihilation operator for the j th output mode

- in vector notation
- $\hat{\mathbf{a}} \equiv [\hat{a}_1, \hat{a}_2, \dots, \hat{a}_N]^T$ $\hat{\mathbf{b}} \equiv [\hat{b}_1, \hat{b}_2, \dots, \hat{b}_N]^T$
- for N-input Fock states
- $\ket{\psi_{ ext{in}}} = \ket{n_1, \dots, n_N} \equiv \ket{\mathbf{n}}$

BS

$$sum the field is set in the field is set in the set$$

Exemplary transformations of states by beam-splitter

the MP transformations can be written compactly:

for 50:50 BS

 $|20\rangle \rightarrow t^2 |20\rangle - \sqrt{2}rt|11\rangle + r^2 |02\rangle$

153

$$|20\rangle \rightarrow \frac{1}{2} \Big(|20\rangle - \sqrt{2}|11\rangle + |02\rangle$$

• example 5:

 $|21\rangle \to \sqrt{3}rt^2|30\rangle + t(t^2 - 2r^2)|21\rangle + (r^3 - 2rt^2)|12\rangle + \sqrt{3}r^2t|03\rangle$

for 50:50 BS

$$|21\rangle \rightarrow \frac{1}{2\sqrt{2}} \Big(\sqrt{3}|30\rangle - |21\rangle - |12\rangle + \sqrt{3}|03\rangle$$

• example 6:

 $|22\rangle \to (r^4 - 4r^2t^2 + t^4)|2, 2\rangle + \sqrt{6}rt \left| rt|0, 4\rangle + (r^2 - t^2)(|1, 3\rangle - |3, 1\rangle) + rt|4, 0\rangle \right|$ for 50:50 BS

$$|22\rangle \rightarrow \frac{1}{2}\sqrt{\frac{3}{2}} |0,4\rangle - \frac{1}{2} |2,2\rangle + \frac{1}{2}\sqrt{\frac{3}{2}} |4,0\rangle$$

	and we will discuss it later!
- analogously	describe measurement outcomes associated with non-orthogonal states
4) probability of measuring 2nd qubit in $ 1\rangle$:	positive operator valued measures (POVM, POM)
$\sqrt{ c_1 ^2 + c_3 ^2}$	Yes!
$c_1 0 angle+c_3 1 angle$	• Can we apply a more general type of measurement?
the post measurement state is	
$if \psi\rangle = c_0 0\underline{0}\rangle + c_1 01\rangle + c_2 1\underline{0}\rangle + c_3 11\rangle$	Note: number of projectors $=$ dimension of Hilbert space
$\operatorname{prob}(0\rangle_2) = c_0 ^2 + c_2 ^2$	measurement ourcomes corresponding to non-orthogonal states do not commute and thus are not simultaneously observable
3) probability of measuring 2nd qubit in $ 0\rangle$:	
	$\sum \operatorname{prob}(m) = 1$
$\frac{\sqrt{ c_1 ^2+ c_3 ^2}}{\sqrt{ c_2 ^2+ c_3 ^2}} \equiv \phi_1\rangle$	then
$c_2 0\rangle + c_3 1\rangle$	$k \langle m m \rangle k = v_{mm'}, [1_{m'}; 1_{m'}] = 0$
the post measurement state is	m $m = m - \lambda = - (\hat{p}(k) - \hat{p}(k')) = 0$
if $ \psi\rangle = c_0 00\rangle + c_1 01\rangle + c_2 \underline{1}0\rangle + c_3 \underline{1}1\rangle$	$\sum \hat{P}_m^{(k)} = \hat{I}, \hat{P}_m^{(k)} = (\hat{P}_m^{(k)})^\dagger,$
$ ext{prob}(1 angle_1) = c_2 ^2 + c_3 ^2$	non-negative, Hermitian, Orthogonal and summing up to identity:
2) probability of incasuling ist quote in $ z $.	
2) probability of measuring let oubit in (1).	requirements for the projectors
	where $\sqrt{\dots}$ is the renormalization.
	$\sqrt{\langle\psi P_m^{\iota_J}\otimes I) \psi angle} \qquad \sqrt{\langle\psi I\otimes P_m^{\iota_J} \psi angle}$
where $\sqrt{\ldots}$ is the renormalization.	$ \phi^{(1)} angle = rac{F_{m^{-2}}\otimes I \psi angle}{\int \cdots \int (1+e^{-\lambda})^{-1}}, \phi^{(2)} angle = rac{I\otimes F_{m^{-1}} \psi angle}{\int \cdots \int (1+e^{-\lambda})^{-1} \psi angle}$
$\sqrt{ c_0 ^2 + c_1 ^2} = \frac{1707}{1707}$	$\hat{m{p}}^{(1)} \subset \hat{m{h}}_{\perp \lambda}$ $\hat{m{f}} \subset \hat{m{p}}^{(2)}_{\perp \lambda}$
$\frac{c_0 0 angle + c_1 1 angle}{\equiv \phi_0 angle}$	state after projection/measurement
and post measurement state is	$\operatorname{prob}_{n}(m) = \langle \psi \hat{I} \otimes \hat{P}^{(2)} \psi \rangle$
$\operatorname{prob}_1(0) \equiv \operatorname{prob}(0\rangle_1) = c_0 ^2 + c_1 ^2$	$\operatorname{prob}_{\mathcal{I}}(m) = \langle \psi \hat{P}^{(1)} \otimes \hat{I} \psi \rangle$
1) probability of measuring 1st qubit in $ 0\rangle$:	nrohahility of the measurement outcome m.
	for the 1-th enhancementaring to the magninement outcome m
$1 = c_0 ^2 + c_1 ^2 + c_2 ^2 + c_3 ^2$	$\hat{P}_m^{(k)} = m angle_{kk}\langle m $
normalization	= orthogonal measurement operator is
$ \psi\rangle = c_0 \underline{0}0\rangle + c_1 \underline{0}1\rangle + c_2 10\rangle + c_3 11\rangle$	= projection operator = projection valued (PV) measure
פרוורו שרנים העום-לומסור למדר סנשנר	nrojector
projection synthesis via conditional measurements	Let us assume that the k-th subsystem (e.g. mode, qubit) of a bipartite quantum $\mathbf{a} \mathbf{p}$ system is represented by complete orthonormal set of states $ m\rangle$ then:
nle of von Neumann projective measurement	von Neumann projective measurement
159	157

163

 $|\psi\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$

 $= |0\rangle \otimes (c_0|0\rangle + c_1|1\rangle) + |1\rangle \otimes (c_2|0\rangle + c_3|1\rangle)$

$$=\underbrace{\sqrt{|c_0|^2+|c_1|^2}}_{\sqrt{|c_0|^2+|c_1|^2}}|0\rangle \otimes \underbrace{\frac{c_0|0\rangle+c_1|1\rangle}{\sqrt{|c_0|^2+|c_1|^2}}}_{\sqrt{|c_0|^2+|c_1|^2}} + \underbrace{\sqrt{|c_2|^2+|c_3|^2}}_{\sqrt{|c_2|^2+|c_3|^2}}|1\rangle \otimes \underbrace{\frac{c_2|0\rangle+c_3|1\rangle}{\sqrt{|c_2|^2+|c_3|^2}}}_{\sqrt{|c_2|^2+|c_3|^2}}$$

 $= \sqrt{\mathrm{prob}(|0\rangle_1)} |0\rangle \otimes |\phi_0\rangle + \sqrt{\mathrm{prob}(|1\rangle_1)} |1\rangle \otimes |\phi_1\rangle$

projection synthesis

probabilistic quantum state engineering via conditional measurements

example: Let's analyze a three-mode state

 $\psi\rangle = c_1|000\rangle + c_2|001\rangle + c_3|010\rangle + c_4|011\rangle + c_5|100\rangle + c_6|101\rangle + c_7|110\rangle + c_8|111\rangle$

Problem: How to get single-mode states

 $|\phi_a\rangle \sim c_1|0
angle + c_2|1
angle$ and $|\phi_b\rangle \sim c_5|0
angle + c_7|1
angle$? Answer: Proper conditional measurements should be performed

$$\begin{aligned} & \text{if } & \text{if$$

 $= -r_2c + r_1r_3t_2^2$

168

gate

multiport Mach-Zehnder interferometer

170

transmission amplitudes for BSs:

 $t_1 = t_2 = t_3 = \cos \theta$ where $\theta = 54.74$ and $t_4 = \cos \phi$ where $\phi = 17.63$

 $\mathbf{M}_{k} = \operatorname{diag}[\exp(i\zeta\delta_{1k}), \exp(i\zeta\delta_{2k}), \exp(i\zeta\delta_{3k}), \exp(i\zeta\delta_{4k})]$

mirror

 $\mathbf{P}_k = \text{diag}[1, \exp(i\xi_k), 1, 1] \quad \text{dla} \quad k = 3, 4,$ $\mathbf{P}_5 = \text{diag}[1, 1, \exp(i\xi_5), 1].$

 $\mathbf{P}_k = \text{diag}[\exp(i\xi_k), 1, 1, 1] \quad \text{dla} \quad k = 1, 2, 6,$

phase shifters

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & t_3 & r_3 & 0 \\ 0 & -r_3 & t_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 0 $\begin{bmatrix} 0 & 0 & -r_5 & t_5 \end{bmatrix}$ r_5 0 $\mathbf{B}_{3}^{=}$ 0 $0 \ 0 \ t_5$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} t_2 & 0 & r_2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $egin{array}{cccccc} -r_2 & 0 & t_2 & 0 \\ 0 & 0 & 0 & 1 \end{array}$ 1 0 0 \mathbf{B}_{5} $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & t_4 & 0 & r_4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -r_4 & 0 & t_4 \end{bmatrix}$ $\mathbf{B}_2^{=}$ $\begin{array}{cccc} -r_1 & t_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}$ $r_1 \ 0 \ 0 \]$ $\mathbf{B}_4 =$ t_1

 $\mathbf{B}_{1} =$

unitary transformations

 $\mathbf{S} = \mathbf{P}_6 \mathbf{B}_5 \mathbf{P}_5 \mathbf{B}_4 \mathbf{P}_4 \mathbf{B}_3 \mathbf{P}_3 \mathbf{B}_2 \mathbf{P}_2 \mathbf{B}_1 \mathbf{P}_1$

beam splitters

172

 $\hat{S}_{\lambda/4}(\beta) = \frac{\exp\left(i\frac{3}{4}\pi\right)}{\sqrt{2}} \begin{bmatrix} \cos(2\beta) - i & \sin(2\beta) \\ \sin(2\beta) & -\cos(2\beta) - i \end{bmatrix}$

quarter-wave plate (QWP)

$$\hat{\beta}_{\lambda/2}(\beta) = \begin{bmatrix} \cos(2\beta) & \sin(2\beta) \\ \sin(2\beta) & -\cos(2\beta) \end{bmatrix}$$

half-wave plate (HWP)

by shifting its phase between two perpendicular polarization components.

changes polarization of a light

a birefringent crystal (with a properly chosen thickness)

How to rotate polarization qubits? wave plate = waveplate = retarder

176

– half-wave plate (polarization rotator) changes photon polarization $|V\rangle \leftrightarrow |H\rangle$.

HWP($\pi/4$)

– polarizing beam splitter (e.g. calcite crystal) transmits $|H\rangle$ and reflects $|V\rangle$ (or vice versa)

PBS

interchanging polarization qubits and two-rail qubits

projection synthesis

output state

$$|\phi_{\text{out}}\rangle_{\mathbf{1}} = \mathcal{N}_{2} \langle N_{2}|_{3} \langle N_{3}|_{4} \langle N_{4}|\hat{U}|n_{1}\rangle_{1}|n_{2}\rangle_{2}|n_{3}\rangle_{3}|\psi_{\text{in}}\rangle_{4} = \mathcal{N} \sum_{n=0}^{d-1} c_{n}^{(d)} \gamma_{\mathbf{n}}|n\rangle$$

where amplitudes

$$c_n^{(d)}(\mathbf{T},\boldsymbol{\xi}) = \langle nN_2N_3N_4|\hat{U}|n_1n_2n_3n
angle$$

depend on:

transmittances $\mathbf{T} \equiv [t_1^2, t_2^2, t_3^2, t_4^2, t_5^2]$ phase shifts $\boldsymbol{\xi} \equiv [\xi_1, \xi_2, \xi_3, \xi_4, \xi_5]$ input Fock states $|n_1\rangle$, $|n_2\rangle$ and $|n_3\rangle_3$ measurements results N_2, N_3, N_4

source: Wikipedia

a single photon in Mach-Zehnder interferometer

We have already shown that 2x2 scattering matrix

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

transforms

$$|10\rangle \rightarrow S_{11}|10\rangle + S_{21}|01\rangle.$$

Equivalently, in terms of two-rail qubit notation

$$10\rangle \equiv |0\rangle_L, \quad |01\rangle \equiv |1\rangle_L$$

one gets

$$|0\rangle_L \to S_{11}|0\rangle_L + S_{21}|1\rangle_L.$$

setup 1:

$$B_1 = B_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix}$$

this is the \sqrt{NOT} gate!

as

$$S = B_2 B_1 = \frac{1}{2} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix} = i \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = i \hat{X}$$
$$|0\rangle_L \to i |1\rangle_L \cong |1\rangle_L$$

setup 2:

 $B_1 = B_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix}$

 $S = B_2 B_1 = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

$$B_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}, \quad B_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 & -1 \end{bmatrix}.$$

setup 3:

SO

 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$S = B_2 B_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -i\hat{Y}$$
$$|0\rangle_L \to |1\rangle_L.$$

Mach-Zehnder interferometers with phase shifter

$$\begin{split} |0\rangle_{L} \rightarrow |\psi\rangle &= S_{11}|0\rangle_{L} + S_{21}|1\rangle_{L} = f_{-}|0\rangle_{L} + if_{+}|1\rangle_{L} \\ \text{or explicitly} \\ |0\rangle_{L} \rightarrow \overline{B_{1}} \rightarrow \frac{i|0\rangle_{L} + |1\rangle_{L}}{\sqrt{2}} \rightarrow \overline{B_{2}} \rightarrow \overline{B_{2}} \rightarrow f_{-}|0\rangle \\ \text{thus} \\ \text{prob}(0_{L}) &= |L\langle 1|\psi\rangle|^{2} = |f_{-}|^{2} = \sin^{2}\left(\frac{\theta}{2}\right) - \text{prob. of click in upper } \\ \text{prob}(1_{L}) &= |L\langle 1|\psi\rangle|^{2} = |f_{+}|^{2} = \cos^{2}\left(\frac{\theta}{2}\right) - \text{prob. of click in lower} \\ \\ \text{setup 2:} \\ S &= \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} f_{+} & f_{-} \\ f_{-} & f_{+} \end{bmatrix} \\ \text{so} \\ &= |0\rangle_{L} \rightarrow |\psi\rangle = S_{11}|0\rangle_{L} + S_{21}|1\rangle_{L} = f_{+}|0\rangle_{L} + f_{-}|1\rangle_{L} \\ \text{and} \\ &= \operatorname{prob}(0_{L}) = |L\langle 0|\psi\rangle|^{2} = |f_{+}|^{2} = \cos^{2}\left(\frac{\theta}{2}\right) \\ \text{prob}(1_{L}) = |L\langle 1|\psi\rangle|^{2} = |f_{-}|^{2} = \sin^{2}\left(\frac{\theta}{2}\right) \\ \text{setup 3:} \\ S &= \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} f_{-}, & -f_{+} \\ f_{+}, & -f_{-} \end{bmatrix} \\ \text{so} \\ &= |0\rangle_{L} \rightarrow f_{-}|0\rangle_{L} + f_{+}|1\rangle_{L} \\ \text{and} \\ &= \operatorname{prob}(0_{L}) = \sin^{2}\left(\frac{\theta}{2}\right) \\ &= \operatorname{prob}(1_{L}) = \cos^{2}\left(\frac{\theta}{2}\right) \end{aligned}$$

QIP with simple linear-optical systems

based on Mach-Zehnder interferometer 1. quantum key distribution (QKD) using Bennett's protocol B92

2. quantum-state engineering and teleportation using quantum scissors device of qubit and qutrit states

SO

setup 1:

 $S = \frac{1}{2} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & e^{i\theta} \end{bmatrix} \begin{bmatrix} i & 1\\ 1 & i \end{bmatrix} = \begin{bmatrix} f_- & if_+\\ if_+ & -f_- \end{bmatrix}, \quad \text{where} \quad f_\pm = \frac{1}{2} (e^{i\theta} \pm 1)$

total scattering matrix

Mach-Zehnder interferometer with phase shifter

189

191

 $P_{\theta} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$

 $S = B_2 P_{\theta} B_1$

detector

detector

190

B92 protocol (Bennett 1992)

Alice

Bob

 $D_{\rm up}$

 D_{low}

 $\theta_{_{A}}$

 $\theta_{_B}$

 $\theta_A = 0^0, 90^0, 180^0, 270^0$

 $\theta_{_B}=0^{0},90^{0}$

 D_{low}

 D_{up}

probabilities of click in upper and lower detectors

$$P_{\rm up} = \sin^2\left(\frac{\theta_A + \theta_B}{2}\right), \quad P_{\rm low} = \cos^2\left(\frac{\theta_A + \theta_B}{2}\right)$$

\mathbf{bit}				0	0			Ţ
$P_{\rm low}$,	71	$\frac{1}{2}$	0	0	<u>1</u>	$\frac{1}{2}$	1
$P_{\rm up}$	0	$\frac{1}{2}$	$\frac{1}{2}$	1	, 	<u>1</u>	$\frac{1}{2}$	0
θ_B	00	90^{o}	00	00^{o}	00	30^{o}	00	000
θ_A	00	00	00^{o}	00^{o}	180^{o}	180^{o}	270^{o}	270^{o}

194

QKD using B92 protocol

- 1. Alice sends photons each time randomly choosing one of 4 phase shifts (rotations): 0^{o} , 90^{o} 180^{o} , 270^{o} .
- 2. Bob, just before measuring each Alice's photon, randomly applies phase shift 90° or 0° .
- 3. Bob through a public channel informs Alice about his phase shifts without, of course, telling his measurement outcomes.
- 4. Alice publicly informs Bob, when their phase shifts fulfill the condition

$$\theta_A - \theta_B = n \, 180^o \quad (n = 0, 1),$$

which implies the deterministic detection of photons. Alice and Bob keep only those deterministic results.

- Alice and Bob publicly check their results for some photons. Those photons are rejected from the key.
- 6. In case of full agreement of the tested photons, the secret key is formed by the remaining bits. Otherwise the protocol is repeated.

 $\hat{\omega}$

 D_2

scattering matrix for quantum scissors

$$B_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -r_{1} & t_{1} \\ 0 & t_{1} & r_{1} \end{bmatrix}, P_{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix}, B_{2} = \begin{bmatrix} r_{2} & t_{2} & 0 \\ t_{2} & -r_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B_{1} \xrightarrow{B_{2}} S = B_{2}P_{\theta}B_{1} = \begin{bmatrix} r_{2} & -e^{i\theta}r_{1}t_{2} & e^{i\theta}r_{1}t_{2} \\ t_{2} & e^{i\theta}r_{1}r_{2} & -e^{i\theta}r_{2}t_{1} \\ 0 & t_{1} & r_{1} \end{bmatrix}$$

Mathematica:

P := {{1, 0, 0}, {0, Exp[i * theta], 0}, {0, 0, 1}} B1 := {{1, 0, 0}, {0, -r1, t1}, {0, t1, r1}} B2 := {{r2, t2, 0}, {t2, -r2, 0}, {0, 0, 1}} S = B2.P.B1 // MatrixForm

output states of the quantum scissors

input state:

$$|\psi, n_2, n_3
angle$$
 where $|\psi
angle \sim \gamma_0 |0
angle + \gamma_1 |1$

three-mode output state (before projection): $\widehat{\Phi}$

single-mode output state:

$$|\phi\rangle \equiv |\phi_{n_2n_3}^{N_1N_2}\rangle =_1 \langle N_1|_2 \langle N_2|\Phi\rangle$$

after projective measurements of N_1 and N_2 photons in the respective modes. **Example for** $|\phi_{10}^{01}\rangle$:

$$|n10\rangle \rightarrow c|01n\rangle$$
 for $n = 0$

$$U|010\rangle = (S_{12}\hat{a}_1^{\dagger} + S_{22}\hat{a}_2^{\dagger} + S_{32}\hat{a}_3^{\dagger})|000\rangle$$

= $S_{12}|100\rangle + S_{22}|010\rangle + S_{32}|001\rangle$

$$\langle 010|\hat{U}|010\rangle = S_{22} = e^{i\theta}r_1r_2$$

SO

204

•
$$|n10\rangle \rightarrow c|01n\rangle$$
 for $n = 1$
 $\hat{U}|110\rangle = \sum_{k,l=1}^{3} \frac{S_{k1}S_{l2}}{\sqrt{1!1!}} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger}|000\rangle = (S_{21}S_{32} \hat{a}_{2}^{\dagger} \hat{a}_{3}^{\dagger} + S_{31}S_{22} \hat{a}_{3}^{\dagger} \hat{a}_{2}^{\dagger} + \cdots)|000\rangle$
 $= (S_{21}S_{32} + S_{31}S_{22})|011\rangle + \cdots$

so
$$\langle 011|\hat{U}|110\rangle = S_{21}S_{32} + S_{31}S_{22} = t_2t_1 + 0 \cdot S_{22} = t_1t_2$$

thus we have

$$|\phi_{10}^{01}
angle \sim e^{\imath heta} r_1 r_2 \gamma_0 |0
angle + t_1 t_2 \gamma_1 |1
angle$$

where $x \sim y$ means that x and y are equal up a renormalization constant. Other examples

5

5

Analogously, we can show

 $\begin{array}{ll} |\phi_{01}^{10}\rangle &\sim \ e^{i\theta}t_{1}t_{2}\gamma_{0}|0\rangle + r_{1}r_{2}\gamma_{1}|1\rangle, \\ |\phi_{01}^{01}\rangle &\sim \ -e^{i\theta}t_{1}r_{2}\gamma_{0}|0\rangle + r_{1}t_{2}\gamma_{1}|1\rangle, \\ |\phi_{10}^{10}\rangle &\sim \ -e^{i\theta}r_{1}t_{2}\gamma_{0}|0\rangle + t_{1}r_{4}\gamma_{1}|1\rangle \end{array}$

quantum scissors for qutrit states

208

 $|\phi\rangle \sim \gamma_0|0\rangle + \gamma_1|1\rangle + \gamma_2|2\rangle$

general output state

assuming $n_1 = n_2 = N_1 = N_2 = 1$ is

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2}\gamma_0|0\rangle + \gamma_2|2\rangle\right) + e^{i\xi_2} (r_1^2 - t_1^2)(r_2^2 - t_2^2)\gamma_1|$$

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2} \gamma_0 |0\rangle + \gamma_2 |2\rangle\right) + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) \gamma_2 |1\rangle + e^{i\xi_2} (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2}$$

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2} \gamma_0 |0\rangle + \gamma_2 |2\rangle \right) + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) r_1 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) r_2 |1\rangle + e^{i\xi_2} (r_1^2 - t_2^2) r_1 |1\rangle +$$

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2} \gamma_0 |0\rangle + \gamma_2 |2\rangle \right) + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2) \gamma_1 |$$

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2}\gamma_0|0
angle + \gamma_2|2
angle
ight) + e^{i\xi_2} (r_1^2 - t_1^2)(r_2^2 - t_2^2)\gamma_1^2$$

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2} \gamma_0 |0\rangle + \gamma_2 |2\rangle\right) + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2 - t_2^2)^{-1}$$

is can be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

can be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

$$|\phi_{11}^{11}\rangle \sim 2r_1t_1r_2t_2 \Big(e^{2i\theta_2}\gamma_0|0\rangle + \gamma_2|2\rangle\Big) + e^{i\xi_2}(r_1^2 - t_1^2)(r_2^2 - t$$

an be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

can be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

$$|\phi_{11}^{11}\rangle \sim 2r_1 t_1 r_2 t_2 \left(e^{2i\theta_2} \gamma_0 |0\rangle + \gamma_2 |2\rangle \right) + e^{i\xi_2} (r_1^2 - t_1^2) (r_2^2$$

be shown analogously to
$$|\phi_{10}^{01}\rangle$$
.

$$t_2^2 = \frac{1}{2} \left(1 \pm \frac{r_1 t_1}{\sqrt{1 - 3(r_1 t_1)^2}} \right)$$

 $\theta_2 = 0 \text{ or } = \pi \text{ (show this!).}$
timized 4 solutions
 $t_1^2 = \frac{1}{6}(3 - \sqrt{3}) \approx 0.21 \text{ or } t_1^2 = \frac{1}{6}(3 + \sqrt{3})/6 \approx 0.79$

and $t_2^2 = t_1^2$ if $\xi_4 = 0$ or $t_2^2 = 1 - t_1^2$ if $\xi_4 = \pi$.

Plato's allegory	We are like slaves in a dark cave watching only shadows on a wall. The shadows are projections of the "real things". We think the shadows are real because we do not know better. [Πλατωνος Πολιτεια - Plato's Republic]	question Can we reconstruct a hidden object ("real thing") from its shadows?	tomography a method to reconstruct the shape of a hidden object from shadows (projections) at different angles	212 quantum tomography this is the tomography applied to quantum objects	optical homodyne tomography	this is the quantum tomography based on homodyne detection	for reconstruction of Wigner function of optical fields		problem	We cannot measure simultaneously q and p , thus we cannot measure directly the Wigner function $W(q,p)$.
generation and teleportation of qubit states	Alice 2 Dj bj II	$\mathbf{D}_{\mathbf{D}}_{\mathbf{D}_{\mathbf{D}}}}}}}}}}$	$ \alpha\rangle \qquad BS1 \qquad BS2 \\ 0\rangle \qquad 0\rangle$	210 Introduction to quantum tomography How to reconstruct density matrix of a quantum state?	Outline 1 onticed homodyne tomography of a single mode field	2. tomography of a single qubit 3. tomography of two onlyits	4. maximum-likelihood method	5. tomography of a single $qudit$	6. tomography of nuclear spins I=1/2	7. tomography of a nuclear spin $I=3/2$

${ m pr}(p)\equiv \langle p \hat ho p angle = \int_{-\infty}^{\infty}W(q,p)dq$	momentum distribution	$\mathrm{pr}(q) \equiv \langle q \hat{ ho} q angle = \int_{-\infty}^{\infty} W(q,p) dp$	marginal distributions of Wigner function correspond to classical distributionsposition distribution	Why is the Wigner function so important?	 Wigner function can be negative density matrix ρ can be calculated from Wigner function. 	where $ q \pm \frac{x}{2}\rangle$ - eigenstates of position operator \hat{q}	$W(a \ n) = \frac{1}{dn} \int_{-\infty}^{\infty} \frac{dn}{dn} \left(\frac{x}{n + x} \right) \frac{dn}{dn} \left(\frac{x}{n + x} \right) \frac{dn}{dn} \left(\frac{i}{n + x} \right)$	214 What is the Wigner function?	 Glauber-Sudarshan P function Cahill-Glauber s-parametrized $W^{(s)}$ function 	• Husimi (Husimi-Kano) Q function	examples: • Wigner (Wigner-Ville) W function	but can also reveal the connections between classical and quantum mechanics.	runctions which bear some resemblance to phase-space distribution functions useful not only as calculational tools	= quasipropapilities = quasicistributions	quasiprobability distribution functions	a particle has a position q and a momentum p	a particle cannot simultaneously nave a well defined position and momentum, thus one cannot define a probability that	makes the concept of phase space in quantum mechanics problematic:	uncertainty principle	213 phase-space quasiprobability distributions in quantum mechanics
$f_1 = \exp[-2(q - \alpha_0)^2 - 2p^2] + \exp[-2(q + \alpha)^2 - 2p^2], f_0 = 2\exp[-2q^2 - 2p^2]$	where $\alpha_0 \in \mathcal{R}$ and	$W_{\pm}(lpha = q + ip) = rac{f_1 \pm f_0 \cos(4plpha_0)}{\pi[1 + \exp(-2lpha_0^2)]}$	where $L_n(x)$ is Laguerre polynomial Schrödinger cat states $ \psi_{\pm}\rangle \sim \alpha_0\rangle \pm -\alpha_0\rangle$:	$W(\alpha) = \frac{2}{\pi} (-1)^n L_n(4 \alpha ^2) \exp[-2 \alpha ^2]$	where $\alpha = q + ip$ Fock state $ n\rangle$:	$W(\alpha) = \frac{2}{\pi} \exp[-2 \alpha - \alpha_0 ^2]$	A coherent state $ \alpha_0\rangle$:	216 simple examples of Wigner function		10. action-angle quantum formalism of Hamilton and Jacobi (1983)	9. many-worlds interpretation (MWI) of Everett (1957)	8. pilot-wave formalism of de Broglie and Bohm (1952)	7. path-integral formalism of Feynman (1948)	6. phase-space formalism of Wigner (1932)	5. variational formalism of Jordan and Klein (1927)	4. second-quantization formalism of Dirac, Jordan and Klein (1927)	3. density-matrix formalism of von Neumann (1927)	2. wave-function formalism of Schrödinger (1926)	1. matrix formalism of Heisenberg (1925)	215 10 formulations of quantum mechanics:

 $\operatorname{pr}(x) \equiv \langle x | \hat{\rho} | x \rangle = \int_{-\infty}^{\infty} W(x, p) dp, \quad \operatorname{pr}(p) \equiv \langle p | \hat{\rho} | p \rangle = \int_{-\infty}^{\infty} W(x, p) dx$

шc

Rea

M

balanced homodyne detection

221

we measure difference of intensities, which is proportional to:

223

$$\begin{aligned} \hat{n}_{2} - \hat{n}_{1} &= \frac{1}{2} (\hat{a}_{S}^{\dagger} + \alpha_{L}^{*}) (\hat{a}_{S} + \alpha_{L}) - \frac{1}{2} (\hat{a}_{S}^{\dagger} - \alpha_{L}^{*}) (\hat{a}_{S} - \alpha_{L}) \\ &= \alpha_{L}^{*} \hat{a}_{S} + \alpha_{L} \hat{a}_{S}^{\dagger} \\ &= |\alpha_{L}| (e^{-i\theta} \hat{a}_{S} + e^{i\theta} \hat{a}_{S}^{\dagger}) = 2|\alpha_{L}| \hat{X}(\theta) \end{aligned}$$

where $\theta = \arg(\alpha_L)$ and

$$\hat{X}(\theta) = \frac{1}{2}(\hat{a}_S e^{-i\theta} + \hat{a}_S^{\dagger} e^{i\theta})$$

is the generalized quadrature operator

- special cases:
- $\hat{X}(0) = \hat{q}$ position operator
- $\hat{X}(\frac{\pi}{2}) = \hat{p}$ momentum operator

What is measured in homodyne detection?

intensity I_k (k = 1, 2) is proportional to the number of photons \hat{n}_k

$$I_1 \sim \hat{n}_1 = \hat{a}_1'^{\dagger} \hat{a}_1'$$

 $I_2 \sim \hat{n}_2 = \hat{a}_2'^{\dagger} \hat{a}_2'$

- parametric approximation for laser field:

- $\langle \hat{n}_L \rangle \gg 1 \quad \Rightarrow \quad \hat{a}_L \approx \alpha_L$
- beam splitter (BS) is 50:50 (T = R = 1/2), thus it is called 'balanced' detection.

• relations between input, \hat{a}_k , and output, \hat{a}'_k , annihilation operators:

 $\hat{a}'_{1} = \frac{1}{\sqrt{2}} (\hat{a}_{S} - \hat{a}_{L}) \approx \frac{1}{\sqrt{2}} (\hat{a}_{S} - \alpha_{L})$ $\hat{a}'_{2} = \frac{1}{\sqrt{2}} (\hat{a}_{S} + \hat{a}_{L}) \approx \frac{1}{\sqrt{2}} (\hat{a}_{S} + \alpha_{L})$

- 222

- marginal distribution of Wigner function at angle θ

describes probability of measurement result of the quadrature

 $\hat{X}(\theta) = \hat{q}\cos\theta - \hat{p}\sin\theta$ **Remarks:**

 $\operatorname{pr}(X,\theta) = \int_{-\infty}^{\infty} W(q\cos\theta - p\sin\theta, q\sin\theta + p\cos\theta) dp$

 $W(q,p) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{0}^{\pi} \int_{-\infty}^{\infty} \Pr(X,\theta) \exp[i\xi(q\cos\theta + p\sin\theta - X)] |\xi| dX d\theta d\xi$ this is the inverse Radon transformation [K. Vogel and H. Risken, 1989]

Can we reconstruct Wigner function from its marginal distributions?

• $pr(X, \theta)$ is directly measured in homodyne detection

• this is so-called Radon transformation

Devication alone	
	1. We cannot measure simultaneously q and p , thus we cannot measure directly Wigner function.
	2. But we can measure its marginal distributions $\operatorname{pr}(X,\theta)$ at various angles θ
Or O	3. By applying the inverse Radon transformation, we can reconstruct Wigner function and thus the density matrix.
	hidden object> Wigner function
W(x,y)	quantum "shadows"
$\operatorname{pr}(X, \theta) = \int_{-\infty}^{\infty} W(a\cos \theta - p\sin \theta, a\sin \theta + p\cos \theta) dp$	4. How to reconstruct finite-dimensional states? In nrinciple the same method can be annlied
Note: $x \equiv q$, $y \equiv p$, $\operatorname{pr}(X, 0) = \langle q \hat{\rho} q \rangle$, $\operatorname{pr}(X, \frac{\pi}{2}) = \langle p \hat{\rho} p \rangle$	but there more effective methods, which will be described in the following.
226 one repeats measurements on many copies i.e. identically prepared quantum objects	²²⁸ Optical-qubit tomography (part II) single-qubit tomography by measuring Stokes parameters
number of measurements	
e.g., in the first experiment, Smithey et al. performed 4000 measurements at 27 angles θ , so in total 108 000 measurements ; in the second experiment they performed 160 000 measurements .	$ H\rangle$ – horizontal polarization $ V\rangle$ – vertical polarization $ \overline{D}\rangle = \frac{1}{\sqrt{2}} (H\rangle - V\rangle)$ – linear-diagonal polarization at 45 ⁰
history	$ D\rangle = \frac{1}{\sqrt{2}} (H\rangle + V\rangle) - $ linear-diagonal polarization at 135 ⁰ $ R\rangle = \frac{1}{2} (H\rangle - i V\rangle) - $ right-circular polarization
 theoretical proposal – K. Vogel and H. Risken (1989) first experimental reconstruction of nonclassical state [i.e., squeezed vacuum] – D. Smithey, M. Raymer et al. (1993) first experimental reconstruction of single-photon state and its superposition with vacuum (qubit state) – A. Lvovsky and J. Mlynek (2002) 	$\begin{split} L\rangle &= \frac{1}{\sqrt{2}} (H\rangle + i V\rangle) - \text{left-circular polarization} \\ L\rangle &= \frac{1}{\sqrt{2}} (H\rangle + i V\rangle) - \text{left-circular polarization} \\ \text{thus we readily have the inverse relations:} \\ H\rangle &= \frac{ R\rangle + L\rangle}{\sqrt{2}} = \frac{ D\rangle + \overline{D}\rangle}{\sqrt{2}}, V\rangle = i\frac{ R\rangle - L\rangle}{\sqrt{2}} = \frac{ D\rangle - \overline{D}\rangle}{\sqrt{2}} \\ R\rangle &= \frac{1+i}{2} (\overline{D}\rangle - i D\rangle) = e^{i\pi/4} \frac{ \overline{D}\rangle - i D\rangle}{\sqrt{2}}, L\rangle = e^{i\pi/4} \frac{ D\rangle - i D\rangle}{\sqrt{2}} \\ D\rangle &= e^{i\pi/4} \frac{ R\rangle - i L\rangle}{\sqrt{2}}, \overline{D}\rangle = e^{i\pi/4} \frac{ L\rangle - i R\rangle}{\sqrt{2}} \end{split}$

$$\begin{aligned} & \text{measure} \\ &$$

229

 $\hat{\mu}_2'' = |D\rangle \langle D|,$ $\hat{\mu}_3'' = \hat{\mu}_3'$

 $+ |V\rangle\langle V|$ $|R\rangle\langle R|$ $i|H\rangle\langle V|+i|V\rangle\langle H|+|V\rangle\langle V|$
$$\begin{split} &i|R\rangle\langle L|+i|L\rangle\langle R|+|R\rangle\langle R|\\ &H\rangle\langle V|-|V\rangle\langle H|+|V\rangle\langle V| \end{split}$$
 $|R\rangle\langle L| + |L\rangle\langle R| + |L\rangle\langle L|$

3 qubits

•••

2 qubits 1 qubit

236

235

233

or

		16	15	14	13	12	11	10	9	∞	Γ	6	S	4	ω	2	1	No.	tome
- /	$ \overline{D}\rangle = H\rangle$	$ R\rangle$	$ \mathrm{H}\rangle$	$ V\rangle$	$ V\rangle$	$ \mathrm{H}\rangle$	$ \mathrm{R}\rangle$	$\left \overline{\mathrm{D}}\right\rangle$	$\left \overline{\mathrm{D}}\right\rangle$	$ \overline{D}\rangle$	$\left \overline{\mathrm{D}}\right\rangle$	$ \mathrm{R}\rangle$	$ R\rangle$	$ V\rangle$	$ V\rangle$	$ \mathrm{H}\rangle$	$\langle H \rangle$	Mode 1	ography
$\sqrt{2}$, .	$- V\rangle$	$ L\rangle$	$ L\rangle$	$ L\rangle$	$\left \overline{\mathrm{D}}\right\rangle$	$ \overline{\mathrm{D}}\rangle$	$ \overline{\mathrm{D}}\rangle$	$\left \overline{\mathrm{D}}\right\rangle$	$ R\rangle$	$ \mathrm{H}\rangle$	$ \vee\rangle$	$ \vee\rangle$	$ \mathrm{H}\rangle$	$ \mathrm{H}\rangle$	$ V\rangle$	$ \vee\rangle$	$ \mathrm{H}\rangle$	Mode 2	v of pol:
~	$f_{\lambda} = H\rangle +$	22.5^{o}	45^{o}	0	0	45^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	0	0	45^{o}	45^{o}	HWP 1	arizatio
2 , 1-	$\frac{ V\rangle}{ F }$	0	0	0	0	0	0	45^{o}	45^{o}	45^{o}	45^{o}	0	0	0	0	0	0	QWP 1	n state
\sim	$H = H\rangle -$	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	22.5^{o}	45^{o}	0	0	45^{o}	45^{o}	0	0	45^{o}	HWP 2	of two
2	$i V\rangle$	$^{o}06$	$^{o}06$	$^{o}06$	45^{o}	45^{o}	45^{o}	45^{o}	0	0	0	0	0	0	0	0	0	QWP 2	photon
																			\mathbf{S}

Mathematica program for the tomography scheme

• def. of Kronecker tensor product (Kron) and Hermitian conjugate (hc)

<< LinearAlgebra MatrixManipulation'
f[x_, y_] := x*y;
Kron[matrix1_, matrix2_]:= BlockMatrix[Outer[f, matrix1, matrix2]]
hc[x_] := Transpose[Conjugate[x]]</pre>

• def. of rotation by HWP and QWP and def. of $[\rho_{nm}]_{4\times4}$

 $HWP[t_{-}] := \begin{pmatrix} \cos[2t] & \sin[2t] \\ \sin[2t] & -\cos[2t] \end{pmatrix}$ $QWP[t_{-}] := \frac{1}{\sqrt{2}} \begin{pmatrix} i - \cos[2t] & -\sin[2t] \\ -\sin[2t] & i + \cos[2t] \end{pmatrix}$ $rho = \begin{pmatrix} \rho_{0,0} & \rho_{0,1} & \rho_{0,2} & \rho_{0,3} \\ \rho_{1,0} & \rho_{1,1} & \rho_{1,2} & \rho_{1,3} \\ \rho_{2,0} & \rho_{2,1} & \rho_{2,2} & \rho_{2,3} \\ \rho_{3,0} & \rho_{3,1} & \rho_{3,2} & \rho_{3,3} \end{pmatrix};$

• rotation matrix 4×4 of 2 beams by 2 HWPs and 2 QWPs

rotation[h1_, q1_, h2_, q2_] :=
 Kron[HWP[h1 Degree].QWP[q1 Degree], HWP[h2 Degree].QWP[q2 Degree]]

our sequence of rotations

	,	
2[1]	::	rotation[45, 0, 45, 0];
R[2]	 II	rotation[45, 0, 0, 0];
2[3]	 II	rotation[0, 0, 0, 0];
۹[4]	 II	rotation[0, 0, 45, 0];
2[5]	 II	rotation[45/2, 0, 45, 0];
3[6]	 II	rotation[45/2, 0, 0, 0];
נ 7]		rotation[45/2, 45, 0, 0];
[8]		rotation[45/2, 45, 45, 0];
[9]		rotation[45/2, 45, 45/2, 0];
R[10]		rotation[45/2, 45, 45/2, 45];
R[11]	 II	rotation[45/2, 0, 45/2, 45];
R[12]		rotation[45, 0, 45/2, 45];
R[13]		rotation[0, 0, 45/2, 45];
R[14]		rotation[0, 0, 45/2, 90];
R[15]		rotation[45, 0, 45/2, 90];
[]]		rotation[45/2 0 45/2 90]

- rotated $\hat{\rho}^{(n)}=\hat{R}^{(n)}\hat{\rho}(\hat{R}^{(n)})^{\dagger}$ for the nth measurement

240

RhoRotated[n_] := R[n].rho .hc[R[n]]

examples

ク2,2 単 ク3,2 単 ク0,2 ー ク1,2	RhoRota	<i>ゆ</i> 3,3 並 <i>ゆ</i> 2,3 並 <i>ゆ</i> 1,3 一 <i>ゆ</i> 0,3	RhoRota
- 並 <i>ρ</i> 2,3 <i>ρ</i> 3,3 <i>ρ</i> 0,3 並 <i>ρ</i> 1,3	ted[2]	- 並	ted[1]
ー車 ρ _{2,0} <i>ρ</i> 3,0 <i>ρ</i> 0,0 車 <i>ρ</i> 1,0	// MF	- 並	// MF
$ \left. \begin{array}{c} -\rho_{2,1} \\ -\dot{1}\rho_{3,1} \\ -\dot{1}\rho_{0,1} \\ \rho_{1,1} \end{array} \right) $		$(-\rho_{3,0})$ $(-\pm\rho_{2,0})$ $(-\pm\rho_{1,0})$ $(\rho_{0,0})$	

measured probabilities $P_n = \langle VV | \hat{\rho}^{(n)} | VV \rangle = \rho_{33}^{(n)}$ where $|V \rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 \mathbf{SO}

ketV := $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$;	
ketVV := Kron[ketV, ketV];	
braVV := hc[ketVV]	
P[n_] := braVV.RhoRotated[n].ketVV // FS	
P[1]	
{ { ⁰ ,0}} }	
P[2]	
$\{ \{ 1^{'} 1^{'} d \} \}$	
P [5]	
$\left\{ \left\{ \frac{1}{2} \left(\rho_{0,0} - \dot{\mathtt{i}} \rho_{0,2} + \dot{\mathtt{i}} \rho_{2,0} + \rho_{2,2} \right) \right\} \right\}$	

242
all1 = Do[Print["P[", n, "]=", P[n]], {n, 1, 16}]
P[1]-{[0 _{0,0}]]
$\mathbb{P}\left(2\right) - \left\{\left\{o_{1,1}\right\}\right\}$
P[3] - [{o, , 3}]
$P[4] - [\{p_{2,2}\}]$
$\mathbb{P}\left[5\right] - \left\{\left\{\frac{1}{2} \left[(\sigma_{0,0} - 1 \sigma_{0,2} + 1 \sigma_{2,0} + \sigma_{2,2})\right]\right\}\right.$
$\mathbb{P}\left[6\right] - \left\{\frac{1}{2} \left[\rho_{1,1} - \frac{1}{4}\rho_{1,3} + \frac{1}{4}\rho_{3,1} + \rho_{3,3}\right]\right\}$
$\mathbb{P}[T] - \left\{ \frac{1}{2} \left\{ o_{1,1} - o_{1,3} - o_{2,1} + o_{2,3} \right\} \right\}$
$\mathbb{P}[8] - \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \left\{ 0_{0,0} - 0_{0,2} - 0_{2,0} + 0_{2,2} \end{bmatrix} \right\} \right\}$
$\mathbb{P}\left[9\right] - \left\{\frac{1}{4} \left[\left[a_{0,0} - \frac{1}{4} \rho_{0,1} - \rho_{0,2} + \frac{1}{4} \rho_{0,3} + \frac{1}{4} \rho_{1,1} - \frac{1}{4} \rho_{1,2} - \rho_{1,3} - \rho_{2,0} + \frac{1}{4} \rho_{2,1} + \rho_{2,2} - \frac{1}{4} \left[\rho_{2,3} + \rho_{3,1} - \rho_{3,1} - \rho_{3,2} + \rho_{3,1} - \rho_{3,3} + \rho_{3,1} - \rho_{3,1} + \rho_{3,1} - \rho_{3,1} + \rho_{3,1} - \rho_{3,1} + \rho_{3,1} + \rho_{3,1} - \rho_{3,1} + \rho_{3,$
$\mathbb{P}[10] - \left\{ \left\{ \frac{1}{4} \left(\rho_{0,0} - \rho_{0,1} - \rho_{0,1} + \rho_{0,3} - \rho_{1,0} + \rho_{1,1} + \rho_{1,2} - \rho_{2,0} + \rho_{3,1} + \rho_{2,2} - \rho_{2,3} + \rho_{3,0} - \rho_{3,1} - \rho_{3,2} + \rho_{3,3} \right\} \right\}$
$\mathbb{P}[11] - \left\{ \left\{ \frac{1}{4} \left(\rho_{0,0} - \rho_{0,1} - \mathbf{i} \left(\rho_{0,2} - \rho_{0,3} - \mathbf{i} \rho_{1,0} + \mathbf{i} \rho_{1,1} - \rho_{1,2} + \rho_{1,3} - \rho_{2,0} + \rho_{2,1} + \mathbf{i} \left(\rho_{2,2} - \rho_{2,3} - \mathbf{i} \rho_{3,0} + \mathbf{i} \rho_{3,1} - \rho_{3,2} + \rho_{3,3} \right) \right) \right\} \right\}$
$\mathbb{P}[12] - \left\{ \left\{ \frac{1}{2} \left(\rho_{0,0} - \rho_{0,1} - \rho_{1,0} + \rho_{1,1} \right) \right\} \right\}$
$\mathbb{P}[13] - \left\{ \left\{ \frac{1}{2} \left(\rho_{2,2} - \rho_{2,3} - \rho_{3,3} + \rho_{3,3} \right) \right\} \right\}$
$\mathbb{P}[14] - \left\{ \left\{ \frac{1}{2} \left(\rho_{2,2} + 1 \left(\rho_{2,3} - \rho_{3,2} \right) + \rho_{3,3} \right) \right\} \right\}$
$\mathbb{P}\left[15\right] - \left\{ \left\{ \frac{1}{2} \left(\rho_{0_{1,0}} + 1 \left(\rho_{0_{1,1}} - \rho_{1,0} \right) + \rho_{1,1} \right) \right\} \right\}$
$\mathbb{P}\left[16\right] - \left\{\left\{\frac{1}{4}\left(\rho_{0,0} + 1\rho_{0,1} - \frac{1}{4}\rho_{0,2} + \rho_{0,3} - \frac{1}{4}\rho_{1,0} + \rho_{1,1} - \rho_{1,2} - \frac{1}{4}\rho_{1,3} + \frac{1}{4}\rho_{2,0} - \rho_{2,1} + \rho_{2,2} + \frac{1}{4}\rho_{2,3} + \frac{1}{4}\left(\rho_{3,1} - \rho_{3,2} + \rho_{3,3}\right) + \rho_{3,3}\right\}\right\}$

equivalent approach using tomographic states

$$ketH := \begin{pmatrix} 1\\0 \end{pmatrix}; ketV := \begin{pmatrix} 0\\1 \end{pmatrix};$$

$$ketD := \frac{ketH + ketV}{\sqrt{2}}; ketDbar := \frac{ketH - ketV}{\sqrt{2}};$$

$$ketL := \frac{ketH + i ketV}{\sqrt{2}}; ketR := \frac{ketH - i ketV}{\sqrt{2}};$$

$$braH = hc [ketH]; braV = hc [ketV];$$

$$braD = hc [ketD]; braDbar = hc [ketDbar];$$

$$braR = hc [ketR]; braL = hc [ketL];$$

where $|H\rangle$ =ketH, $\langle H|$ =braH, etc.

our choice of tomographic states

= (projection) measurement states = projectors

$ \psi_1\rangle = \text{HH}\rangle,$	-	$ \psi_2\rangle = \text{HV}\rangle, \dots$, $ \psi_{16}\rangle = \mathbf{I}\rangle$	$\left \Gamma \right\rangle$
psi[1]		Kron[ketH, ke	tн];	
psi[2]		Kron[ketH, ke	tV];	
psi[3]		Kron[ketV, ke	tV];	
psi[4]		Kron[ketV, ke	τн];	
psi[5]		Kron[ketR, ke	tн];	
psi[6]		Kron[ketR, ke	tV];	
psi[7]		Kron[ketDbar,	ketV];	
psi[8]		Kron[ketDbar,	ketH];	
psi[9]		Kron[ketDbar,	ketR];	
psi[10]		Kron[ketDbar,	ketDbar];	
psi[11]		Kron[ketR, ke	tDbar];	
psi[12]		Kron[ketH, ke	tDbar];	
psi[13]		Kron[ketV, ke	tDbar];	
psi[14]		Kron[ketV, ke	tL];	
psi[15]		Kron[ketH, ke	tL];	
psi[16]		Kron[ketR, ke	tL];	

projection measurements

enable determination of the probabilities

 $p_1 = \langle HH|\hat{\rho}|HH\rangle, p_2 = \langle HV|\hat{\rho}|HV\rangle$, etc.:

etR, ketL];	.Kron[ke	.rho	raL]	, č	on[braR	= Kr	 p[16
etH, ketL];	.Kron[ke	.rho	raL]	, d	on[braH	= Kr	 p[15
etV, ketL];	.Kron[ke	.rho	raL]	, ,	on[braV	= Kr	 p[14
etV, ketDbar];	.Kron[ke	.rho	raDbar]	۲	on[braV	= Kr	 p[13
etH, ketDbar];	.Kron[ke	.rho	raDbar]	р С	on[braH	= Kr	 p[12
etR, ketDbar];	.Kron[ke	.rho	raDbar]	, G	on[braR	= Kr	 p[11
etDbar, ketDbar];	.Kron[ke	ar].rho	, braDb	bar	on[braD	= Kr	 p[10
etDbar, ketR];	.Kron[ke	.rho	, braR]	bar	on[braD	= Kr	 [9]q
etDbar, ketH];	.Kron[ke	.rho	, braH]	bar	on[braD	= Kr	 [8]d
etDbar, ketV];	.Kron[ke	.rho	, brav]	bar	on[braD	= Kr	 p[7]
etR, ketV];	.Kron[ke	.rho	raV]	, G	on[braR	= Kr	 [6]d
etR, ketH];	.Kron[ke	.rho	гаН]	, ,	on[braR	= Kr	 p[5]
etV, ketH];	.Kron[ke	.rho	raH]	, ,	on[braV	= Kr	 p[4]
etV, ketV];	.Kron[ke	.rho	raV]	, ,	on[braV	= Kr	 p[3]
etH, ketV];	.Kron[ke	.rho	raV]	р.	on[braH	= Kr	 p[2]
etH, ketH];	.Kron[ke	.rho	raH]	, b	on[braH	= Kr	 p[1]
	1 1 1 1 1 1	/	** ** / , P 2	14	1	ł	

all2 := Do[Print[n, " -> ", p[n] // FS], {n, 1, 16}]

246

projection measurements

enable determination of the probabilities

 $p_1 = \langle \psi_1 | \hat{\rho} | \psi_1 \rangle = \langle HH | \hat{\rho} | HH \rangle, p_2 = \langle \psi_2 | \hat{\rho} | \psi_2 \rangle = \langle HV | \hat{\rho} | HV \rangle, \text{ etc.:}$

p[1]	:= hc[psi[1]] .rho.psi[1] ;
p[2]	:= hc[psi[2]] .rho.psi[2] ;
p[3]	:= hc[psi[3]] .rho.psi[3] ;
p[4]	:= hc[psi[4]] .rho.psi[4] ;
p[5]	:= hc[psi[5]] .rho.psi[5] ;
[6]d	:= hc[psi[6]] .rho.psi[6] ;
p[7]	:= hc[psi[7]] .rho.psi[7] ;
[8]d	:= hc[psi[8]] .rho.psi[8] ;
[9]q	:= hc[psi[9]] .rho.psi[9] ;
p[10]	:= hc[psi[10]].rho.psi[10];
p[11]	:= hc[psi[11]].rho.psi[11];
p[12]	:= hc[psi[12]].rho.psi[12];
p[13]	:= hc[psi[13]].rho.psi[13];
p[14]	:= hc[psi[14]].rho.psi[14];
p[15]	:= hc[psi[15]].rho.psi[15];
p[16]	:= hc[psi[16]].rho.psi[16];
)	
a112	:= Do[Print[n, " -> ", p[n] // FS], {n, 1, 16}]

245

P(n) = p(n)

]	P[16]-P[16]-{{0
	P[15]-p[15]-{{0
	P[14]-p[14]-{{0
	P[13]-p[13]-{{0
	P[12]-p[12]-{{0
	P[11]-p[11]-{{0
	P[10]-p[10]-{{0
	[{0}]-[9]q-[8]
	P[8]-p[8]-{{0}}
	P[7]-p[7]-{{0}}
	P[6]-p[6]-{{0}}
	P[5]-p[5]-{{0}}
	$\mathbb{P}[4] - \mathbb{P}[4] - \{\{0\}\}$
	P[3]-p[3]-{{0}}
	P[2]-p[2]-{{0}}
	$\mathbb{P}[1] \rightarrow [1] - \{\{0\}\}$
ε["₽[", n, "]-₽[", n, "]=", ₽[n] - ₽[n] //FS], {n, 1, 16}]	test = Do[Prin

reconstruction analysis

248

convert 4x4 matrix into 16-dim column vector

represent operators of Hilbert space as superoperators in Liouville space

possible methods:

• method 1:

$$\hat{\rho} = \begin{bmatrix} \rho_1 & \rho_2 & \rho_3 & \rho_4 \\ \rho_5 & \rho_6 & \rho_7 & \rho_8 \\ \rho_9 & \rho_{10} & \rho_{11} & \rho_{12} \\ \rho_{13} & \rho_{14} & \rho_{15} & \rho_{16} \end{bmatrix} \mapsto \begin{bmatrix} \rho_{10} \\ \rho_2 \\ \vdots \\ \vdots \\ \rho_{16} \end{bmatrix} = \begin{bmatrix} \rho_{00} \\ \rho_{01} \\ \vdots \\ \rho_{33} \end{bmatrix}$$

$$\hat{\rho} = \begin{bmatrix} \rho_1 & \rho_2 & \rho_3 & \rho_4 \\ \rho_5 & \rho_6 & \rho_7 & \rho_8 \\ \rho_9 & \rho_{10} & \rho_{11} & \rho_{12} \\ \rho_{12} & \rho_{14} & \rho_{16} \\ \rho_{16} & \rho_{16} \end{bmatrix} \mapsto \begin{bmatrix} \rho_{10} \\ \rho_{2} \\ \rho_{16} \\ \rho_{16} \\ \rho_{16} \\ \rho_{22} \\ \rho_{16} \\ \rho_{22} \\ \rho_{23} \\ \rho_{24} \\ \rho_{24} \\ \rho_{25} $

$$\hat{\rho} = \begin{bmatrix} \rho_1 & \rho_2 & \rho_3 & \rho_4 \\ \rho_5 & \rho_6 & \rho_7 & \rho_8 \\ \rho_9 & \rho_{10} & \rho_{11} & \rho_{12} \\ \rho_{13} & \rho_{14} & \rho_{15} & \rho_{16} \end{bmatrix} \mapsto \begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_{16} \end{bmatrix} \equiv \begin{bmatrix} \rho_{00} \\ \vdots \\ \rho_{33} \end{bmatrix}$$

• another labelling:

$$\begin{bmatrix} \rho_2 & \rho_3 & \rho_4 \\ \rho_7 & \rho_8 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix} \begin{bmatrix} \rho_{00} \\ \rho_{01} \end{bmatrix}$$

$$\hat{\rho} = \begin{bmatrix} x_1 & x_2 + ix_{11} & x_3 + ix_{12} & x_4 + ix_{13} \\ x_2 - ix_{11} & x_5 & x_6 + ix_{14} & x_7 + ix_{15} \\ x_3 - ix_{12} & x_6 - ix_{14} & x_8 & x_9 + ix_{16} \\ x_4 - ix_{13} & x_7 - ix_{15} & x_9 - ix_{16} & x_{10} \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_{16} \end{bmatrix}$$

solution of the set of equations

exists if A is **non-singular** and it is simply given by

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{P}$ where \mathbf{A}^{-1} is equal to

	0	0	0	ч	0	Ξ	0	0	0	0	0	0	0	0	0
	0	0	0	- 0	0	-10	0	0	0	0	-1	0	- 0		0
	0	0	0	- ⁰	0	-10	0	0	0	0	0	0	- 0		0
	0	0	0	10	0	- I -	0	0	-1	0	0	0	-10		0
	0	-1	0	10	0	- C	0	0	0	0	0	0	7	-1 0	0
	0	0	0	0	0	0	0	0	0	0	0	0	Ę.	- 1	0
	0	0	0	Ъ	0	Ч	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	Ч	Ч	0
	0	0	-1	- <mark> </mark> -	0	- -	0	0	0	0	0	0	7	10	0
	0	0	0	- <mark> </mark> -	0	- -	-1	0	0	0	0	0	7	10	0
	0	0	0	- 0	0	-10	0	0	0	0	0	0	-10	-10	ч
	0	0	0	-1 0	0	-10	0	0	0	0	0	г	-10	-10	0
A	0	0	-10	-10	0	0	0	Ч	-10	0	0	-1 -	0	-1 -1 -1	0
rerse	0	0	0	-10	0	0	-10	0	-10	Ч	0	0	0	-1 -1 -1	
MF = Inv	0	-10	0	-10	Ч	0	-10	0	0	0		0	0	-1 	c
nvà : nvà /	Ч		-10		0	0	0	0	0	0	-10	-1 -1 -1	0	10	0

set of equations P = Ax

 $\mathbb{P}[16] - \frac{1}{4} \ (x[1] + 2 \ x[4] + x[5] - 2 \ x[6] + x[8] + x[10] - 2 \ x[11] + 2 \ x[12] + 2 \ x[15] - 2 \ x[16])$

 $P[13] = \frac{1}{2} (x[8] - 2 x[9] + x[10])$ $P[14] = \frac{1}{2} (x[8] + x[10] - 2 x[16])$

 $P[15] - \frac{1}{2} (x[1] + x[5] - 2 x[11])$

 $\mathbb{P}[11] - \frac{1}{4} \ (x[1] - 2 \ x[2] + x[5] + x[8] - 2 \ x[9] + x[10] + 2 \ (x[12] - x[13] - x[14] + x[15]))$

 $P[12] - \frac{1}{2} (x[1] - 2 x[2] + x[5])$

$$\begin{split} \mathbb{P}[9] - \frac{1}{4} \left(\mathbb{X}[1] - 2 \,\mathbb{X}[3] + \mathbb{X}[5] - 2 \,\mathbb{X}[7] + \mathbb{X}[8] + \mathbb{X}[10] + 2 \,(\mathbb{X}[11] - \mathbb{X}[13] + \mathbb{X}[14] + \mathbb{X}[16]) \right) \\ \mathbb{P}[10] - \frac{1}{4} \left(\mathbb{X}[1] - 2 \,\mathbb{X}[2] - 2 \,\mathbb{X}[2] + 2 \,\mathbb{X}[4] + \mathbb{X}[5] + 2 \,\mathbb{X}[6] - 2 \,\mathbb{X}[7] + \mathbb{X}[8] - 2 \,\mathbb{X}[9] + \mathbb{X}[10]) \right) \end{split}$$

 $\mathbb{P}[7] - \frac{1}{2} (x[5] - 2 x[7] + x[10])$

 $P[8] - \frac{1}{2} (x[1] - 2 x[3] + x[8])$

 $P[6] - \frac{1}{2} (x[5] + x[10]) + x[15]$

 $P[5] - \frac{1}{2}(x[1] + x[8]) + x[12]$

P[1]-x[1] P[2]-x[5] P[3]-x[10]

P[4]-x[8]

where $\mathbf{P} = [P_1, P_2, \cdots, P_{16}]^T$, $\mathbf{x} = [x_1, x_2, \cdots, x_{16}]^T$, $\mathbf{A} = [a_{m,n}]_{16 \times 16}$ $P_1 = x_1 = 1 \cdot x_1 + 0 \cdot x_2 + \cdots + 0 \cdot x_{16} = [1, 0, \cdots, 0] \cdot \mathbf{x} = \sum_n a_{1,n} x_n$, etc.

a [n_, A := T A // M	m_] able IF	н п п	oef:	[[]	.ent[L, 1]	[], []	, ×[]]	Ē	, 1,	16]	_				
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	г	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	
0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	
-10	0	0	0	0	0	0	-10	0	0	0	Ч	0	0	0	0	
0	0	0	0	-10	0	0	0	0	-10	0	0	0	0	Ч	0	
0	0	0	0	-10	0	-1	0	0	-10	0	0	0	0	0	0	
7	0	-1	0	0	0	0	-10	0	0	0	0	0	0	0	0	
14	0	1	0	4	0	1	4	0	4	-10	0		-10	0	7	
4	7	5	-10	4	-10	- 1	4	- 1	4	0	0	0	0	0	0	
4	<-	0	0	4	0	0	4	10 1	4	0	~ ~	10 1	1 1	50 FT	0	
7	-1	0	0	-1 <mark> </mark> -1	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-1	-10	0	0	0	0	0	0	
0	0	0	0	0	0	0	-1 0	0	-1 0	0	0	0	0	0	-1	
7	0	0	0	-10	0	0	0	0	0	Η	0	0	0	0	0	
4	0	0	-10	4	10	0	4	0	4	- 2	-10	0	0	10	10	

250

experimental data [James et al. 2002]

252

experimental coincidence counts $\mathbf{N}_{\mathrm{exp}} = \{n_1,...,n_{16}\}$

experimental estimations of probabilities
$$\mathbf{P}_{\exp} = \{P_{\exp1}, ..., P_{\exp16}\} = \{\frac{n_1}{N}, ..., \frac{n_{16}}{N}\}$$

where $n_\nu = \mathcal{N}\langle \psi_\nu | \hat{\rho} | \psi_\nu \rangle$ so

 $\sum_{\nu=1}^{4} n_{\nu} = \mathcal{N} \langle HH | \hat{\rho} | HH \rangle + \mathcal{N} \langle HV | \hat{\rho} | HV \rangle + \mathcal{N} \langle VH | \hat{\rho} | VH \rangle + \mathcal{N} \langle VV | \hat{\rho} | VV \rangle = \mathcal{N}$

16901, 17932, 32 prm = Sum[Nexp[[i]]	28, 15132, 17238, 13171, 17170, 16722, 33586}}! {i, 1, 4}][[1]]
sxp = 1 . Nexp / Norm;	
axp // MF	
0.487213	
0.00454278	
0.502019	
0.00622529	
0.228877	
0.245661	
0.188455	
0.236968	
0.251423	
0.449062	
0.212165	
0.241693	
0.18467	
0.240739	
0.234458	
70807 0	

249

In[81]:= all1 = Do [Print["P[", n, "]=", P[n][[1, 1]]], {n, 1, 16}]

$\mathbf{x} = \mathbf{A} \cdot \mathbf{F}_{exp}$	GenerateGamma = Do $\left[\gamma \left[4 m + n \right] = \frac{1}{2} \text{Kron} \left[\sigma_m, \sigma_n \right], \left\{ m, 0, 3 \right\}, \left\{ n, 0, 3 \right\} \right]$
$\begin{array}{c c} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix} \hat{\rho} \equiv \hat{\rho}_{\exp} = \begin{array}{c c} x_1 & x_2 + ix_{11} & x_3 + ix_{12} & x_4 + ix_{13} \\ x_2 - ix_{11} & x_5 & x_6 + ix_{14} & x_7 + ix_{15} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$	γ[1] // Simplify // MF
$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>x = Flatten[invA.Pexp] {0.487213,0.00418524,0.00975155,0.519209,0.00454278,0.0271305,0.0648257,</pre>	$\left(\begin{array}{cccc} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{array}\right)$
0.006Z2529, 0.0094556, 0.50Z113, 0.01147, -0.017415, -0.01380247, 0.0149958, -0.0076Z037, 0.015563] rhoexp :=	γ[2] // Simplify // MF
x:f(4] - ±x[[13]] x[[7]] - ±x[[15]] x[[9]] ±x[[16]] x[[10]] x:hoexp // MP 0.0418524 + 0.01142 ± 0.00975155 - 0.0178416 ± 0.519209 - 0.0380247 ± 0.0418524 + 0.01142 ± 0.00975155 - 0.0178416 ± 0.519209 - 0.0380247 ± 0.0945185 - 0.01142 ± 0.044558 ± 0.0572538 ± 0.0648227 - 0.00762037 ± 0.0945185 - 0.01142 ± 0.044558 ± 0.062525 ± 0.0178416 ± 0.0772037 ± 0.095255 - 0.01383 ± 0.0648257 + 0.00762037 ± 0.0624526 - 0.013383 ± 0.502019	
• method 2: $\hat{\rho} \mapsto [r_{\nu}]_{16 \times 1}$ 254	generators of the Lie algebra $SU(2) \otimes SU(2)$ 256
find a set of 16 linearly independent 4×4 matrices $\{\hat{\gamma}_{\nu}\}$ satisfying:	
$\mathrm{Tr} \left\{ \hat{\gamma}_{ u} \cdot \hat{\gamma}_{\mu} ight\} = \delta_{ u,\mu}$ $orall \hat{ ho}_{\hat{ u}} = \sum_{\mu} \frac{16}{\hat{\gamma}_{\mu}} \mathrm{Tr} \left\{ \hat{\gamma}_{\mu} \cdot \hat{ ho} ight\} \equiv \sum_{\mu} \frac{16}{\hat{\gamma}_{\mu}} r_{\mu},$	$\hat{\gamma}_1 = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \hat{\gamma}_2 = \frac{1}{2} \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{bmatrix}, \hat{\gamma}_3 = \frac{1}{2} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \hat{\gamma}_4 = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$
are generalized Pauli operators or their products chosen as, e.g., generators of the Lie algebra $SU(4)$ or just $SU(2) \otimes SU(2)$.	$\hat{\gamma}_5 = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \hat{\gamma}_6 = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \end{bmatrix}, \hat{\gamma}_7 = \frac{1}{2} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \hat{\gamma}_8 = \frac{1}{2} \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \end{bmatrix},$
$\hat{\gamma}_{4m+n} = \frac{1}{2}\hat{\sigma}_m \otimes \hat{\sigma}_n, (m, n = 0,, 3)$ where $\hat{\sigma}_n$ are the standard Pauli operators.	$\hat{\gamma}_{9} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \end{bmatrix}, \hat{\gamma}_{10} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \hat{\gamma}_{11} = \frac{1}{2} \begin{bmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \end{bmatrix}, \hat{\gamma}_{12} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix},$
for convention we denote $\gamma_{16} = \gamma_0$	$\hat{\gamma}_{13} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \hat{\gamma}_{14} = \frac{1}{2} \begin{bmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \end{bmatrix}, \hat{\gamma}_{15} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \hat{\gamma}_{16} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

final solution for \mathbf{x} assuming the analyzed experimental data:

 $\mathbf{x} = \mathbf{A}^{-1} \mathbf{P}_{exp}$

reconstructed $\hat{\rho}$ by linear tomography

exemplary generators of the Lie algebra $SU(2)\otimes SU(2)$

 $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \sigma_2 = \begin{pmatrix} 0 & -\dot{n} \\ \dot{n} & 0 \end{pmatrix}; \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$

inverse matrix \mathbf{B}^{-1}

invB :	E TU	verse	[B]													
/ 1 2	10	7	10	0	0	0	0	0	0	0	-1	-1	0	0	0	
- 2	10	- 2	- 2	0	0	0	0	0	0	0	0	0	Ч	Ч	0	
7	- 7	- 2	10	0	0	0	0	0	0	0	0	0	0	0	0	
<u>1 </u> 2	7	7	10	0	0	-1	-1	0	0	0	0	0	0	0	0	
7	7	7	70	0	0	-1	-1	0	\sim	0	-1	-1	0	0	0	
- 10	10	- 2	- 2	0	0	-1	-1	2	0	0	0	0	Ч	Ч	0	
2	- 2	- 2	10	0	0	Ч	-1	0	0	0	0	0	0	0	0	
7	10	7	10	-1	-1	0	0	0	0	0	0	0	0	0	0	
2	-1 7	10	10	-1	-1	0	0	0	0	2	-1	-1	0	0	0	
1 2	- 2	- 2	- 7	Ч	Ч	0	0	0	0	0	0	0	Ч	Ч	- 2	
7	102	1 2	10	-1	Ч	0	0	0	0	0	0	0	0	0	0	
2	7	- 2	- 1	0	0	0	0	0	0	0	0	0	0	0	0	
2	7	1 2	2	0	0	0	0	0	0	0	-1	Ч	0	0	0	
- 1	- 7	7	10	0	0	0	0	0	0	0	0	0	-1	Ч	0	
7	- 2	7	7	0	0	0	0	0	0	0	0	0	0	0	0	
2	7	7	70	0	0	0	0	0	0	0	0	0	0	0	0	

 $\hat{M}_{\nu} = \sum_{\nu=1}^{16} B_{\nu,\mu}^{-1} \, \hat{\gamma}_{\mu}$ for our set of tomographic states M[n_] := Sum[invB[[m, n]] Y[m], {m, 1, 16}] M[1] // MF $\frac{1}{2} - \frac{1}{2}$ - N $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$ 0 0 -m | C2 $\frac{1}{2} + \frac{1}{2}$ + 2 1 ĥ ·= 0 0 0 Ч ·= 0 M[16] // MF 0 0 -1 M[2]//MF $\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & -1 \\ 0 & 0 \\ \end{pmatrix}$ ⁵⊓ 0

reconstruction analysis

projection measurement $\hat{n}_{\perp} = |\eta/1/\eta/1|$

$$\mu_{\nu} = |\psi_{\nu}\rangle \langle \psi_{\nu}|$$

average number of coincidence counts

$$n_{
u} = \mathcal{N}\langle \psi_{
u} | \hat{
ho} | \psi_{
u}
angle$$

 $\hat{\rho} = (\mathcal{N})^{-1} \sum_{\nu=1}^{16} \hat{M}_{\nu} n_{\nu}$ reconstructed ρ

$$\hat{M}_{
u} = \sum_{
u=1}^{16} \left(B^{-1}
ight)_{
u,\mu} \hat{\gamma}_{\mu}$$

$$B = [B_{\nu,\mu}]_{16\times 16} \quad \text{with} \quad B_{\nu,\mu} = \langle \psi_{\nu} | \hat{\gamma}_{\mu} | \psi_{\nu} \rangle$$

non-singularity of $B \leftrightarrow$ sensitivity of method

$$\mathbf{B} = [B_{m,n}]_{16\times 16} \text{ where } B_{m,n} = \langle \psi_m | \hat{\gamma}_n | \psi_m \rangle$$

~ ~

0 5 ыN

c

c -10

0 5/1-

-|~ |

c

-0 0

c

0 20 20

--|0

0 0

		ы м[л м[г] м[г]		No. 1 1 1 2 2 3 3 4 4 5 5 5 4 4 3 5 5 6 6 6 5 6 7 7 7 7 7 7 7 11 11 11 11 11 11 11 11 11 11 11 11 11
2] // M 0 1 2 - <u>1</u> 2 - <u>1</u> 2 - <u>1</u>		n_, n_] = Table 7B := In n_] := : L] // MD	$\hat{M}_{ u}$	Mode 1 H H H H H H H H H H H H H
μ 	$\begin{array}{ccc} & & & \\ & & & \\ & & \\ 0 & & \\ & &$:= hc[f ≥[b[n, m nverse[I Sum[inv] F	$=\sum_{\nu=1}^{16}$	Image: Mode 2 Image: Mode
$0 \frac{1}{2} \frac{1}{2}$	 	>si[m]].γ][[1,1]] 3] B[[m,n]]	$B^{-1}_{ u,\mu}\hat\gamma_\mu$ for	Note: we
N ⊨.		[n].psj , {n, 1 γ[m],	the new	have just
		[[m] , 16}, {m, 1, 1	set of to	replaced
		{m, 1, . .6}]	mograph	1 D by 1
		16}]	nic state	.9

264

$$\begin{split} \hat{M}_{11} &= \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ -i & 0 & 0 & 0 \end{pmatrix}, \quad I \\ \hat{M}_{13} &= \frac{1}{2} \begin{pmatrix} 0 & 0 & -\alpha & 0 \\ 0 & -\beta & 0 & 2 \\ -\beta & 0 & 2 & 0 \end{pmatrix}, \\ \hat{M}_{15} &= \frac{1}{2} \begin{pmatrix} 0 & -2i & 0 & -\beta \\ 2i & 0 & \beta & 0 \\ -\alpha & 0 & 0 & 0 \end{pmatrix}, \\ \hat{M}_{15} &= \frac{1}{2} \begin{pmatrix} 0 & -2i & 0 & -\beta \\ 2i & 0 & \beta & 0 \\ -\alpha & 0 & 0 & 0 \end{pmatrix}, \\ \text{where } \alpha \equiv 1 + i; \beta \equiv 1 - i. \end{split}$$
 $\hat{M}_{11} =$ $\hat{M}_9 =$ $\begin{pmatrix} 0 & 0 & 0 & -\alpha \\ 0 & 0 & -\alpha & 0 \\ 0 & -\beta & 0 & 2 \\ -\beta & 0 & 2 & 0 \end{pmatrix}, \ \hat{M}_{14} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -\beta \\ 0 & 0 & -\beta & 0 \\ 0 & -\alpha & 0 & -\beta \\ -\alpha & 0 & 2i & 0 \end{pmatrix}$ $\left(\begin{array}{ccccc} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array}\right),$ $\hat{M}_{12} = \frac{1}{2} \begin{pmatrix} 0 & 2 & 0 & -\alpha \\ 2 & 0 & -\alpha & 0 \\ 0 & -\beta & 0 & 0 \\ -\beta & 0 & 0 & 0 \end{pmatrix},$, $\hat{M}_{16} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix},$ $\hat{M}_{10} =$ $= \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right),$

Note: other M_n 's are obtained for other sets of rotations.

$\hat{M}_8 = \frac{1}{2}$	$\hat{M}_6 = \frac{1}{2}$	
		/
$-\frac{1}{\beta}$	$-\beta 0$	F
$0 \frac{1}{2} 0 0$	$\begin{array}{c} 0 \\ -2i \end{array}$	0
$0 \begin{array}{c} - & 2 \\ 0 & -\beta \end{array}$	0000	$-\alpha$
0 0 0	$\begin{array}{c} -\alpha \\ 0 \\ 0 \end{array}$	C
,		

 $\hat{M}_5 = \frac{1}{2}$

 $\left(\begin{array}{ccccc} 0 & 0 & 2i & -\alpha \\ 0 & 0 & \beta & 0 \\ -2i & \alpha & 0 & 0 \\ -\beta & 0 & 0 & 0 \end{array}\right)$

 $\hat{M}_{7} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -\alpha \\ 0 & 0 & -\beta & 2 \\ 0 & -\alpha & 0 & 0 \\ -\beta & 2 & 0 & 0 \end{pmatrix},$

	BQ
$\begin{pmatrix} 0 & 1 \\ i & -\alpha \\ \beta & -\alpha & 2 \end{pmatrix}$	$ \begin{pmatrix} -\beta & -\alpha & 1 \\ 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
, $\hat{M}_4 =$, $\hat{M_2} =$
$\begin{array}{c} 0\\ 0\\ -\beta\\ 1 \end{array}$	$\overbrace{\begin{array}{c}1\\2\\0\\1\end{array}}^{\underline{1}}$
$\begin{array}{c} 0\\ 0\\ 1\\ -\beta \end{array}$	$\frac{1}{2}$ $-\alpha$

16 matrices M_n for the latter tomographic states

265 experimental example of James et al.	267 maximum-likelihood method
counts for 16 projection measurements	2. construct a likelihood function
$n_1=34749, n_2=324, n_3=35805, n_4=444, n_5=16324, n_6=17521, n_7=13441, n_8=16901,$	assuming e.g. Gaussian noise of the measurements,
$n_9 = 17932, n_{10} = 32028, n_{11} = 15132, n_{12} = 17238,$	the probability of obtaining a set of counts $\mathbf{v} = (v_1, v_2, v_3, v_4)$
$n_{13} = 13171, n_{14} = 17170, n_{15} = 16722, n_{16} = 33586$	$\mathbf{u} = (u_1, u_2, \dots, u_1) $ for airon \hat{a} , (1) with $t = (t, t, t_{a})$
reconstructed $\hat{ ho}$ by linear tomography	$\lim_{n \to \infty} S(v) = \int_{0}
$\hat{\rho} = \begin{pmatrix} 0.4872 & 0.0042 + i0.0114 & 0.0098 - i0.0178 & 0.5192 - i0.0380 \\ 0.0042 - i0.0114 & 0.0045 & 0.0271 + i0.0146 & 0.0648 - i0.0076 \\ 0.0098 + i0.0178 & 0.0271 - i0.0146 & 0.0062 & 0.0695 + i0.0134 \\ 0.5192 + i0.0380 & 0.0648 + i0.0076 & 0.0695 - i0.0134 & 0.5020 \end{pmatrix}$	$P\left(\mathbf{n}, \mathbf{t}\right) = \frac{1}{N_{\text{norm}}(\mathbf{t})} \prod_{\nu=1}^{16} \exp\left[-\frac{(n_{\nu} - \bar{n}_{\nu}(\mathbf{t}))^2}{2\sigma_{\nu}^2(\mathbf{t})}\right]$
problems with semi-definiteness and normalization	where $ar{n}_ u({f t}) = \mathcal{N}\langle \psi_ u \hat{ ho}_{ m phys}({f t}) \psi_ u angle - {f n}$ umber of counts expected for $ u$ th measurement
$\operatorname{eig} \hat{\rho} = \{1.02155, 0.0681238, -0.065274, -0.024396\}$	$\sigma_ u(\mathbf{t}) pprox \sqrt{ar{n}_ u(\mathbf{t})}$ – standard deviation
$IT \rho^{-} = 1.033$	$\mathcal{N} = \sum_{\nu=1}^4 n_ u \gg 1$ – normalization, so $rac{ar{n}_ u}{N}$ corresponds to a probability
uns is not a purysicat ucusity matrix.	$N_{ m norm}({f t})={ m const}-{f normalization}$ assumed to be independent of ${f t}$
266 maximum-likelihood (MaxLik) method	268 maximum-likelihood method
1. construct explicitly a ''physical'' density matrix $\hat ho_{ m phys}$	3. optimize $\hat{ ho}_{ m phys}({f t})$:
normalized	find numerically a maximum of $P(\mathbf{n}, \mathbf{t})$
Hermitian	for a given measured data n:
positive	$\prod_{n=1}^{16} \prod_{r=1}^{16} \left[- \left(\mathcal{N} \langle \psi_ u \hat{ ho}_p(\mathbf{t}) \psi_ u angle - n_ u ight)^2 ight]$
ο. G	$\inf_{\nu=1}^{\max} \prod_{\nu=1}^{\exp} \left[-\frac{2N\langle \psi_{\nu} \hat{\rho}_{p}(\mathbf{t}) \psi_{\nu} \rangle}{2N\langle \psi_{\nu} \hat{\rho}_{p}(\mathbf{t}) \psi_{\nu} \rangle} \right].$
$\hat{ ho}_{ ext{phys}} \equiv \hat{ ho}_{ ext{phys}}(t_1,t_2,\ldots t_{16}) = rac{\hat{T}^\dagger \hat{T}}{ ext{Tr}\{\hat{T}^\dagger \hat{T}\}}$	or, equivalently, analyze logarithm of $P(\mathbf{n}, \mathbf{t})$:
with e.g.	
$\left(\begin{array}{cccccc} t_1 & 0 & 0 & 0 \\ t_{-1} \pm it_{-} & t_{-} & t_{-} & 0 & 0 \end{array}\right)$	$\max_{\uparrow} \sum_{\mathbf{t}}^{16} - \frac{\left(\mathcal{N}\langle\psi_{\nu} \hat{\rho}_{p}(\mathbf{t}) \psi_{\nu}\rangle - n_{\nu}\right)^{2}}{\frac{3\mathcal{N}(I_{nI_{1}}\mid\beta)}{(\mathbf{t}\mid\beta)(1+\beta)}} = \frac{\mathcal{N}}{2}\min_{\mathbf{t}}\mathcal{L}(\mathbf{t})$
$T = \left(egin{array}{cccc} v_{5} + \iota v_{6} & v_{2} & v_{2} & 0 \ t_{11} + i t_{12} & t_{7} + i t_{8} & t_{3} & 0 \end{array} ight),$	$\nu = 1$ $\Delta \sqrt{\psi_{\nu}} P_{\nu}(\mathbf{v}) + \nu P_{\nu}($
$\langle t_{15} + it_{16} t_{13} + it_{14} t_9 + it_{10} t_4 angle$ of lower trionomlar (or unner trionomlar) form which is accilu invertible	$\sum_{\mathbf{t} \in \mathcal{T}} \frac{16}{\left(\langle \psi_{i}, \hat{\rho}_{i}, \mathbf{t} \rangle \psi_{i}, \mathbf{t} - \frac{n_{y}}{n_{y}}\right)^{2}}$
of lower-utaignal (of upper-utaignal) form, which is easily invertible \mathbf{D}_{11} is \mathbf{C}	$\mathcal{L}(\mathbf{t}) = \sum_{i=1}^{N} rac{\langle \langle \psi_{\nu} \hat{\rho}_{i}(t) \psi_{\nu} \rangle}{\langle \psi_{\nu} \hat{\rho}_{i}(t) \psi_{ u} angle}$
By the SCHUF decomposition , any normal matrix A (i.e., $A'A = AA'$) can be represented as $\hat{A} = \hat{U}\hat{T}\hat{U}^{\dagger}$ in terms of a triangular \hat{T} and a unitary \hat{U} . For simplicity, we neglect \hat{U} .	is a useful 'likelihood' function .

 $\hat{\rho} =$

'likelihood' function	for our experimental data
<pre>L[t1_, t2_, t3_, t4_, t5_, t6_, t7_, t8_, t9_, t10_, t11_, t12_, t13_, t14_, t15_, t16_] := Module [{T, RhoPhys, sum, Nmean}, T := { t1 0 0 0 0 t5 * i t6 t2 0 0 0 t11 * i t12 t7 * i t8 t3 0 j, t15 * i t16 t13 * i t14 t9 * i t10 t4</pre>	$\hat{T}(\mathbf{t}_{\text{ini}}) = \begin{bmatrix} 0.5948i & 0 & 0 & 0 \\ 0.8706 + 0.7282i & 0.4060 & 0 & 0 \\ -0.0215 + 0.9933i & -0.2827 - 0.2982i & 0.0615i & 0 \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0605i & 0.7665i \\ 0.7506 + 0.0556i & 0.0615i & 0.0615i & 0.7665i \\ 0.7506 + 0.7506i & 0.0615i & 0.0615i & 0.7665i \\ 0.7506 + 0.7506i & 0.0615i & 0.0615i & 0.7665i \\ 0.7506 + 0.7506i & 0.0615i & 0.7665i \\ 0.7506 + 0.7506i & 0.7665i & 0.7665i \\ 0.7506 + 0.7506i & 0.7665i & 0.7665i \\ 0.7506 + 0.7506i & 0.7665i & 0.766i \\ 0.7506 + 0.7506i & 0.7665i & 0.7665i \\ 0.7506 + 0.7506i & 0.7665i & 0.7665i \\ 0.7506 + 0.7506i & 0.766i & 0.766i \\ 0.7506 + 0.756i & 0.766i \\ 0.7506 + 0.756i & 0.766i $
<pre>sum = 0; Do[{Mmean = Re[Norm * hc[psi[m]].opting.psi[m]]; sum = sum + (Nmean - Nexp[[m]]) ^ 2 / 2 / Nmean}, {m, 1, 16}]; Return[Re[sum]] ;</pre>	$\hat{\rho}_{\text{phys}}(\mathbf{t}_{\text{ini}}) = \begin{bmatrix} 0.7870 & 0.0325 - 0.0014i & 0.0328 - 0.0051i & 0.1289 - 0.0094i \\ 0.0325 + 0.0014i & 0.0850 & -0.0024 - 0.0024i & 0.0161 - 0.0019i \\ 0.0328 + 0.0051i & -0.0024 + 0.0050i & 0.0034 & 0.0173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.1173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.1173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.1173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.0173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.0173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0161 + 0.0010i & 0.0179 & 0.0025i & 0.0173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0004i & 0.0179 & 0.0025i & 0.0173 + 0.0033i \\ 0.0328 + 0.0004i & 0.0004i & 0.0016i & 0.0005i & 0.0005i & 0.0005i \\ 0.0328 + 0.0004i & 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0328 + 0.0004i & 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0328 + 0.0004i & 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0328 + 0.0004i & 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0328 + 0.0004i & 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0004i & 0.0005i & 0.0005i & 0.0005i \\ 0.0005i & 0.0005i & 0.0005i & 0.0005i \\ 0.0$
numerical optimalization	$\begin{bmatrix} 0.1269 + 0.0034 & 0.0101 + 0.0019 & 0.0116 & -0.0036 & 0.1247 \end{bmatrix}$
<pre>FindMinimum[L[t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16], {t1,tini1},{t2,tini2},{t3,tini3},{t4,tini4},{t5,tini5},{t6,tini6}, {t7,tini7},{t8,tini8},{t9,tini9},{t10,tini10},{t11,tini11}, {t12,tini12},{t13,tini13},{t14,tini14},{t15,tini15},{t16,tini16}]</pre>	$\mathcal{L}(\mathbf{t}_{\mathrm{ini}}) = 3.0695$ by applying the optimalization procedure we can diminish this value to $\mathcal{L}(\mathbf{t}_{\mathrm{opt}}) = 0.0104$
thus, we need initial values $\mathbf{t}_{\mathrm{ini}}$.	тог ше голожив шапту
How to estimate initial 'physical' matrix $\hat{T}(\mathbf{t}_{\mathrm{ini}})$?	272 our matrix reconstructed by MaxLik method
By calculating \hat{T} from our "unphysical" $\hat{\rho}$:	
$\left(\begin{array}{cccc} \sqrt{\frac{\mathcal{M}^{(0)}}{\mathcal{M}^{(1)}_{00}}} & 0 & 0 & 0 \\ \frac{\mathcal{M}^{(1)}_{00}}{\mathcal{M}^{(1)}_{00}} & \sqrt{\frac{\mathcal{M}^{(1)}_{00}}{\mathcal{M}^{(1)}_{00}}} & 0 & 0 \end{array}\right)$	$\hat{\rho}_{\rm phys}(\mathbf{t}_{\rm opt}) = \begin{bmatrix} 0.5028 & 0.0230 + 0.0117i & 0.0279 - 0.0130i & 0.4686 - 0.0346i \\ 0.0230 - 0.01117i & 0.0051 & 0.0050 + 0.0001i & 0.0333 - 0.0082i \\ 0.0279 + 0.0130i & 0.0050 - 0.0001i & 0.0066 & 0.0416 + 0.0102i \\ 0.4686 + 0.0346i & 0.0333 + 0.0082i & 0.0416 - 0.0102i & 0.4854 \end{bmatrix}$
$T(\mathbf{t}_{\rm ini}) = \frac{\mathcal{M}_{0,1,1}^{(2)}}{\sqrt{\rho_{33}}\sqrt{\mathcal{M}_{00,1,1}^{(2)}}} \frac{\mathcal{M}_{0,1,2}^{(2)}}{\sqrt{\rho_{33}}\sqrt{\mathcal{M}_{00,1,1}^{(2)}}} \sqrt{\frac{\mathcal{M}_{00,1,2}^{(2)}}{\rho_{33}}} 0$	 is a physical density matrix as it is positive (semidefinite)
$ \begin{pmatrix} \frac{\rho_{30}}{\sqrt{\rho_{33}}} & \frac{\rho_{31}}{\sqrt{\rho_{33}}} & \frac{\rho_{32}}{\sqrt{\rho_{33}}} & \sqrt{\rho_{33}} \end{pmatrix} $ where $ \mathcal{M}^{(0)} = \operatorname{Det}(\hat{\rho}), $	• Hermitian $\hat{ ho}_{phys} = \hat{ ho}_{phys}^{\dagger}$ • normalized
$egin{aligned} \mathcal{M}_{ij}^{(1)} &= \mathrm{Det}(\hat{ ho}_{\mathrm{without\ row\ i}\ \&\ \mathrm{col\ j}}), \ \mathcal{M}_{ij,kl}^{(2)} &= \mathrm{Det}(\hat{ ho}_{\mathrm{without\ rows\ i,k}\ \&\ \mathrm{cols\ j,l}}) \ i,j,k,l &= 0,,3 \end{aligned}$	$Tr{\hat{\rho}_{phys}} = 1$ $Tr{\hat{\rho}_{phys}^2} = 0.9394 \le 1$

matrices
reconstructed 1
\mathbf{of}
comparison

 $\hat{\rho}$ by linear tomography (left) and $\hat{\rho}_{\text{phys}}$ by MaxLik tomography (right figures)

274

reconstruction of a qutrit density matrix

$$\hat{o} = \frac{1}{3} \begin{bmatrix} 1 + \frac{\sqrt{3}}{2} (\langle \hat{\sigma}_8 \rangle + \sqrt{3} \langle \hat{\sigma}_3 \rangle) & \frac{3}{2} (\langle \hat{\sigma}_1 \rangle - i \langle \hat{\sigma}_2 \rangle) & \frac{3}{2} (\langle \hat{\sigma}_4 \rangle - i \langle \hat{\sigma}_5 \rangle) \\ & \frac{3}{2} (\langle \hat{\sigma}_1 \rangle + i \langle \hat{\sigma}_2 \rangle) & 1 + \frac{\sqrt{3}}{2} (\langle \hat{\sigma}_8 \rangle - \sqrt{3} \langle \hat{\sigma}_3 \rangle) & \frac{3}{2} (\langle \hat{\sigma}_6 \rangle - i \langle \hat{\sigma}_7 \rangle) \\ & \frac{3}{2} (\langle \hat{\sigma}_4 \rangle + i \langle \hat{\sigma}_5 \rangle) & \frac{3}{2} (\langle \hat{\sigma}_6 \rangle + i \langle \hat{\sigma}_7 \rangle) & 1 - \sqrt{3} \langle \hat{\sigma}_8 \rangle \end{bmatrix}$$

via measurement of the generalized Pauli operators

which can be chosen as generators of the Lie algebra SU(3)

$$\hat{\sigma}_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \hat{\sigma}_{2} = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \hat{\sigma}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \hat{\sigma}_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \hat{\sigma}_{5} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \hat{\sigma}_{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \hat{\sigma}_{8} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Analogously, **a qudit density matrix** can be reconstructed via measurement of generators of the Lie algebra SU(d)

Question

273

Quantum tomography and no-cloning theorem:

For complete reconstruction of $\hat{\rho}$ we need to repeat measurements on many copies of $\hat{\rho}.$

But unknown $\hat{\rho}$ cannot be copied.

Thus, do we violate the no-cloning theorem?

Answer

No! The term "copies" refers to identically prepared quantum objects.

Copies of $\hat{\rho}$ are generated from the same (known) initial state(s) by applying the same transformations in the same experimental setup.

Quantum gates (part II)

reversible gates Toffoli and CCU gates simulation of gates by various circuits

00 000 00 000 00 000 00 01 010 01 011 01 011 01 11 10 100 10 101 10 101 11 01 11 111 11 111 11 11 11 10 10	R-AND R-OR R-XOR ab abc ab abc ac bc 	now to make these gates reversible? seep input(s) together with the standard output, e.g.:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AND OR XOR=CNOT ab c ab c	2/8 xamples of irreversible classical gates ogic gates in a classical computer, other than NOT gate, are irreversible, e.g.:	out measurement is irreversible	$\begin{aligned} U_{\text{CNOT}} \psi_{\text{in}}\rangle &= c_0 00\rangle + c_1 01\rangle + c_2 11\rangle + c_3 10\rangle \equiv \psi_{\text{out}}\rangle \\ \tilde{l}_{\text{CNOT}} \psi_{\text{out}}\rangle &= c_0 00\rangle + c_1 01\rangle + c_3 1, 1 \oplus 1\rangle + c_3 1, 0 \oplus 1\rangle = \psi_{\text{in}}\rangle \end{aligned}$	$\begin{aligned} \pi(c_0 \mathbf{v}\rangle + c_1 1\rangle) &= c_0 \mathbf{+}\rangle + c_1 -\rangle &\longrightarrow & \mathcal{H}(c_0 \mathbf{+}\rangle + c_1 -\rangle) = c_0 \mathbf{v}\rangle + c_1 1\rangle \\ & \psi_{\rm in}\rangle = c_0 00\rangle + c_1 01\rangle + c_2 10\rangle + c_3 11\rangle \end{aligned}$	Il unitary quantum gates are reversible, e.g.:	xamples of reversible quantum gates	a discrete, deterministic computational process for which the transition func- ion that maps input states to output states is a one-to-one function.	ogically-reversible process	a computational process to be physically reversible , must also be logically reversible .	andauer's principle	a computational process that is (or almost is) time-invertible (time-reversible).	eversible computing
Note: Toffoli gate is a special case of CCU			Any CCU gate can be built from CNOT, CV, and CV [#] gates, where $V^2 = U$	theorem of Barenco,Bennett et al. (1995)	replacement for CCU gate		$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c \\ -\Phi \end{bmatrix} \begin{bmatrix} ab \oplus c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a \\ b \\ a \\ b \\$		$egin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}$ $egin{pmatrix} b & - \bigoplus & a \oplus b \rangle \end{pmatrix}$	$\begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \qquad \begin{vmatrix} a \\ - \bullet \\ - & - \end{vmatrix} \begin{pmatrix} a \\ b \\ - & - $		(CNOT and Toffoli gates

replacement for CCU gate (proof)

implementing gates in Mathematica

 $\operatorname{ket}[n_1, n_2] = |n_1, n_2\rangle \rightarrow 4$ -element column vector with '1' at pos. $2n_1 + n_2 + 1$ two-qubit states

 $\operatorname{bra}[n_1, n_2] = \langle n_1, n_2 | \to \operatorname{row vector}$

<pre>ket [n1_, n2_] := Module[{state}, state = ZeroMatrix[4, 1]; state[[2 n1 + n2 + 1, 1]] = 1; Return[state]] bra[n1_, n2_] := Transpose[ket[n1, n2]] ket[0, 0] // MF</pre>	$\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$	ket[1, 1] // MF 0 1 1
--	---	--------------------------------

 $v_{1,0}$ $v_{1,1}$ **CV** gate – control unitary V =

V1,0 V1,1 V0,0 V0,1

								\circ	0
0	0	0	0	0	0	0	Ч	<u>7</u> V2	<u>'</u> V2
0	0	0	0	0	0	Р	0	3ne	3ne
0	0	0	0	$v_{1,0}$	$\mathbf{V}_{0,0}$	0	0	9W // 1	[=: W
0	0	0	0	$v_{1,1}$	$v_{0,1}$	0	0	ΜF	kron [
0	0	0	Р	0	0	0	0		įq'
0	0	Р	0	0	0	0	0		0 0
\mathbf{V}_{1} ,0	$\mathbf{v}_{0,0}$	0	0	0	0	0	0		
\mathbf{v}_{1} , 1	V 0,1	0	0	0	0	0	0		

3. CV₂₃=kron(id,cv)

$$\begin{split} \mathrm{CV}_{13} &= |000\rangle \langle 000| + |001\rangle \langle 001| + |010\rangle \langle 010| + |011\rangle \langle 011| \\ &+ v_{0,0} |100\rangle \langle 100| + v_{0,1} |100\rangle \langle 101| + v_{1,0} |101\rangle \langle 100| + v_{1,1} |101\rangle \langle 101| \\ &+ v_{0,0} |110\rangle \langle 110| + v_{0,1} |110\rangle \langle 111| + v_{1,0} |111\rangle \langle 110| + v_{1,1} |111\rangle \langle 111| \end{split}$$

	v ¹ , v13	N (MF					
	0	ч	0	0	0	0	0	
0 1 0 0 0 0 0 0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	
	0	0	0	$v_{0,0}$	$v_{0,1}$	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	V1,0	$v_{1,1}$	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	$v_{0,0}$	$v_{0,1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		0	С	0	V1.0	V1.1	

290

tricky way to calculate CV_{13} CV_{13} = SWAP₁₂ CV_{23} SWAP₁₂ = kron(swap,id) CV_{23} kron(swap,id)

	0 0	0 0	00	00	0 0	0 0	
_	ч о	оч	0 0	0 0	0 0	0 0	
~	0	0	$\mathbf{v}_{0,0}$	$v_{0,1}$	0	0	
~	0	0	$v_{1,0}$	$v_{1,1}$	0	0	
\sim	0	0	0	0	$\mathbf{v}_{0,0}$	$v_{0,1}$	
\sim	0	0	0	0	$v_{1,0}$	$v_{1,1}$	

or CV_{13} =SWAP₂₃ CV_{12} SWAP₂₃ = · · ·

substitution circuits for CU_{13} gate

5. CCU gate $(U = V^2)$

								_	V0,1).	v1,1)		V1,1 ,1
	0	0	0	0	0	0	u 0,1	u1,1	V0,0	V1,0		$- v_{0,1}$ $0 + v_1^2$
	0	0	0	0	0	0	0'0n	u 1,0		-		V0,1 + ,1 V1,
	0	0	0	0	0	н	0	0	V0,1	V1,1		, 0, 0'
	0	0	0	0	ч	0	0	0		_		14
)	0	0	0	ч	0	0	0	0	√0, (۷ ¹ , (0 71,1
	0	0	ч	0	0	0	0	0	<u> </u>		:	, ¹ ,
	0	ч	0	0	0	0	0	0	_	_	<u> </u>	0,1 V1
	1	0	0	0	0	0	0	0	u 0,1	u1,1	u _{0,1}	1,0 + V(
									(n°,0	(n1,0	0'0n	(v _{0,0} v

we have shown that our gate CCU₁ simulates the original CCU gate

CCU1temp := gate5.gate4.gate3.gate2.gate1 gate5 := Kron[swap, id].gate1.Kron[swap, id] gate4 := gate2

gate3 := Kron[id, hc[cv]] gate2 := Kron[cnot, id] gate1 := Kron[id, cv] CV =

0

0 0

0 ч

0 0

0 0

0

; cnot =

0 0 н

V0,0

V0,1

; id = IdentityMatrix[2];

0 0

0 0

0

0 0

V1,0 V1,1

CU1] // MF	- 0	ä	Ä	Ma:	rt II	tes
$v_{0,0} v_{1,0} + v_{1,0} v_{1,1}$	0	0	0	0	0	0
$v_{0,0}^2 + v_{0,1} v_{1,0} v$	0	0	0	0	0	0
0	Ч	0	0	0	0	0
0	0	Ч	0	0	0	0
0	0	0	н	0	0	0
0	0	0	0	Ч	0	0
0	0	0	0	0	Ч	0
0	0	0	0	0	0	1
/.rl/.r2/.r3/.r4	mp /	.t ej	FUI	X Q	1 1 \ :	201
	• rl /• r2 /• r3 /• r4 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>mp /. r1 /. r2 /. r3 /. r4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 v_{0,0} v_{1,0} + v_{1,0} v_{1,1} - ccul] // MF</pre>	.temp /. r1 /. r2 /. r3 /. r4	CUILemp /. rl /. r2 /. r3 /. r4 F 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 V ₀ , 0 V ₁ , 1 V ₁ 0 0 0 V ₀ , 0 V ₁ , 0 V ₁ , 1	= CCUltemp /. r1 /. r2 /. r3 /. r4 / MF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0	1 := CCUItemp /. r1 /. r2 /. r3 /. r4 1 // MF 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 v _{0,0} v _{1,0} + v _{1,0} v _{1,1} t = Max[CCU - CCU1] // MF

296

...finally

Ľ		U	2
	Ĭ	•	

0

swap :=

294

substitution circuit for CCU gate

gate1 gate2 gate3 gate4 gate5

 $r4 := \{\texttt{Conjugate}[v_{1,0}] v_{1,0} + \texttt{Conjugate}[v_{1,1}] v_{1,1} \rightarrow 1\}$ r7 := {Conjugate $[v_{0,1}] v_{0,0}$ + Conjugate $[v_{1,1}] v_{1,0} \rightarrow 0$ } $r6 := \{Conjugate[v_{0,0}] v_{1,0} + Conjugate[v_{0,1}] v_{1,1} \rightarrow 0\}$ $r5 := {Conjugate[v_{0,0}] v_{0,1} + Conjugate[v_{1,0}] v_{1,1} \rightarrow 0}$ r3 := {Conjugate $[v_{0,1}] v_{0,1}$ + Conjugate $[v_{1,1}] v_{1,1} \rightarrow 1$ } r2 := {Conjugate $[v_{0,0}] v_{0,0}$ + Conjugate $[v_{0,1}] v_{0,1} \rightarrow 1$ } r1 := {Conjugate $[v_{0,0}] v_{0,0}$ + Conjugate $[v_{1,0}] v_{1,0} \rightarrow 1$ }

 $r8 := \{Conjugate[v_{1,0}] v_{0,0} + Conjugate[v_{1,1}] v_{0,1} \rightarrow 0\}$

etc.

 $v_{0,0}^*v_{0,0} + v_{0,1}^*v_{0,1} = 1$

we have $v_{1,0} v_{1,1}$

 $v_{0,0}^*v_{0,1} + v_{1,0}^*v_{1,1} = 0$

V =

 $v_{0,0}$ $v_{0,1}$

295

a matrix is unitary iff its row and column vectors are orthonormal

thus for

properties of unitary matrices

293

a substitution circuit for CCU gate

297 r more explicitly	errors in classical computers
CCU2temp := CV13.Kron[cnot, id].hc[CV23].Kron[cnot, id].CV23	bit-flip errors
	$0 \to 1 \ \& \ 1 \to 0$
CCU2 := CCU2temp /.rl /.r2 /.r3 /.r4 /.r5 /.r6 /.r7 /.r8 CCU2 // MF	errors in quantum computers
	1. bit-flip errors = amplitude errors
	0 angle ightarrow 1 angle & 1 angle ightarrow 0 angle
	2. phase-flip errors = phase errors
	0 angle ightarrow 0 angle & 1 angle ightarrow - 1 angle
0 0 0 0 0 0 0 V ² ₀ ,0 + V ₀ ,1 V ₁ ,0 V ₀ ,0 V ₀ ,1 + V ₀ ,1 V ₁ ,1	e.g. $ +\rangle \rightarrow -\rangle$ & $ -\rangle \rightarrow +\rangle$ (orthogonal)
$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & v_{0,0} v_{1,0} + v_{1,0} v_{1,1} & v_{0,1} v_{1,0} + v_{1,1}^2 \end{pmatrix}$	3. small errors
test = Max[CCU - CCU2] // MF	$a 0 angle+b 1 angle ightarrow \sqrt{a^2+\epsilon} 0 angle+\sqrt{b^2-\epsilon} 1 angle$
0	which can also correspond to removing the qubit and replacing it with garbage!
	thus
	there is a continuous set of quantum errors
298	300
	error-correcting code (ECC)
	quantum states are very fragile to decoherence and dissipation,
Introduction to	thus we need a quantum ECC – an analog of classical ECC
quantum error-correction codes	can we really correct quantum errors?
quantum vs classical errors	1. errors are continuous
correction of bit-flip and phase-flip errors	there are infinitely many quantum errors
Shor's ECC	2. measurement destroys quantum information
Steane's ECC	qubits cannot be measured without disturbing quantum information they carry,
fault-tolerant gates	i.e., by measuring
	a 0 angle+b 1 angle
a note	we get either $ 0\rangle$ with probability $ a ^2$ or $ 1\rangle$ with probability $ b ^2$
without quantum ECCs construction of practical quantum computers would be impossible	3. no cloning
	quantum information cannot be copied with perfect fidelity

or more explicitly

bit-flip error

303

 $\rightarrow \boxed{\text{3rd bit flip}} \rightarrow |\psi_1\rangle = a|00\underline{1}\rangle + b|11\underline{0}\rangle$

syndrome diagnosis/measurement

 $|00\rangle = a|00100\rangle + b|11000\rangle$

$$\rangle = \hat{U}_{\text{CNOT}}^{24} \hat{U}_{\text{CNOT}}^{14} |\psi_2\rangle$$

$$= a|\underline{0},\underline{0},1,0\oplus 0\oplus 0,0\rangle + b|\underline{1},\underline{1},0,0\oplus 1\oplus 1,0\rangle$$

$$= a|0, 0, 1, 0, 0\rangle + b|1, 1, 0, 0, 0\rangle = |\psi_{2}\rangle \quad (\text{sic!})$$

$$= a|0,0,1,0,0
angle + b|1,1,0,0,0
angle = |\psi_2
angle \quad ({
m sic})$$

$$|a|0,0,1,0,0
angle + b|1,1,0,0,0
angle = |\psi_2
angle \quad ({
m sic})$$

$$= a|0; 0, 1, 0; 0\rangle + b|1, 1; 0, 0, 0\rangle = |\psi_2\rangle \quad ($$

$$|\psi_4\rangle = \hat{U}_{\mathrm{CNOT}}^{35} \hat{U}_{\mathrm{CNOT}}^{25} |\psi_3\rangle$$

$$= \ a|0,\underline{0},\underline{1},0,0\oplus 0\oplus 1\rangle + b|1,\underline{1},\underline{0},0,0\oplus 0\oplus 1\rangle$$

$$a|0, \underline{0}, \underline{1}, 0, 0 \oplus 0 \oplus 1\rangle + b|1, \underline{1}, \underline{0}, 0, 0 \oplus 0 \oplus 1\rangle$$

$$= a|0,0,1,\underline{0,1}\rangle + b|1,1,0,\underline{0,1}\rangle$$

$$\left(a|0,0,1\rangle + b|1,1,0\rangle\right) \otimes |0,1\rangle$$

so let us measure modes 4 &
$$5$$
:

so let us measure modes
$$4 \propto 3$$
.

SO let us illeasure illoues 4
$$\propto$$
 3:

$$M''|\psi_4
angle = a|0,0,1
angle + b|1,1,0
angle$$

so in general

$$\begin{split} \hat{H}\hat{\sigma}_{z}\hat{H} &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \end{split}$$

$${}_{r}\hat{H} = rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \hat{\sigma}_{z}$$

appears as an amplitude error (bit flip) and vice versa.

308

313		
	ode for Shor's nine-qubit ECC	
	oding c	10001
	enci	101

$$\begin{array}{l} |0\rangle \rightarrow |000\rangle \\ \rightarrow |+++\rangle = \frac{1}{2^{3/2}}(|0\rangle + |1\rangle)(|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \\ \rightarrow \frac{1}{2^{3/2}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle) \equiv |\mathbf{0}\rangle_{\mathbf{L}} \\ |1\rangle \rightarrow |11\rangle \\ \rightarrow \frac{1}{2^{3/2}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |11\rangle) \equiv |\mathbf{0}\rangle_{\mathbf{L}} \end{array}$$

$$\rightarrow |---\rangle = \frac{1}{2^{3/2}} (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) \rightarrow \frac{1}{2^{3/2}} (|000\rangle - |111\rangle) (|000\rangle - |111\rangle) (|000\rangle - |111\rangle) \equiv |\mathbf{1}\rangle_{\mathbf{I}} a |0\rangle + b |1\rangle \longrightarrow a |0\rangle_{\mathbf{L}} + b |1\rangle_{\mathbf{L}}$$

Note that:

- the corrections of bit and phase flip errors are independent
- thus Shor's code can correct combined bit and phase flips on a **single** qubit
- there are other more concise ECCs

encoding code for Steane's seven-qubit ECC

314

 $a|0\rangle_L + b|1\rangle_L$

encoding code for Steane's seven-qubit ECC

315

let

$$|\psi\rangle = |0\rangle$$

$$|\psi_0\rangle = |0\rangle^{\otimes 6}|\psi\rangle$$

step 1:

$$|\psi_1\rangle = \hat{H}_1 \hat{H}_2 \hat{H}_3 |0\rangle^{\otimes 6} |\psi_0\rangle = |+,+,+,0,0,0,0\rangle$$
step 2:

$$|\psi_2\rangle = \hat{U}_{CNOT}^{76} \hat{U}_{CNOT}^{75} |\psi_1\rangle = |\psi_1\rangle$$

step 3:

$$\begin{split} |\psi_3\rangle &= \hat{U}_{CNOT}^{14}\hat{U}_{CNOT}^{16}\hat{U}_{CNOT}^{17}|\psi_2\rangle \\ &= \frac{1}{\sqrt{2}}(|\underline{0}, +, +, 0, 0, 0, 0, 0\rangle + |\underline{1}, +, +, 0 \oplus 1, 0, 0 \oplus 1, 0 \oplus 1\rangle) \\ &= \frac{1}{\sqrt{2}}(|0, +, +, 0, 0, 0, 0\rangle + |1, +, +, 1, 0, 1, 1\rangle) \end{split}$$

step 4:

$$\begin{split} |\psi_4\rangle &= \hat{U}_{CNOT}^{24} \hat{U}_{CNOT}^{25} \hat{U}_{CNOT}^{21} |\psi_3\rangle \\ &= \frac{1}{2} (|0, \underline{0}, +, 0, 0, 0, 0\rangle + |0, \underline{1}, +, 0 \oplus 1, 0 \oplus 1, 0, 0 \oplus 1) \\ +|1, \underline{0}, +, 1, 0, 1, 1\rangle + |1, \underline{1}, +, 1 \oplus 1, 0 \oplus 1, 1, 1 \oplus 1\rangle) \\ &= \frac{1}{2} (|0, 0, +, 0, 0, 0, 0\rangle + |0, 1, +, \underline{1}, \underline{1}, 0, \underline{1}\rangle \end{split}$$

$$\frac{1}{2}$$
 $|1, 0, +, 1, 0, 1, \underline{1}\rangle + |1, 1, +, \underline{0}, \underline{1}, 1, \underline{0}\rangle)$

final step 5:

$$\left|\psi_{5}\right\rangle = \hat{U}_{CNOT}^{34}\hat{U}_{CNOT}^{35}\hat{U}_{CNOT}^{36}\left|\psi_{4}\right\rangle$$

$$= \frac{1}{\sqrt{8}} (|0, 0, \underline{0}, 0, 0, 0, 0\rangle + |0, 0, \underline{1}, 0 \oplus 1, 0 \oplus 1, 0 \oplus 1, 0\rangle \\ + |0, 1, \underline{0}, 1, 1, 0, 1\rangle + |0, 1, \underline{1}, 1 \oplus 1, 1 \oplus 1, 0 \oplus 1, 1\rangle \\ + |1, 0, \underline{0}, 1, 0, 1, 1\rangle + |1, 0, \underline{1}, 1 \oplus 1, 0 \oplus 1, 1 \oplus 1, 1\rangle \\ + |1, 1, \underline{0}, 0, 1, 1, 0\rangle + |1, 1, \underline{1}, 0 \oplus 1, 1 \oplus 1, 1 \oplus 1, 0\rangle)$$

 $^{318}_{318}$ bit-flip syndrome detection in Steane's 7-qubit ECC so finally by four qubits in a suitable state. to make the circuit fault tolerant, each ancilla qubit must be replaced fault-tolerant syndrome detection - the same circuit but with extra Hadamard gates, as for Shor's code Thus, in general phase-flip syndrome detection where Analogously $\overline{\bigcirc}$ $|\mathbf{0}\rangle_{\mathbf{L}} \equiv |\psi_5\rangle = \frac{1}{\sqrt{8}} (|0000000\rangle + |0011110\rangle + |0101101\rangle + |0110011\rangle)$ $|\mathbf{1}\rangle_{\mathbf{L}} = \frac{1}{\sqrt{8}} (|1111111\rangle + |1110000\rangle + |1001100\rangle + |1000011\rangle$ || $= \frac{1}{\sqrt{8}} \sum_{\text{odd } \nu \in \text{Hamming}} |\nu\rangle$ $+|0101010\rangle + |0100101\rangle + |0011001\rangle + |0010110\rangle)$ $\frac{1}{\sqrt{8}} \sum_{\text{even }\nu \in \text{Hamming}} |\nu\rangle$ $a|0\rangle + b|1\rangle \rightarrow a|0\rangle_L + b|1\rangle_L$ $+|1001011\rangle + |1010101\rangle + |1100110\rangle + |1111000\rangle$ $|\psi\rangle = |1\rangle \rightarrow |\psi_5\rangle \equiv |1\rangle_L$ $\overline{0}$ 317

fault-tolerant device

when its elementary components are imperfect - a device that works effectively even

fault-intolerant and fault-tolerant circuits

most general single-qubit error

320

(apart from irrelevant global phase factor) can be expanded to order ϵ as the most general single-qubit unitary error transformation

$$\hat{f}_{
m error} = \epsilon_i \hat{I} + \hat{\mathcal{O}}(\epsilon) = \epsilon_i \hat{I} + \epsilon_x \hat{\sigma}_x + \epsilon_y \hat{\sigma}_y + \epsilon_z \hat{\sigma}_z$$

discrete set of quantum errors

fundamental result of quantum error correction theory:

(bit flip, phase flip and combined bit-phase flip) correcting just a discrete set of errors

a quantum error-correcting codes can correct a continuous set of errors.

Shor's and Steane's ECCs

but against arbitrary errors affecting only a single qubit they protect not only against bit and phase flip errors

• by measuring the error syndrome,

the state collapses into one of the four states

 $\hat{\sigma}_x |\psi\rangle, \hat{\sigma}_y |\psi\rangle, \hat{\sigma}_z |\psi\rangle, |\psi\rangle$

which are correctable with the codes.

fault-tolerant storing of quantum information, but we also need: so far we have analyzed coding for

fault-tolerant gates

1. fault-tolerant single qubit-gates

can be applied bitwise with majority vote

2. fault-tolerant CNOT (XOR) = transversal CNOT

can also be applied bitwise with majority vote

322

3. fault-tolerant Toffoli gate

Toffoli gate = controlled-controlled-NOT (CCNOT)

Toffoli gate naive solution but not fault-tolerant CNOT NOT

323 Shor's construction of fault-tolerant Toffoli gate

• if a given measurement outcome is 1, the arrow points to the set of gates to be applied; no action is taken if the outcome is 0. 324

Error correction codes (part II)

perfect ECC with the smallest number of ancillas requirements for scalable QIP error-threshold theorem Note: for convenience we neglect normalizations

$\begin{array}{c c} a\rangle & & \\ b\rangle & & \\ c\rangle & & \\ d\rangle & & \\ gates & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{array}$	326 Los Alamos ECC [Laflamme, Miquel, Paz, Zurek (1996)]	n = 9 - Shor ECC n = 7 - Steane ECC $n = 5$ - Los Alamos ECC \Rightarrow it requires the minimum number of ancillas	$2(3n+1) \le 2^n \implies 26 \le 16$ for $n = 4$ & $32 \le 32$ for $n = 5$ number of encoded qubits for ECC	suffer and another one for the unperturbed logical state. We must double this to have enough space to accommodate both logical states and their erroneous descendants. minimum number of encoded qubits is $n = 5$ for ECC	subspaces corresponding to different errors should be orthogonal thus the total Hilbert space for ECC should be large enough to contain all the orthogonal subspaces. number of subspaces is $2(3n + 1)$ Orthogonality requires a subspace for each of the three errors every qubit can	325 Hilbert space for ECC
$= (000\rangle + 111\rangle) 00\rangle - (100\rangle + 011\rangle) 11\rangle + (010\rangle + 101\rangle) 01\rangle + (110\rangle + 001\rangle) 10\rangle = 00000\rangle + 11100\rangle - 10011\rangle - 01111\rangle + 01001\rangle + 10101\rangle + 10100\rangle + 00110\rangle (lexicographic order) = 00000\rangle + 00110\rangle + 01001\rangle - 01111\rangle - 10011\rangle + 10101\rangle + 1100\rangle + 11100\rangle = -(000\rangle - 11\rangle) 00\rangle - (26\rangle 10\rangle + 28\rangle 01\rangle = -(000\rangle - 111\rangle) 00\rangle - (100\rangle - 001\rangle) 11\rangle - (010\rangle - 101\rangle) 01\rangle + (110\rangle - 0011\rangle) 11\rangle = - 00011\rangle + 1111\rangle - 10000\rangle + 01100\rangle - 01010\rangle + 10110\rangle + 11001\rangle - 00101\rangle (lexicographic order) = - 00011\rangle - 00101\rangle - 0100\rangle + 01100\rangle $	encoded qubits explicitly $ 0\rangle_L = B_1\rangle 00\rangle - B_3\rangle 11\rangle + B_5\rangle 01\rangle + B_7\rangle 10\rangle$	Thus, all the allowed encodings have the same sign pattrees with two minus signs in one of the logical states and four in t	Other allowed encodings can be found from those by <u>permutations</u> of bits and coordinated signs.	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{split} 0\rangle_L &= B_1\rangle 00\rangle - B_3\rangle 11\rangle + B_5\rangle 01\rangle + B_7\rangle 10\rangle \\ 1\rangle_L &= - B_2\rangle 11\rangle - B_4\rangle 00\rangle - B_6\rangle 10\rangle + B_8\rangle 01\rangle \\ &\text{in terms of the (unnormalized) 3-qubit Bell states:} \\ & B_{\frac{1}{2}}\rangle = 000\rangle \pm 111\rangle \end{split}$	encoded qubits

$$B_{1}^{}\rangle = |000\rangle \pm |111$$

$$B_{1}^{}\rangle = |100\rangle \pm |011|$$

$$B_{5}^{}\rangle = |010\rangle \pm |101|$$

$$B_{6}^{}\rangle = |110\rangle \pm |001|$$

odings have the <u>same sign pattern</u>: f the logical states and <u>four</u> in the other.

$$\begin{split} & - |B_3\rangle|11\rangle + |B_5\rangle|01\rangle + |B_7\rangle|10\rangle \\ & 111\rangle)|00\rangle - (|100\rangle + |011\rangle)|11\rangle \\ & 101\rangle)|01\rangle + (|110\rangle + |001\rangle)|10\rangle \\ & 11100\rangle - |10011\rangle - |01111\rangle \\ & + |10101\rangle + |1010\rangle + |00110\rangle \\ & + |10101\rangle + |11010\rangle + |00110\rangle \end{split}$$ qubits explicitly

 $-|10000\rangle + |10110\rangle + |11001\rangle + |11111\rangle$

330

ndromes	resulting state	$\ket{Q'}$	$\frac{a 0\rangle + b 1\rangle}{2}$	$-a 1\rangle + b 0\rangle$	$-a 0\rangle + b 1\rangle$		$a 0\rangle - b 1\rangle$				$-a 0\rangle - b 1\rangle$					$-a 1\rangle - b 0\rangle$		
l their sy	svndrome	$ a'b'c'd'\rangle$	0000	1101	1111	0001	1010	1100	0101	0011	1000	0100	0010	0110	0111	1011	1110	1001
errors and	error		none	X_3Z_3	X_5Z_5	X_2	Z_3	Z_5	X_2Z_2	X_5	Z_1	Z_2	Z_4	X_1	X_3	X_4	X_1Z_1	X_4Z_4

	•	-							
I=eye(2);	0/0	s ident	LLTY OF	erator					
H=[1 1;1 -1];	k Hadan	nard ga	tte - f(or sim	plicity	we negle	SGT	1/sqrt(2)
R=-I;	0/0	bi-rc	tation						
CNOT=[
1	0	0	0						
0	Ч	0	0						
0	0	0	Ч						
0	0	Ч	0						
];									
CCNOT=[
1	0	0	0	0	0	0	0		
0	Ч	0	0	0	0	0	0		
0	0	1	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	0	0	1	0	0	0		
0	0	0	0	0	Ч	0	0		
0	0	0	0	0	0	0	1		
0	0	0	0	0	0	1	0		
: [

332

()			
$ 1 (R_{22}-) $	0	0	,
$+ 111\rangle\langle 11$	0	0	,
$\rangle \langle 110 R_{21}$	0	0	
$R_{12}+ 111\rangle$	0	0	
$10\rangle\langle 111 $	0	0	
$ _{11}-1)+ _{11}$	0	0	
$\rangle \langle 110 (R)$	0	Ч	
$= \hat{I} + 110$	1	0	,
CCR =	CCR=		

 $\hat{R} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$

Ы

0	0	0	0	0	0	R(1,2)	R(2,2)];
0	0	0	0	0	0	R(1,1)	R(2,1)
0	0	0	0	0	Ч	0	0
0	0	0	0	Ч	0	0	0
0	0	0	Ч	0	0	0	0
0	0	Ч	0	0	0	0	0
0	Ч	0	0	0	0	0	0
CCR= [1	0	0	0	0	0	0	0

triple-controlled rotation: CCCR

 $CCCR = \hat{I} + |1110\rangle\langle 1110|(R_{11} - 1) + |1110\rangle\langle 1111|R_{12} + |1111\rangle\langle 1110|R_{21} + |1111\rangle\langle 1111|(R_{22} - 1)|R_{21} + |1111\rangle\langle 111||R_{21} + |1111\rangle\langle 1111||R_{21} + |1111\rangle\langle 111||R_{21} + |1111\rangle\langle 11||R_{21} + |$

	-1);	1])*(R(2,2)·	н	щ	:([1 1 1 1])*bra([1	ket
:	+	0])*R(2,1)	н	н	:([1 1 1 1])*bra([1	kei
:	+	1])*R(1,2)	н	\vdash	:([1 1 1 0])*bra([1	kei
:	-1)+.	0])*(R(1,1)·	н	н	:([1 1 1 0])*bra([1	kei
					=еуе(1б)+	CCCR:

334

CCCR gate explicitly

																CCC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	$^{1}R =$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	-
0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	Р	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	
R(R(0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2,1)	1,1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R(2,2)]	R(1,2)															
••																

 $cCcR = \hat{I} + |0100\rangle\langle 0100|(R_{11}-1) + |0100\rangle\langle 0101|R_{12} + |0101\rangle\langle 0100|R_{21} + |0101\rangle\langle 0101|(R_{22}-1)\rangle\langle 0101|(R_$

-1);	1])*(R(2,2)-	0	Ь	1])*bra([0	0	ket([0]
+ :	0])*R(2,1)	0	Ч	1])*bra([0	0	ket([0]
+ :	1])*R(1,2)	0	\vdash	0])*bra([0	0	ket([0]
-1)+	0])*(R(1,1)-	0	\vdash	0])*bra([0	0	ket([0]
				+···	16)	сСсR=еуе (

cCcR
gate
expli
icitly

336

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ц	cCcR=
0	0	0	0	0	0	0	0	0	0	0	0	0	0	н	0	_
0	0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	Ч	0	0	0	
0	0	0	0	0	0	0	0	0	0	R(2,1)	R(1,1)	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	R(2,2)	R(1,2)	0	0	0	0	
0	0	0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	н	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	н	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	Ч	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0];	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

another triple-controlled rotation: cCcR

gatel=tensor_product(H,H,I,H,I) gate2=tensor_product(I,CCCR); gate3=tensor_product(I,cCcR);

CNOT45=tensor_product(I,I,I,CNOT); gate4=SWAP34*CNOT45*SWAP34;

 $\widehat{z} =$

-1

N

N

N

N

N

Ν

N

0 0 0 0

ОΝ

0 0 Ν

нο

N

0 N

or explicitly

ЦĘ	.0 Ю
Ŋ	ř
Ш	ģ
-	Ц
00	
Õ	
NO	
NC	
0(
00	
NС	
1	
00	
0	
0	
00	
00	
Ĕ	
00	
10	
0	
00	
0	

Ŀ

output state $|\psi_{\text{out}}\rangle = |1\rangle_L$

'ui_isd

ans

П

input state to encoder:
$$|\psi_{in}|$$

special case for $a = 0, b =$

2. encoding qubit
$$|1\rangle_L$$

t state to encoder: $|\psi_{in}\rangle = |1\rangle$

$$= [100000100100000z000z010000101$$

special case:
$$a = 1, b = 0$$

psi_out=U_encoder*psi_in

 $|\psi_{\rm out}\rangle = U_{\rm encoder}|\psi_{\rm in}\rangle$ output state

1. encoding qubit $|0\rangle_L$

psi_

ans

П ц Ц Ц

[a000b0000000000000000000000000];

psi_in=a*ket([0 0

0 0 0])+b*ket([0

μ

0])

or explicitly

 $|\psi_{\rm in}\rangle = a|00000\rangle + b|00100\rangle$ input state to encoder

(z = -1)

transition amplitudes
$$|Q\rangle \rightarrow |Q'\rangle$$

 $A_{Q\rightarrow Q'}$
 $A_{0\rightarrow 0} = 0, \quad A_{0\rightarrow 1} = -1 \quad \Rightarrow \quad |0\rangle \rightarrow -|1\rangle$
 $A_{1\rightarrow 0} = -1, \quad A_{1\rightarrow 1} = 0 \quad \Rightarrow \quad |1\rangle \rightarrow -|0\rangle$
so
 $|Q\rangle = a|0\rangle + b|1\rangle \rightarrow |Q'\rangle = -b|0\rangle - a|1\rangle$

How to correct it?

 $|Q'\rangle \to \left|\hat{R}(\pi)\hat{\sigma}_x\right| \to |Q\rangle$

example 1: bit flip of the 1st qubit **Errors and their syndromes**

error

$$\hat{U}_{ ext{error}} = \hat{\sigma}_x \otimes \hat{I} \otimes \hat{I} \otimes \hat{I} \otimes \hat{I} \otimes \hat{I}$$

U_error=tensor_product(sigma_x,I,I,I,I); sigma_x=[0,1;1,0];

input state to encoder

$$|\psi_{\rm in}\rangle = |abQcd\rangle = |00Q00\rangle$$

syndrome

$$|a'b'c'd'\rangle = |0110\rangle \implies |\psi_{\text{syndrome}}\rangle = |a'b'Q'c'd'\rangle = |01Q'10\rangle$$

transition amplitude

 $A_{Q \to Q'} = \langle \psi_{
m syndrome} | \hat{U}_{
m decoder} \hat{U}_{
m error} \hat{U}_{
m encoder} | \psi_{
m in}
angle$

amplitude=psi_syndrome'*U_decoder*U_error*U_encoder*psi_in 0 0]); psi_syndrome = ket([0 1 0_prime 1 0]); = ket([0 0 Q psi_in

346

example 2: phase flip of the 3rd qubit

error

$$\hat{U}_{ ext{error}} = \hat{I} \otimes \hat{I} \otimes \hat{\sigma}_z \otimes \hat{I} \otimes \hat{I}$$

$$\exists \text{ma_z} z = [1, 0; 0, -1]$$

$$U_{\text{error}} = I \otimes I \otimes \sigma_z \otimes I \otimes I$$

$$igma_z = [1,0;0,-1]$$

$$_error = tensor_product(I,I,sigma_z,I]$$

$$U_{ ext{error}} = I \otimes I \otimes \hat{\sigma}_z \otimes I \otimes I$$

.gma_z=[1,0;0,-1]
error=tensor_product(I,I,sigma_z,]

$$\begin{aligned} U_{\mathrm{error}} &= I \otimes I \otimes \hat{\sigma}_z \otimes I \otimes I \\ \texttt{sigma_z=} &[1,0;0,-1] \\ \texttt{U}_\texttt{error=tensor_product(I,I,sigma_z,I} \end{aligned}$$

$$U_{\text{error}} = I \otimes I \otimes \sigma_z \otimes I \otimes I$$

$$igma_z=[1,0;0,-1]$$

$$_error=tensor_product(I,I,sigma_z,]$$

$$U_{\mathrm{error}} = I \otimes I \otimes \hat{\sigma}_z \otimes I \otimes I$$

gma_z=[1,0;0,-1]
_error=tensor_product(1,1,sigma_z,

psi_syndrome=ket([1 0 Q_prime 1 0]);

transition amplitudes |Q
angle
ightarrow |Q'
angle

 $|1\rangle \rightarrow -|1\rangle$ $|0\rangle \rightarrow |0\rangle$

 $A_{1\to 0}=0, \quad A_{1\to 1}=-1 \quad \Rightarrow \quad$

↑

 $A_{0\to 0} = 1, \quad A_{0\to 1} = 0$

 $|Q\rangle = a|0\rangle + b|1\rangle \rightarrow |Q'\rangle = a|0\rangle - b|1\rangle$

SO

How to correct it?

 $|Q'\rangle \to \hat{\sigma_z} \to |Q\rangle$

$$\otimes \hat{I} \otimes \hat{I}$$

348

Requirements for scalable QIP

[Knill, Laflamme, Zurek et al., 2002]

1. Scalable physical systems:

the ability to support any number of independent qubits.

2. State preparation:

the ability to prepare any qubit (or at least large fraction of them) in the standard initial state $|0\rangle$.

3. Measurement:

the ability to measure any qubit (or at least large fraction of them) in the logical basis.

Note: sometimes the **standard projective measurement** can be replaced by **weak measurements** that return a noisy number whose expectation is the probability that a qubit is in the state $|1\rangle$.

350

4. Errors:

The error probability per gate must be below a **threshold** and satisfy **independence** and **locality** properties.

• For the most **pessimistic** independent, local error models, the error threshold is above $\sim 10^{-6}$.

For some **special error models**, the threshold is substantially higher.

For example:

• For the **independent depolarizing error model**, it is believed to be better than $\sim 10^{-4}$.

• For the **independent 'erasure' error model**, where error events are always detected, the threshold is above .01.

• The threshold is also above .01 when the goal is only to **transmit quantum information** through noisy quantum channels.

5. Quantum control:

349

the ability to implement a **universal set** of unitary quantum gates acting on a small number (usually at most **two** at a time) of qubits.

• For most accuracy thresholds, it is necessary to be able to apply the quantum control in parallel to any number of disjoint pairs of qubits. This **parallelism** requirement can be weakened if a nearly noiseless quantum **memory** is available.

• The **universality** assumption can be substantially weakened by replacing some or all unitary quantum gates with operations to prepare special states or by having additional measurement capabilities.

accuracy-threshold theorem

Assuming the above requirements for scalable QIP:

If the error per gate is less than a **threshold**, then it is possible to efficiently quantum compute arbitrarily accurately.

This is one of the most important results in quantum ECC and fault-tolerant computation.

352

Introduction to quantum algorithms (part I)

quantum algorithms and classical cryptography public key cryptography (PKC)

1985 Deutsch (Deutsch-Jozsa / DJ) algorithm: How to see both sides of a coin simultaneously?

1994 Shor algorithm for number factorization: How to break cryptosystems of RSA, Rabin, Williams, Blum-Goldwasser,...? 1994 Shor algorithm for finding discrete logarithms: How to break ElGamal cryptosystem?

1997 Grover algorithm for searching databases: How to search the keys more effectively? 354

public-key cryptography (PKC) = asymmetric cryptography

= non-secret encryption

invented by Ellis (1970, British CESG) and independently by Diffie & Hellman (1976)

two keys in PKC

1. public, open key

2. private, confidential key

• without additional information, it is not always possible to decrypt by repeating encryption operations in reverse order

 $f(in) = out, but f^{-1}(out) = ?$

example

 $y = 17 \mod 3 \Rightarrow y = 2$ (unique result)

(Rivest-Shamir-Adleman & Cocks) Goldwasser-Micali probabilistic public-key encryption scheme Blum-Goldwasser probabilistic generalized ElGamal Williams ElGamal Rabin RSA generalized discrete logarithm problem or integer factorization problem or integer factorization problem or integer factorization problem quadratic residuosity problem integer factorization problem integer factorization problem integer factorization problem integer factorization problem discrete logarithm problem computational problem

popular public-key encryption schemes based on integer factorization problem

360

Encryption with a <u>unsecured</u> channel for key exchange

357

a problem of huge number of keys for symmetric algorithms

How many keys should be generated for N correspondents if everyone

How many keys are required for 6 or 1 milion correspondents?

• How many keys are required asymmetric algorithms?

 $n_{\mathrm{sym}}(10^6) \approx \frac{10^{12}}{2}$ $n_{\rm sym}(6) = 15$

 $n_{\rm asym}(N)=2N$

Motivation for She	Motivation for Shor's A	 effectiveness of classic 	What is the time or number of	1. direct method	$\sim \sqrt{n} = \exp(\frac{1}{2}\log n)$	2. Monte Carlo method (P	$\sim n^{1/4} \log^3 n$	3,4. Fermat method and qua	$\sim \exp(c\sqrt{r\log r})$, where $r \sim \log n$	thus	$\sim \exp(c\sqrt{\log n(\log \log n)})$	5 number field sieve method	[]	$\sim \exp(c\sqrt{\log n}(\log n))$	This is the fastest publicly available;			ellecuveness of classic	exponential in	effectiveness of quantu	polynomial in		original	2	optimize	\sim (log	and $\log n$ steps of post pro-	
361 acryntion schemes	acryption schemes	ctorization problem	computational problem	linear code decoding problem	or error-correction-code proble	knapsack subset sum problem	cracked by Shumur & Lippel:	knapsack subset sum problem cracked!	knapsack subset sum problem	cracked by Adleman & Rivest.	knapsack subset sum problem	cracked!	knapsack subset sum problem	cracked by Lenstra!	knapsack subset sum problem	publicly not cracked!	362 362	iputational problems	specified frame of reference.	onally feacible	Ultany reasone	ime and space	of machine operations or time units	r milliseconds		nally infeasible	omial time or space	und on the number of onerstions or
-kev er	opular public-key er	not based on integer fa	ey encryption scheme	McEliece		Merkle-Hellman		Graham-Shamır	Lu-Lee		Goodman-McAuley		Powerline System	ple version of Chor-Rivest)	Chor-Rivest		moo ((buod)) buo ((1200)	easy and maru com	should be interpreted relative to a	ogev – commutativ	casy - computation	• in polynomial ti	ractically. within a certain number c	o seconds -		hard = computatio	 require super-polyno 	mation avagading the specified ho

for simplicity, we choose: $c_3 = 1$

with c = 2 in the fastest version of number field sieve method due to Lenstra $N_{\rm clas}(n)=c_3\exp[c(\log n)^{1/3}(\log\log n)^{2/3}]$

by having only one key it is *practically* impossible to calculate the other key using *practically* available computers over *practically* long period of time.

 $N_{\rm Shor}(n) = c_1 (\log n)^2 \log(\log n) + c_2 \log n$

examples of factorization times

MIPS = millions of instructions per second

- 1-10 MIPS in a modest PC
- hundreds-thousands of MIPS in a supercomputer
- say, $N' = 10^6$ MIPS are available in contemporary computers

time required to factorize n

t(n) = N(n)/N/ 2 9 2 8 2 0 min /60 hours /60 days /24 years /365

examples

- 1. $n = 10^{130}$ ₩ $N_{\rm clas} \sim 3.5 \cdot 10^{12} \, {\rm MIPS} \rightarrow 40.5 \; {\rm days} \approx 1 \; {\rm month}$
- 2. $n = 10^{150}$ ₩ $N_{\rm clas} \sim 5.9 \cdot 10^{13} \,\mathrm{MIPS} \rightarrow 687.5 \,\mathrm{days} \approx 2 \mathrm{\ years}$
- 3. $n = 10^{300}$ ₩ $N_{\rm clas} \sim 7.0 \cdot 10^{20} \,\mathrm{MIPS} \rightarrow 22.5 \,\mathrm{mln} \,\mathrm{years}$

366

How old is the universe?

 $T_{\rm universe} \sim 1.25 \cdot 10^{10} = 12.5$ billion years

What is the largest factorizable integer within *T*_{universe}?

1. direct method

 $N = 10^{60} \quad \Rightarrow \quad T \approx 3.17 \cdot 10^{10} > T_{\text{universe}}$

2. Monte Carlo method (Pollard method)

 $N = 10^{91} \quad \Rightarrow \quad T \approx 1.6 \cdot 10^{10} > T_{\rm universe}$

3,4. Fermat method and quadratic sieve method

 $N = 10^{94} \quad \Rightarrow \quad T \approx 1.36 \cdot 10^{10} > T_{\text{universe}}$

5. number field sieve method

 $N = 10^{400}$

 $N = 10^{375}$ ₩ ₩ $T \approx 1.18 \cdot 10^{10} < T_{\rm universe}$ $T\approx 8.1\cdot 10^{10}>T_{\rm universe}$

Introduction to quantum algorithms (part II)

quantum Deutsch-Jozsa (DJ) algorithm quantum Hadamard transform quantum Deutsch algorithm quantum Fourier transform classical RSA algorithm

Rivest-Shamir-Adleman (RSA) algorithm (1978) I. generation of RSA keys (by Bob) 368

1. choose two large primes $p \neq q$

2. calculate

n = pq and $\phi = (p-1)(q-1)$

3. choose randomly an integer e ($1 < e < \phi$) coprime to ϕ ,

i.e. their greatest common divisor is one, $\text{GCD}(e, \phi) = 1$.

4. using the extended Euclidean algorithm, calculate d ($1 < d < \phi$) such that

 $ed \equiv 1 \mod \phi$

5. thus

public key - (n, e)

private key - d

cryptographic terms:

n - modulus

d – decryption exponent *e* – encryption exponent

II. RSA encryption (by Alice)	extended Euclidean algorithm
encrypt your message with the public key (n,e)	GCD(a,b) = d =ax+by x,y,d=?
1. Change creation planness represented by an integer $m \in \langle 0, n-1 angle$	
2. calculate	initial $x_1 = y_2 = 0$; $x_2 = y_1 = 1$
$c = m^e \mod n$	while b>0
3. send a cipher c to Bob	q = Int(a/b)
III. RSA decryption (by Bob)	r =a-qb
use your private key d to calculate	$x_1 = x_2 - q x_1$; $x_2 = x_1$
$m = c^d \mod n$	$y_1 = y_2 - q y_1; y_2 = y_1$
A note	
It has been revealed only very recently that the RSA algorithm has been devised already in 1973 by Cocks for the British security agency CFSG	return (d,x,y)=(a, x ₂ , y ₂)
	a,b,x,y,d - integers
how to calculate	GCD(116,42) = d = ax + by ?
the greatest common divisor (GCD)?	
Euclidean algorithm	q a b x ₂ x ₁ y ₂ y ₁
GCD(116,42) = ?	- 116 42 1 0 0 1 initial values
$116 \mod 42 = 32$	2 42 32 0 1 1 -2
	~{12,6 ~ 21,6 ~ 21,2*0 ~ 0-2*2
	ج» (».
32 mod 10 = 2	
$10 \mod 2 = 0$ Answer: 2	

n is invertible ⇔ GCD(n,9)=1	Z* ₉ ={1,2,4,5,7,8}	all invertible elements modulo	$6^{-1} \mod 9 = ? = 0$ solution	$3(3x + y) = 1 \mod 9 \implies \text{no solution}$	9x + 3y =1 mod 9	3y=1 mod 9	$3^{-1} \mod 9 = ?$	$1^{-1} \mod 9 = 1$	$5^{-1} \mod 9 = 2$	$2^{-1} \mod 9 = 5$	inverse of integers mod 9	
tible ⇔ GCD(n,9)=1	={1,2,4,5,7,8}	elements modulo (d 9 = ? = > no solution	1 mod 9 => no solution	1 mod 9	1 mod 9	? = 9 D	d 9 = 1	d 9 = 2	d 9 = 5	a nuicipality in a	

thus 8 is the inverse of itself mod 9 so 9*1 + 8*(-1)=1 & y=-1=8 mod 9 8*8 = 1 mod 9 8=8⁻¹ mod 9

œ	Ч	I	д
ч	ω	9	Q
0	ч	ω	
Ц	Ч	0	Y ₂
•	占	ч	\mathbf{Y}_{1}

œ	ч	•	д
ч	ω (: ۱ ۱	ស
0	Ч	 	Ъ
4	Ч		\mathbf{Y}_2
•	나	 	Yı

8y=1 mod 9 => 9x + 8y =1 mod 9

Y

QCD(116,42) = d = ax + by ?

inverse of an integer modulo 9

problem: $8^{-1} \mod 9 = ?$

so 9*1 + 4*(-2)=1 & y=-2=7 mod 9 thus 7 is the inverse of 4 mod 9 4*7=1 mod 9

104	д
<u>0</u> 44	נפ
4 4 0	<mark>ک</mark>
1 H 0	<mark>У</mark> 2
• <mark> </mark> •	Y ₁

 $4y=1 \mod 9 => 9x + 4y = 1 \mod 9$ multiplicative or modular inverse of an integer problem: $4^{-1} \mod 9 = ?$

 $\text{if } n \in I; a, k \in Z_n$ $b = a^k \mod n = ?$

Algorithm

if k = 0 then b = 1

else begin

A = a

convert k into binary form $k = \sum_{i=0}^{j} k_i 2^i$ $b = A^{k_0}$

for i = 1 to j do begin

 $A = A^2 \mod n$

 $b = b \cdot A^{k_i} \mod n$

end

end

return(b)

• *Mathematica:* b=PowerMod[a,k,n]

Example of RSA application I. RSA key generation

378

Bob chooses p=11, q=17, e=13

(artificially small numbers so completely insecure)

1. Bob calculates

 $\phi = (p-1)(q-1) = 10 \cdot 16 = 160$ $n = pq = 11 \cdot 17 = 187$

2. Bob checks whether ϕ are e are coprime:

0 0		20 10	
0		40	
7		80	
7	—	160	

OK ↑ $GCD(\phi, e) = GCD(160, 13) = GCD(2^5 \cdot 5, 13) = 1$

377

• efficient Euclidean algorithm

4 = 10 $4 \mod \#1 =$ 160 mod 13 = 13 mod

 \Rightarrow GCD(160, 13) = 1

3. Bob calculates d using the extended Euclidean algorithm

- 160 13 0 1

4. he double checks that d is the multiplicative inverse of e: $de = 13 \cdot 37 = 481 \equiv 1 \pmod{160}$

or vice versa **public key** (n, d) = (187, 37)private key e = 13**public key** (n, e) = (187, 13)5. so Bob has generated the keys: **private key** d = 37

II. RSA encryption

Assume that Alice wants to encrypt the following cleartext: "AM" :-)

using, for example, the following public alphabet:

-	-			
10	20	30	40	
Гц	νZ	⊳	-	
60	19	29	39	
ਸ਼ਿੱ	z	D	<u>ر.</u>	
08	18	28	38	
ഥ	Σ	H	Т	
07	17	27	37	
р	ГЧ	v٥	I	
06	16	26	36	
νŪ	Ц	Ŋ	vN	
05	15	25	35	
υ	М	Ц	٠N	
04	14	24	34	
щ	Ь	Ъ	N	
03	13	23	33	
¢	н	പ	₽	
02	12	22	32	
Ø	н	\O	times	
1	Ч	5	Ч	

רז 🔿 \geq

1. Alice converts her cleartext into the plaintext:

m = (01, 17) = 117

2. Alice calculates cipher using the public key (n, e) = (187, 13):

 $c = m^e \mod n = 117^{13} \mod 187 = ?$

	Ċ	C
	Ш	
1	Ξ	7
	ì	4
	\subseteq	2
,	L	2

c	A^2	e_i	i	
117	117	1	0	,
117	$117^2 \equiv 38$	0	1	
117*135=87	$38^2 \equiv 135$	1	2	
87*86≡2	$135^2 \equiv 86$	1	3	
(mod 187	(mod 187)			

so the cipher is c = 2

• *Mathematica*: PowerMod[117, 13, 187] \rightarrow 2

III. RSA decryption

1. Bob calculates $m = c^d \mod n = 2^{37} \mod 187$

 $d = 37 = (100101)_2$

(mod 18	$32*103 \equiv 117$	32	32	32	ы	\mathbf{b}	m
(mod	$86^2 \equiv 103$	$69^2 \equiv 86$	$16^2 \equiv 69$	16	4	υ	A^2
	1	0	0	<u> </u>	0	1	d_i
	S	4	з	2	\vdash	0	i

2. thus he finds Alice's message to be

 $m = 117 = (01, 17) = ,,AM"_{\square}$

382

lengths of public keys

- 1. The above PKC examples were given for **artificially small** numbers and thus such cryptosystems are not secure at all.
- 2. To insure security of a PKC system, the lengths of public keys should be of **hundreds of decimal digits**.
- 3. To determine the required key length you should consider:
- intended security
- lifetime of the key
- current state-of-the-art of factoring
- 4. The wise cryptographer is **ultra-conservative** when choosing public-
- key key lengths as **history** teaches us a lot:
- "I shall be surprised if anyone regularly factors numbers of size 10^{80}

Any general method of cracking the RSA cryptosystem which enables finding private key d from public key (n, e)

requires an efficient algorithm for integer factorization

Note

There is still no proof of this hypothesis.

- without special form during the present century" (R. Guy, 1976).
- "Factoring a 125-digit number would take 40 quadrillion years",
- tj. $4 \cdot 10^{19}$ lat (R. Rivest, 1977).
- ... but already in 1994 a 129-digit number was factorized.

to be secure against attacks of

(a) a single person, (b) private agencies, (c) national security agencies:

	leng	th in	bits	II V	length	1n	decimal	digits
year	(a)	(d)	(C)		(a)	(d)	(C)	
1995	768	1280	1536		231	386	463	
2000	1024	1280	1536		308	386	463	
2005	1280	1536	2048		386	463	617	
2010	1280	1536	2048		386	463	617	
2015	1536	2048	2048		463	617	617	

[Bruce Schneier: "Applied Cryptography"]

• American National Security Agency (NSA) recommends key lengths from 512 up to 1024 bits (so from 154 do 308 decimal digits) in their Digital Signature Standard (DSS).

integer length (number of digits)

length L_b of integer n with base b is given by

 $L_b = [\log_b n] + 1 = [\ln n / \ln b] + 1$

How Eve can crack the RSA cryptosystem?

Why is the RSA believed to be secure for large integers?

and thus can calculate Bob's private key \boldsymbol{d}

(i.e., polynomial-time and polynomial-space) classical algorithm for integer factorization.

RSA hypothesis (1978)

There is seemingly no efficient

If Eve can factorize n = pq then she can calculate $\phi = (p - 1)(q - 1)$

By factorizing n:

384

1

383

Deutsch algorithm

390

1. prepare input state

$$|\psi_1\rangle = |0\rangle|1\rangle$$

2. apply Hadamard gates (create equal superposition)

$$\begin{split} |\psi_2\rangle &= \hat{H}^{\otimes 2} |\psi_1\rangle = |+\rangle|-\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle) \end{split}$$

~

11

3. apply
$$U_f$$
 gate

$$|x\rangle|y
angle
ightarrow \left[\hat{U}_{f}
ight]
ightarrow |x
angle|y \oplus f(x)
angle$$

 $|\psi_3\rangle = \hat{U}_f |\psi_2\rangle$ ζ

$$\sim \hat{U}_f |00\rangle - \hat{U}_f |01\rangle + \hat{U}_f |10\rangle - \hat{U}_f |11\rangle$$

= $|0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle$

We neglect normalization thus sign ' \sim ' is used.

case I: f(0) = f(1) = 0

$$\begin{aligned} |\psi_3\rangle &\sim |0, 0 \oplus 0\rangle - |0, 1 \oplus 0\rangle + |1, 0 \oplus 0\rangle - |1, 1 \oplus 0\rangle \\ &= |0, 0\rangle - |0, 1\rangle + |1, 0\rangle - |1, 1\rangle \\ &= |0\rangle(|0\rangle - |1\rangle) + |1\rangle(|0\rangle - |1\rangle) \\ &\sim |+\rangle|-\rangle \end{aligned}$$
case II: $f(0) = f(1) = 1$

$$\begin{aligned} |\psi_{3}\rangle &\sim |0, 0 \oplus 1\rangle - |0, 1 \oplus 1\rangle + |1, 0 \oplus 1\rangle - |1, 1 \oplus 1\rangle \\ &= |0, 1\rangle - |0, 0\rangle + |1, 1\rangle - |1, 0\rangle \\ &= -|0\rangle(|0\rangle - |1\rangle) - |1\rangle(|0\rangle - |1\rangle) \\ &\sim -|+\rangle|-\rangle \end{aligned}$$

$$-(0)f$$

SO

$$f(0) = f(1) \Rightarrow |\psi_3\rangle = \pm |+\rangle|-\rangle$$

$$f(0) = f(1) \Rightarrow |\psi_3\rangle = \pm |+\rangle|-\rangle$$

case III:
$$f(0) = 0, f(1) = 1$$

 $|\psi_3\rangle \sim |0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle$
 $= |0, 0 \oplus 0\rangle - |0, 1 \oplus |1, 0 \oplus 1\rangle - |1, 1 \oplus 1\rangle$
 $= |0, 0\rangle - |0, 1\rangle + |1, 1\rangle - |1, 0\rangle$
 $= |0\rangle(|0\rangle - |1\rangle) + |1\rangle(|1\rangle - |0\rangle)$
 $\sim |0\rangle| - \rangle - |1\rangle| - \rangle$
 $\sim |0\rangle| - \rangle - |1\rangle| - \rangle$
case IV: $f(0) = 1, f(1) = 0$
 $|\psi_3\rangle \sim |0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle$
 $= |0, 0 \oplus 1\rangle - |0, 1 \oplus 1\rangle + |1, 0 \oplus 0\rangle - |1, 1 \oplus 0\rangle$
 $= |0, 1\rangle - |0, 0\rangle + |1, 0\rangle - |1, 1\rangle$
 $= -|0\rangle(|0\rangle - |1\rangle) - |1\rangle(|1\rangle - |0\rangle)$

392

 $f(0) \neq f(1) \Rightarrow |\psi_3\rangle = \pm |-\rangle |-\rangle$

 \mathbf{OS}

 $\sim -|-\rangle|-\rangle$

$$|\psi_4
angle=\hat{H}\otimes\hat{I}|\psi_3
angle$$

cases I & II:

$$f(0) = f(1) \Rightarrow |\psi_4\rangle = \pm \hat{H} \otimes \hat{I}|+\rangle|-\rangle = \pm |0\rangle|-\rangle = \pm |f(0) \oplus f(1)\rangle|-$$

cases III & IV:

$$f(0) \neq f(1) \Rightarrow |\psi_4\rangle = \pm \hat{H} \otimes \hat{I}|-\rangle|-\rangle = \pm |1\rangle|-\rangle = \pm |f(0) \oplus f(1)\rangle|-\rangle$$

thus we have for any case:

$$|\psi_4\rangle = \pm |f(0) \oplus f(1)\rangle| - \rangle \equiv |x\rangle|y\rangle$$

5. measure only the 1st register

$$x = 0 \Rightarrow f(0) = f(1)$$
$$x = 1 \Rightarrow f(0) \neq f(1)$$

QED

394

Some remarks on Deutsch algorithm

• top qubit undergoes a single-qubit interference $(-1)^{f(x)}$

- relative phases are introduced by the function evaluation
- lower qubit is an **ancilla** it is not measured and can be discarded after function evaluation
- a sequence of gates

Hadamard - function evaluation - Hadamard

is a common pattern in quantum algorithms

Deutsch-Jozsa (DJ) algorithm

Deutsch-Jozsa (DJ) algorithm for 3 qubits

1. prepare input state

$$|\psi_1\rangle = |0\rangle^{\otimes 2}|1\rangle = |001\rangle$$

2. apply Hadamard gates

$$\begin{split} \psi_2 \rangle &= \hat{H}^{\otimes (2+1)} |\psi_1 \rangle \\ &= |+\rangle^{\otimes 2} |-\rangle \\ &= \frac{|0\rangle + |1\rangle |0\rangle + |1\rangle |0\rangle - |1\rangle}{\sqrt{2} \sqrt{2} \sqrt{2}} \\ &= \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &\sim |000\rangle + |010\rangle + |100\rangle + |110\rangle \frac{\sqrt{2}}{\sqrt{2}} \end{split}$$

3. apply
$$\hat{U}_f$$
 gate

 $|\psi_3\rangle \sim |00, 0 \oplus f(00)\rangle + |01, 0 \oplus f(01)\rangle$ $+|10, 1 \oplus f(10)\rangle + |11, 1 \oplus f(11)\rangle$ $+|10, 0 \oplus f(10)\rangle + |11, 0 \oplus f(11)\rangle$ $-(|00, 1 \oplus f(00)\rangle + |01, 1 \oplus f(01)\rangle)$

4. apply Hadamard gates

$$|\psi_4\rangle = \hat{H}^{\otimes 2} \otimes \hat{I} |\psi_3\rangle$$

*. let's analyze all cases for different functions f

number of cases

$$\begin{split} N_{\rm cases} &= C_0^4 + C_4^4 + C_2^4 = 1 + 1 + 6 = 8 \\ \text{where} \quad |\{00, 01, 10, 11\}| = 4 \end{split}$$

 C_n^m – binomial coefficient

case 1: (trivial)

398

$$\begin{split} f(00) &= f(01) = f(10) = f(11) = 0 \\ |\psi_4\rangle &= (\hat{I} \otimes \hat{H}) |\psi_1\rangle = |00-\rangle \end{split}$$

case 2: (trivial)

$$\begin{split} f(00) &= f(01) = f(10) = f(11) = 1\\ |\psi_3\rangle &= \hat{U}_f |\psi_2\rangle \\ &= \hat{U}_f \Big(|00\rangle + |10\rangle + |01\rangle + |11\rangle \Big) \Big(|0\rangle - |1\rangle \\ &= \Big(|00\rangle + |10\rangle + |01\rangle + |11\rangle \Big) \Big(|1\rangle - |0\rangle \Big) \\ &= -|\psi_2\rangle \end{split}$$

397

case 3:

$$f(00) = 0, f(01) = 0, f(10) = 1, f(11) = 1$$

399

 $|\psi_3\rangle \sim |00, 0 \oplus 0\rangle + |01, 0 \oplus 0\rangle + |10, 0 \oplus 1\rangle + |11, 0 \oplus 1\rangle$ $-(|00, 1 \oplus 0\rangle + |01, 1 \oplus 0\rangle + |10, 1 \oplus 1\rangle + |11, 1 \oplus 1\rangle)$

$$= |000\rangle + |010\rangle + |101\rangle + |111\rangle -(|001\rangle + |011\rangle + |100\rangle + |110\rangle) = (|00\rangle - |10\rangle + |01\rangle - |11\rangle)(|0\rangle - |1\rangle) = (|0\rangle - |1\rangle)(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)$$

SO

 \sim $|-, +, -\rangle$

$$|\psi_4\rangle = (\hat{H}^{\otimes 2} \otimes \hat{I})|\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I})|-,+,-\rangle = |1,0,-$$

$$\psi_4 \rangle = (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I}) |-, +, -\rangle = |1, 0, -\rangle$$

$$|\psi_4\rangle = (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I}) |-, +, -\rangle = |1, 0, \cdot$$

$$|\psi_4\rangle = (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I}) |-, +, -\rangle =$$

$$(H^{\cup^{-}}\otimes I)|\psi_{3}\rangle \sim (H^{\cup^{-}}\otimes I)|-,+,-\rangle = |1,$$

$$=(H^{\cup^+}\otimes I)|\psi_3
angle\sim(H^{\cup^+}\otimes I)|-,+,-
angle=|1,$$

$$= (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I})|-,+,-\rangle = |1,0,$$

$$\rangle = (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I}) |-, +, -\rangle = |1, 0\rangle$$

$$\hat{H} = (\hat{H}^{\otimes 2} \otimes \hat{I}) |\psi_3\rangle \sim (\hat{H}^{\otimes 2} \otimes \hat{I})|-,+,-\rangle = |1,0\rangle$$

$$f(x) \to f(x) \text{ is balanced}$$

if x = 0Ų f(x) is constant

$$\mathbf{x} \equiv (x_1, x_2) \cong 2x_1 + x_2$$
5. measure x

case $|f(00)|f(01)|f(10)|f(11)||x_1, x_2, y\rangle ||\mathbf{x}, y\rangle$ 2 L. С 0 0 0 C 0 \circ 0 \circ С 0 $|00-\rangle$ $|00-\rangle$ |01 - $|10-\rangle$ |11-|01 -11-10 - $|0-\rangle$ $\overline{0}$ $\overline{\overset{\Im}{\overset{}}_{-}}$ $\overline{2}$ $\overline{2}$ constant balanced answer

400

all cases in DJ algorithm for 3 qubits

 $|\psi_4\rangle = -(\hat{I} \otimes \hat{H})|\psi_1\rangle = -|00-\rangle$

Matlab program

H=[1 1;1 -1];Norm=1/8;
0 0 0 0
1 1 1
0 0 1 1
0 1 0 1
0 1 1 0
1001
0 1 0
1 0 0
cor n=1:8,
DD-ff(x 1):f01-f(x 0):f10-f(x 3):f11-f(x 4):
- 00 1 (11, 1 /) + FOT-T (11, 2) + FTO-T (11, 2) + FTT-T (11, 2) + FTO-T (11, 1 / 1) + FOT-T (11, 1 / 1
<pre>>si3=ket([0,0,f00])+ket([0,1,f01])+ket([1,0,f10])+ket([1,1,f11])+ -(ket([0,0,1-f00])+ket([0,1,1-f01])+ket([1,0,1-f10])+ket([1,1,1,1-f11]));</pre>
<pre>>si4=Norm*tensor_product(H,H,H)*psi3; % for clarity we add extra H gate >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
eccolzker(psit)

quantum Hadamard transform

end;

1. How to generate equal (equally-weighted) superposition

$$\hat{H}^{\otimes 2}|00\rangle = \frac{|0\rangle + |1\rangle|0\rangle + |1\rangle}{\sqrt{2}}$$
$$= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$\equiv \frac{1}{2}\sum_{\mathbf{x}\in\{0,1\}^2}^3 |\mathbf{x}\rangle$$
$$\equiv \frac{1}{2}\sum_{\mathbf{x}=0}^3 |\mathbf{x}\rangle$$

in general

$$\hat{H}^{\otimes n}|0\rangle^{\otimes n} = \hat{H}^{\otimes n}|0\rangle = \frac{1}{\sqrt{N}}\sum_{\mathbf{x}}|\mathbf{x}\rangle$$

- 2^{n} and $x = 2^{n}x$, $\pm 2^{n-1}x_2 \pm -x$

where $N = 2^n$ and $x = 2^n x_1 + 2^{n-1} x_2 + ... x_n$

$$\sum_{\mathbf{x}} = \sum_{\mathbf{x} \in \{0,1\}^n} = \sum_{x_1=0}^1 \sum_{x_2=0}^1 \dots \sum_{x_n=0}^1 \sum_{x_n=0}^{N-1} \sum_{x_n$$

2. How to compactly write the quantum Hadamard transform

• for a single qubit

401

$$\hat{H}|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sum_{z=0}^{1} (-1)^{0z} |z\rangle$$
$$\hat{H}|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sum_{z=0}^{1} (-1)^{1z} |z\rangle$$

combining together

$$\hat{H}|x_1\rangle = \frac{1}{\sqrt{2}}\sum_{z_1=0}^{1} (-1)^{x_1\cdot z_1}|z_1|$$

for two qubits

$$\begin{aligned} \hat{H}^{\otimes 2} |x_1 x_2\rangle \ &= \ \left(\frac{1}{\sqrt{2}} \sum_{z_1=0}^1 (-1)^{x_1 \cdot z_1} |z_1\rangle \right) \left(\frac{1}{\sqrt{2}} \sum_{z_2=0}^1 (-1)^{x_2 \cdot z_2} |z_2\rangle \right) \\ &= \ \frac{1}{\sqrt{2^2}} \sum_{z_1=0}^1 \sum_{z_2=0}^1 (-1)^{x_1 \cdot z_1 + x_2 \cdot z_2} |z_1 z_2\rangle \end{aligned}$$

• thus in general for $n\ {\rm qubits}$

402

$$\hat{H}^{\otimes n}|x_1x_2...x_n\rangle = \frac{1}{\sqrt{N}} \sum_{z_1,z_2...,z_n=0}^{1} (-1)^{x_1\cdot z_1 + x_2\cdot z_2 + ... + x_n\cdot z_n} |z_1z_2...z_n\rangle$$

where $N = 2^n$ is the Hilbert-space dimension

or compactly

 $\hat{H}^{\otimes n} | \mathbf{x} \rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{z}} (-1)^{\langle \mathbf{x} | \mathbf{z} \rangle} | \mathbf{z} \rangle$

where

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \quad |\mathbf{x}\rangle = |x_1, x_2, \dots, x_n\rangle$$
$$\mathbf{z} = (z_1, z_2, \dots, z_n), \quad |\mathbf{z}\rangle = |z_1, z_2, \dots, z_n\rangle$$

and

$$\langle \mathbf{x} | \mathbf{z} \rangle \equiv \mathbf{x} \cdot \mathbf{z} = x_1 z_1 + x_2 z_2 + \dots + x_n z_n$$

is the scalar product.

J algorithm for n qubits
 406
 Quantum Fourier Transform

 apply Hadamard gate

$$|\psi_{4\rangle} = (\hat{H}^{\otimes n} \otimes \hat{I})|\psi_{3\rangle}$$
 $|\psi_{4\rangle} = (\hat{H}^{\otimes n} \otimes \hat{I})|\psi_{3\rangle}$
 $|\psi_{2}\rangle = \frac{1}{\sqrt{N}} \sum_{x} (-1)^{f(x)} (\hat{H}^{\otimes n} |x\rangle)|_{-\rangle}$
 $|x\rangle \rightarrow (\overline{QFT}) \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \exp\left(\frac{2\pi i}{N} xy\right)|y\rangle$
 $h^{\otimes n}|x\rangle = \frac{1}{N} \sum_{x} \sum_{x} (-1)^{f(x)} (\hat{H}^{\otimes n} |x\rangle)|_{-\rangle}$
 $|x\rangle \rightarrow (\overline{QFT}) \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \exp\left(\frac{2\pi i}{N} y\right)|y\rangle$
 $= \frac{1}{N} \sum_{x} \sum_{x} (-1)^{f(x)} (\hat{H}^{\otimes n} |x\rangle)|_{-\rangle}$
 $|x\rangle \rightarrow (\overline{QFT}) \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \beta^{xy}|y\rangle$

 measure $|z\rangle$:
 $z = 0 \Rightarrow f(x)$ is constant $z > 0 \Rightarrow f(x)$ is balanced
 $|\psi\rangle = \sum_{x=0}^{N-1} c_x|x\rangle \rightarrow (\overline{QFT}) \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \frac{N^{-1}}{p_x} c_x \beta^{xy}|y\rangle$
 $|\psi\rangle = \sum_{x=0}^{N-1} c_x|x\rangle \rightarrow (\overline{QFT}) \rightarrow \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} c_x \beta^{xy}|y\rangle$

 $QFT|x\rangle = \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \exp\left(\frac{2\pi i}{N} x y\right) |y\rangle$

408

or just without the bold face:

$$QFT|\mathbf{x}\rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{y}} \exp\left(\frac{2\pi i}{N} \mathbf{x} \mathbf{y}\right) |\mathbf{y}\rangle$$

• QFT on group
$$Z_N$$

• QFT on group
$$Z_N$$

group $(Z_2)^n$ = the set $\{0, 1\}^n$ with addition modulo 2 (\oplus) bit by bit

• QFT on group
$$Z_N$$

group Z_2 = the set $\{0, 1\}$ with addition modulo 2 (\oplus)

• QFT on group
$$Z_N$$

• OFT on group
$$Z_N$$

• **OFT** on group
$$Z_{M}$$

• OFT on aroun
$$P_{12}$$

QFT on group
$$Z_N$$

• OFT on group
$$Z_M$$

FT on groun
$$Z_{M}$$

$$QFT'|\mathbf{x}\rangle = \hat{H}^{\otimes n}|\mathbf{x}\rangle = \frac{1}{\sqrt{N}}\sum_{\mathbf{y}} (-1)^{\langle \mathbf{x}|\mathbf{y}\rangle}|\mathbf{y}\rangle, \quad (N=2^n)$$

quantum Fourier transform (QFT)

= quantum Hadamard transform

• QFT on group $(Z_2)^n$

405

DJ algorithm for *n* **qubits**

1. initialize (n + 1)-qubit state

$$|\psi_1\rangle = |0\rangle^{\otimes n}|1\rangle$$

2. generate equal superposition by applying Hadamard gates

$$|\psi_2\rangle = \hat{H}^{\otimes(n+1)}|\psi_1\rangle = (\hat{H}^{\otimes n}|0\rangle^{\otimes n})|-\rangle = \frac{1}{\sqrt{N}}\sum_{\mathbf{x}}|\mathbf{x}\rangle|-\rangle$$

3. calculate f by applying \hat{U}_f gate

$$|\psi_3\rangle = \hat{U}_f |\psi_2\rangle = \frac{1}{\sqrt{N}} \sum_{\mathbf{x}} (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle |-\rangle$$

D

4.

 $\dot{\boldsymbol{\omega}}$

$$|\psi\rangle = \sum_{x=0}^{N-1} c_x |x\rangle$$
$$QFT|\psi\rangle = \frac{1}{\sqrt{s+1}} \left[\begin{array}{ccc} 1 & 1 & 1 & \dots & 1\\ 1 & \beta & \beta^2 & \dots & \beta^s \\ 1 & \beta^2 & \beta^4 & \dots & \beta^{2s} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \beta^s & \beta^{2s} & \dots & \beta^{ss} \end{array} \right] \left[\begin{array}{c} c_0 \\ c_1 \\ c_2 \\ c_s \end{array} \right]$$
$$p \begin{pmatrix} 2\pi i \\ \nabla i \end{pmatrix}$$

where

$$\beta = \exp\left(\frac{2\pi i}{N}\right)$$
$$s = N - 1 = 2^n - 1$$

example: QFT of a Bell state

$$\begin{split} |\psi\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} [1001]^T\\ N &= 2^2 = 4 \Rightarrow s = 3, \quad \beta = \exp\left(i\frac{\pi}{2}\right) = i\\ N &= 2^2 = 4 \Rightarrow s = 3, \quad \beta = \exp\left(i\frac{\pi}{2}\right) = i\\ QFT &= \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & \beta & \beta^4 & \beta^6 \\ 1 & \beta^3 & \beta^6 & \beta^9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & -1 & -1 & i\\ 1 & -1 & -1 & i \end{bmatrix} \\ QFT &= QFT \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1\\ 0\\ 1\\ 1 \end{bmatrix} = \frac{1}{2} \end{bmatrix}$$

410

Circuits for QFT

412

it is just equivalent to the query in DJ algorithm

or
$$\hat{U}_f = 1 - 2|x_0\rangle\langle x_0$$

$$\hat{U}_f |x\rangle = (-1)^{f(x)} |x\rangle$$

2. oracle query in Grover's algorithm

and f(x) is encoded in the sign of the **control register** $|x\rangle$.

in fact, the content of the **target register** $|y\rangle$ is unchanged in the DJ algorithm

a note

$$\hat{U}_f = |x\rangle |y\rangle \stackrel{f}{\mapsto} |x\rangle |x \oplus y\rangle$$

1. oracle query in DJ algorithm

416

oracle queries

• searching a database for a key to crack a cryptosystem

examples

- searching a phone book for a name and phone number

Grover's algorithm for searching database Shor's algorithm for integer factorization

(part III)

Introduction to quantum algorithms

414

problem for Grover's algorithm (the needle in a haystack problem)

•

given an **oracle** which calculates f(x):

assumptions

f(x) = 1 if $x = x_0$ $f(x) = 0 \text{ if } x \neq x_0$

• f(x) can be calculated using ordinary (reversible) computer code

problem

find the element x_0 in the least number of oracle queries.

average number of evaluations of f

classically -N/2quantumly -???

Η Η S $|y_0\rangle$ $|y_1\rangle$

Seemingly another implementation of QFT for n=3

given in terms of the phase gate (S gate) and $\pi/8$ (sic!) gate (T gate)

but it is exactly our scheme as

 $\hat{R}_2 = \hat{S}, \quad \hat{R}_3 = \hat{T}$

 $\|_{\mathcal{O}^{\flat}}$

 $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad \hat{T} = \begin{bmatrix} 1 & 0 \\ 0 & \exp(i\pi/4) \end{bmatrix}$

415

417	419
two types of quantum oracles	III. Grover iteration remeat the following submutting $I_{nt}(m, \sqrt{N}/\Lambda)$ times:
oracle = a black-box unitary operation	
$1.$ quantum oracle \hat{U}_f of a Boolean function	1. Call the oracle to flip the phase of eigenstate $ x_0\rangle$:
$f: \{0,1\} \to \{0,1\}$	$f_{x_0} : x\rangle \mapsto (1 - 2\delta_{x_0,x}) x\rangle,$
$ x\rangle y\rangle \to \overline{[U_f]} \to x\rangle y \oplus f(x)\rangle$	where $\delta_{y,x}$ is Kronecker delta.
2 miantim nhase-oracle $\hat{I}\hat{I}^{I}$	2. Apply Hadamard gate $\hat{H}^{\otimes n}$.
	3. Flip the phase of all eigenstates $ x\rangle$ except $ 0\rangle$:
$ x\rangle \to U'_f \to (-1)^{f(x)} x\rangle$	$f_0: x\rangle \mapsto -(1 - 2\delta_{0,x}) x\rangle.$
Note:	4. Apply Hadamard gate $\hat{H}^{\otimes n}$.
$ y angle = - angle \implies \hat{U}_f ightarrow \hat{U}_f'$	Note:
	operations 2,3,4 are called the inversion about the average
418 n-Qubit Grover's algorithm	420 two-qubit Grover's search of $ x_0 angle= 2 angle$
PROBLEM:	initialization Hadamard gate
find x_0 among $N = 2^n$ elements encoded by <i>n</i> -qubits	
ALGORITHM:	0.5-
I. Initialization	- - - - - - -
prepare n qubits in state	-0.5. -0.5.
$ \psi_I\rangle = 0\rangle^{\otimes n}$	
II. Generation of equally-weighted superposition	1. oracle phase flip of $ x_0\rangle$ 2. Hadamard gate
apply Hadamard gate $\hat{H}^{\otimes n}$ to all qubits to get	
$ \psi_{II} angle = rac{1}{\sqrt{2}}\sum_{r=1}^{N-1} x angle.$	
$\sqrt{N} \sum_{x=0}^{\infty} x^{-1}$	-05- -05-

three-qubit Grover's search of $ x_0\rangle = 2\rangle$	The most popular cryptosystems and their cryptoanalysis
II.3 phase flip all $ x\rangle$ except $ 0\rangle$ II.4 gate H ends 2nd cycle end of 3rd cycle	1. DES (Data Encryption Standard) \leftrightarrow Grover's algorithm
	- symmetric
	- applied for encryption and decryption - American and international cryptographic standard
	- used by US army
-0.50.50.50.5-	2. RSA (Rivest-Shamir-Adleman) \leftrightarrow Shor's algorithm
$\frac{1}{100} \frac{1}{100} \frac{1}$	 asymmetric applied for encryption/decryption and digital signatures
	3. DSA (Digital Signature Algorithm) ↔ Shor's algorithm
0.55 10 10 10 10 10 10 10 10 10 10	- asymmetric
	 applied for digital signatures it is the Digital Signature Standard (DSS) of US Federal Government
426 numerical data for three-qubit Grover's search of $\ket{x_0}=\ket{5}$	428 Grover's algorithm and cryptography
state	Attack on DES
$ \psi^{(k)}\rangle = c_0^{(k)} 000\rangle + c_1^{(k)} 001\rangle + c_2^{(k)} 010\rangle + c_3^{(k)} 011\rangle$	requires basically to search among $N = 2^{56} = 7.2 \times 10^{16}$ possible keys.
$+c_4^{(\kappa)} 100 angle+c_5^{(\kappa)} 101 angle+c_6^{(\kappa)} 110 angle+c_7^{(\kappa)} 111 angle$	What is the time required to find the correct DES key?
after the k th Grover we get:	assuming that 1 mln keys per second can be checked than
$ \psi^{(k)}\rangle = [$ c_0 c_1 c_2 c_3 c_4 c_5 c_6 c_7]	classical computer needs 1,000 years
	• quantum computer needs about 4 minutes
$ \psi^{(1)} angle=$ [.18 .18 .18 .18 .18 .88 .18 .18]	Mathematica: Sqrt[2 ⁵ 56]/10. ⁵ 6/60 \leftrightarrow 4.47 min
$ \psi^{(2)} angle$ =[0909090909 .9709]	How many oracle queries are required
$ \psi^{(3)} angle=$ [3131313131 .5731]	to search an <i>N</i> -element database?
$ \psi^{(4)} angle=$ [3838383838383138]	O(N) classical search alcorithms
$ \psi^{(5)} angle = [2525252525742525]$	$O(\sqrt{N})$ Grover's algorithm
$ \psi^{(6)} angle =$ [01010101010101]	

after the 6th iteration we get $c_{5}^{(6)}=\langle 110|\psi^{(6)}\rangle =.99989\cdots \approx 1$

Grover's search is quadratically faster than classical search

Note: It speeds up any kind of database search.

However the maximum advantage is gained in unsorted databases.

Can we find faster quantum-search algorithms?

Shor's algorithm is exponentially faster than classical ones,

so it possible to find also a search algorithm that fast?

Optimality theorem:

The search problem cannot be solved in less than $\mathcal{O}\left(\sqrt{N}\right)$ iterations.

Grover's algorithm is optimal!

∜

But can we find an algorithm that would run, say, twice faster?

Possibly yes, but it is not the issue of the optimality theorem.

quantum entanglement and quantum speed-up 430

- **Q:** Quantum entanglement is a key resource for QIP. But do we need it for quantum speed-up in e.g. Grover's algorithm?
- A: "Entanglement is neither necessary for Grover's algorithm itself, nor for its efficiency." [Bhattacharya et al., 2002]

Q: Really?

A: Inversion about the average amplitude is a classical process.

- Q: Can Grover's algorithm be implemented classically?A: Grover's algorithm has already been experimentally
- implemented using classical Fourier optics.

quantum entanglement and database size

Q: Is entanglement useful for Grover's algorithm at all?

- **A:** Yes. Lack of entanglement limits the database size which scales linearly with the beam diameter *D*
- (or D^2 for a 2D version)
- ⇒ number of qubits scales only as $\propto \log_2 D$

assume D equal to the size of the universe, $\sim 10^{26}m$

 \Rightarrow it is equivalent to $\propto 86$ qubits.

This limitation exists for any database containing classical information.

Q: Anyway, it seems that entanglement is not necessary for quadratic speed-up.

But do we need it for exponential speed-up?

A: Most probably, yes.

432 How to implement Grover's algorithm classically? via classical optical interference

A classical implementation of Grover's search [Amsterdam's experiment of Bhattacharya et al. (2002)]

- quantum probability amplitudes
- \hookrightarrow a transverse laser **beam profile**
- = a complex electric field amplitude E(x)
- quantum states, which label items of the database \hookrightarrow continuous **coordinate** *x*
- sought item x_0
- \hookrightarrow **narrow area** around the "item position" x_0

Т

 (χ)

2

Т

transmitted through one of the mirrors with transmission of 2%

→ after each roundtrip, a moving photodiode records light

readout

Iteration

order

 $\frac{5}{2} \frac{3}{2} \frac{1}{2}$

435

pulses

out

Σ́

$$\begin{aligned} 437 \\ \text{Simon's problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (beta problem (1994)} & \text{it is an oracle problem (1994)} & \text{$$

= 0.

umber of times

 y_1, y_2, \dots, y_n such that

an integer

440

$$= ord(x, n) \equiv ord(x)$$

est integer k for which

$$|\psi_2\rangle = \frac{1}{\sqrt{2n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle |f(\mathbf{x})\rangle.$$

 $8^2 \mod 21 = 64 \mod 21 = 64 - 3 \cdot 21 = 1$

 $\Rightarrow ord(8,21) = 2$

• measure the last n qubits and obtain a certain $f(\mathbf{x}') \in \{0, 1\}^n$, which yields the (*n*-qubit) state:

another example	Example: CF for 3.245
$2^1 \mod 21 = 2$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$2^2 \mod 21 = 4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$2^3 \mod 21 = 8$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$2^4 \mod 21 = 16$	
$2^5 \mod 21 = 32 \mod 21 = 11$	$3.245 = 3 + \frac{1}{4 + \frac{1}{10.11}} = \{3, 4, 12, 4\}$
$2^6 \mod 21 = 22 \mod 21 = 1$	<u>1</u> +71
orders of all elements modulo 21	<i>Mathematica:</i> ContinuedFraction[3245/1000] \hookrightarrow {3, 4, 12, 4}
x = 1 2 4 5 8 10 11 13 16 17 19 20	A convergent of CF
ord(x,21) = 1 6 3 6 2 6 6 2 3 6 6 2	The <i>n</i> th convergent, denoted by $\{a_0, a_1,, a_n\}$,
complexity of algorithms for order calculation	is a truncated CF $x = \{a_0, a_1, \dots, a_n, \dots, a_N\}.$
• exponential time using known classical algorithms	Useful criterion for Shor's algorithm
 polynomial time using quantum phase estimation (a part of Shor's algorithm) 	$\left \frac{p}{q} - x\right < \frac{1}{2q^2} \implies \frac{p}{q} \text{ is a convergent of CF and GCD}(p,q) = 1$
Continued fractions (CF)	444
	Shor's factorization algorithm
$a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{K + a_N}}} \equiv \{a_0, a_1, a_2, K, a_N\}$	
How to calculate CF for number r ?	$ 0\rangle^{\otimes n} \neq H^{\otimes n} \longrightarrow x \qquad x \longrightarrow QHT^{-1}$
1. split r into integer part [[r]] and fractional part $f = r - [[r]]$	
2. stop if $f = 0$ 3. calculate $1/f$ and return to step 1.	$ 1\rangle^{\otimes_m} \neq 1\rangle \otimes a^x \mod N $
Note: The procedure will halt iff r is rational.	
Example: CF for r=11/9	Davia atoms of Charle algorithms
$\frac{11}{9} = 1 + \frac{2}{9} = 1 + \frac{1}{\frac{9}{2}} = 1 + \frac{1}{4 + \frac{1}{2}} \equiv \{1, 4, 2\}$	1. Hadamard transform

3. Quantum Fourier transform

4. Measurement

2. Modular exponentiation

Mathematica: ContinuedFraction[11/9] \hookrightarrow {1,4,2}

CF for 3 245

441

Shor's algorithm to factorize an integer N 1. If N is even then return factor $f = 2$.	8. Measure register #2 to get some state $ x'\rangle$: $ \psi_4\rangle = \mathcal{N}_2 \langle x' \psi_3 \rangle$
3. Choose randomly an integer a ($1 < a < N$) and apply the Euclidean algorithm to check whether	9. Apply QFT [†] on the register # 1: $ _{n/n} = OFT^{\dagger} _{n/n}$
a and N are coprime, i.e. $GCD(a, N) = 1$ If not then choose another a.	and measure it.
4. Prepare two registers:	10. Apply the classical method of continued fractions to find period r .
register #2 has $n_2 = \lceil \log_2 N \rceil$ qubits	
(this is the number of qubits to store N);	11. If r is even and $\frac{r}{2} \neq -1 \pmod{N}$
register #1 has $n_1 = 2n_2$ qubits	then calculate $f= ext{GCD}(a^{r/2}\pm 1,N)$
(in optimized versions of the algorithm, n_1 can be smaller).	If $f \neq 1$ or $f \neq N$ then return f . Otherwise repeat the algorithm.
5. Initialize both registers: $ \psi_1\rangle = 0\rangle^{\otimes n_1} 1\rangle^{\otimes n_2}$	How to factorize N=15?
6. Apply Hadamard gates to register # 1:	1. choose x such that
i.e. create an equally-weighted superposition $N_1 - 1$	1 < x < N-1, $GCD(x,N)=1$ e.g. $x=112. find multiplicative order r=ord(x):$
$ \psi_2\rangle = \hat{H}^{\otimes n_1} \psi_1\rangle = \frac{1}{\sqrt{N_1}} \sum_{x=0}^{1} x, 15\rangle$	11^{1} 11^{2} 11^{3} 11^{4} 11^{5} 11^{6} 11 1 11 1 11 (mod N) so r=2
where $N_1 = 2^{n_1}$.	3. find y: $y^2 = 1 \mod N$
7. Apply modular exponential gate to register # 2:	since $x'=1 \mod N$ then $y=x''=11$
$ \psi_3 angle = \hat{U}_{ m mod.exp} \psi_2 angle$	4. calculate $GCD(y+1,N) = GCD(12,15) = \frac{3}{2}$
$a^{R_1} \mod 15$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	so 15=3*5

449	451
Example 1: Factorize $N = 15$	so <i>Mathematica:</i> PowerMod[a [°] x, 15]
1. N is odd \Rightarrow OK	$\left R_{1} \right \left 0 ight angle \left 1 ight angle \left 2 ight angle \left 3 ight angle \left 4 ight angle \left 5 ight angle \left 6 ight angle \left 7 ight angle \left 8 ight angle \left 9 ight angle \left 10 ight angle \left 11 ight angle \ldots$
2. $N \neq a^b \Rightarrow OK$	$\left[R_{2} \left \left 1 \right\rangle \left \left 7 \right\rangle \left \left 4 \right\rangle \right \left 13 \right\rangle \left \left 1 \right\rangle \right \left 7 \right\rangle \left \left 4 \right\rangle \right \left 13 \right\rangle \left 11 \right\rangle \left \left 7 \right\rangle \right \left 4 \right\rangle \left \left 13 \right\rangle \right \dots \right] \right.$
3. let's, e.g., choose $a = 7$ (unlucky choice) and apply	8. measure register #2:
Euclidean algorithm to check whether a and N are coprime:	for example, we get the state $ 13\rangle$:
$GCD(7,15) = 1 \Rightarrow OK$	R_1 $ 3\rangle$ $ 7\rangle$ $ 11\rangle$ R_2 $ 13\rangle$ $ 13\rangle$ $ 13\rangle$
4. find the required dimension of registers (number qubits):	
register # 2: $n_2 = \lceil \log_2 N \rceil = \lceil 3.906 \rceil = 4$	$ \psi_4 angle = \mathcal{N}_2 \langle 13 \psi_3 angle = \mathcal{N} \langle 3 angle_1 + 7 angle_1 + 11 angle_1 +)$
register # 1: $n_1 = 2n_2 = 8$	where \mathcal{N} is a renormalization constant
<i>Mathematica:</i> Ceiling[Log[2, 15]] \hookrightarrow 4	9. apply QFT ^{\dagger} on the register # 1:
5. initialize both registers:	$ \psi_5\rangle = QFT^{\dagger} \psi_4\rangle = \frac{1}{2}(0\rangle_1 - 64\rangle_1 + 128\rangle_1 - 192\rangle_1)$
$ \psi_1\rangle = 0\rangle^{\otimes n_1} 1\rangle^{\otimes n_2} = 0000000\rangle 1111\rangle \equiv 0\rangle 15\rangle$	
<i>Mathematica:</i> $2^{\wedge \wedge}$ 1111 \hookrightarrow 15	
450	452
6. apply Hadamard gates to register # 1:	10. apply the classical continued fraction method
i.e. create equally-weighted superposition	(which reduces to a trivial case now) to find the period r
$, N_{1}-1$	$\frac{64}{256} = \frac{1}{4} \Rightarrow r = 4$
$ \psi_2 angle=\hat{H}^{\otimes n_1} \psi_1 angle=rac{1}{\sqrt{N_1}}\sum_{x=0}^{} y,15 angle$	11. r is even and $\frac{r}{2} \neq -1 \mod N \implies$
where $N_1 = 2^{n_1} = 256$	$GCD(13^{r/2} + 1, 15) = GCD(13^2 + 1, 15)$
7 analy modular avacantial cata to marietar # 0.	$= \text{GCD}(169 + 1, 15) = \text{GCD}(17 \times 2 \times 5, 3 \times 5) = 5$
$ \psi_3 angle=\hat{U}_{ m mod\ exm} \psi_2 angle$	$GCD(13^{r/2} - 1, 15) = GCD(168, 15) = 3$
$a^{R_1} \mod 15$	these are the sought factors :-)
R_1 $0\rangle$ $1\rangle$ $1\rangle$ $2\rangle$ $255\rangle$	10 6 and 10 fm = 1 fm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12. IIII IEN $3 \times 3 = 13 \rightarrow \mathbf{OR}$
$ (c_1 = (f_1) = (f_2) = (f_1) = (f_2) = (f_1) = (f_2) = (f$	

a=3,5,6,9	a=4, 11,	a=2, 7, 8	14	13	12	11	10	9	00	7	თ	ഗ	4	ω	N	Ø	condi	IUCK
9,10,12	14	, 13	щ	4	9	Ч	10	б	4	4	σ	10	Ъ	9	4	a^2	tion: Go	y, umu
₩	₩	₩	14	Γ	ω	11	10	9	N	13	б	ഗ	4	12	ω	a^3	CD(a,N	иску а
GCD	short	long	Р	Ч	б	н	10	6	Ч	Ч	б	10	1	6	Ч	a^4	V)=1	a nur
(x, I)	peri	perio	14	$\frac{1}{3}$	12	$\begin{array}{c} 1\\ 1\end{array}$	10	9	ω	Z	6	ഗ	4	ω	N	•		au
≤ ⊭	od	pq	Ц	4	9	Ч	10	6	4	4	6	10	Ч	9	4	•		CIIO
			14	Z	ω	$\begin{array}{c} 1\\ 1\end{array}$	10	9	Ν	13	6	ហ	4	12	ω			ces
\Downarrow	\Downarrow	₩	Ь	Ч	6	Ч	10	б	Ч	Ч	6	10	Ч	б	Ч			01 (
ba	luc	un	14	13	12	$\begin{array}{c} 1 \\ 1 \end{array}$	10	9	œ	Ţ	6	л	4	ω	Ν			
d cho	:ky c	luck	щ	4	9	Ч	10	6	4	4	6	10	Ч	9	4			Dan
Dice	hoic	y che	14	7	ω	$\begin{array}{c} 1\\ 1\end{array}$	10	9	Ν	13	6	ហ	4	12	ω			
	(D)	pice	щ	Ч	ი	Ч	10	б	Ч	Ч	δ	10	Ч	σ	Ч			Ī
₩	₩	₩	14	13	12	11	10	9	œ	7	б	л	4	ω	Ν			
excluded	easier factorizatic	harder factorizati	Ц	4	9	Ц	10	6	4	4 unlucky	6 wrong	10 wrong	1 lucky	9 wrong	4 unlucky	a^14(mod N)		
	ĭn	on	. –															

Example 2: Factorize again N = 15 **but for** a = 11

1–2. ditto

3. we choose a = 11 (lucky choice)

 $GCD(11,15) = 1 \Rightarrow OK$

4-6. ditto

7. apply modular exponential gate to register # 2:

 $|\psi_3\rangle = U_{\rm mod.exp}|\psi_2\rangle$

 $a^{R_1} \mod 15$ $R_2 \left| 11^0 \mod N \right\rangle \left| 11^1 \mod N \right\rangle \left| 11^2 \mod N \right\rangle \ldots \left| 11^{255} \mod N \right\rangle$ $= |1\rangle$ $|0\rangle$ $= |11\rangle$ $= |121\rangle \equiv |1\rangle$ $|2\rangle$: $= |11\rangle$ $255\rangle$

SO

R_2	R_1
$ 1\rangle$	$ 0\rangle$
$ 11\rangle$	$ 1\rangle$
$ 1\rangle$	$ 2\rangle$
$ 11\rangle$	$ 3\rangle$
$ 1\rangle$	$ 4\rangle$
$ 11\rangle$	$ 5\rangle$
$ 1\rangle$	$ 6\rangle$
$ 11\rangle$	$ 7\rangle$
$ 1\rangle$	$\langle 8 $
:	:

453

8. measure register #2:

for example, we get state $|11\rangle$:

$ \psi_4\rangle$	R_2	R_1
 _		
$\leq \frac{1}{2}$	$ 11\rangle$	$ 1\rangle$
$(11)_{i}$		
$ \psi_3\rangle$:	11	$ 3\rangle$
\geq	\sim	_
$(1\rangle$	<u> </u>	<u>сл</u>
$^{-1}$ +	1 \cdot	~
$ 3\rangle_1$	·	•
+		
$\left \right\rangle_{1}$		
+		

where \mathcal{N} is a renormalization constant

9. apply QFT^{\dagger} on the register # 1:

 $|\psi_{5}\rangle = QFT^{\dagger}|\psi_{4}\rangle = \frac{1}{\sqrt{2}}(|0\rangle_{1} + |128\rangle_{1})$

10. apply the classical continued fraction method

to find period r

 $\frac{128}{256} = \frac{1}{2} \quad \Rightarrow \quad r = 2$

456

 $GCD(11^{r/2} + 1, 15) = GCD(11 + 1, 15) = GCD(3 \times 4, 3 \times 5) = 3$ 11. r is even and $\frac{r}{2} \neq -1 \mod N$ ₩

 $GCD(11^{r/2}-1, 15) = GCD(10, 15) = 5$

which are the sought factors.

Note 1:

Note 2: the complete classical continued fraction method. To find period r, one usually has to apply

Shor's algorithm resembles Simon's algorithm

algorithm, i.e. by replacing Simon's Hadamard transforms (Fourier transform over Z_2^n) by Fourier transform over Z_N . Actually, Shor has found his algorithm by generalizing Simon's

$$\{0,3\} \equiv 0 + \frac{1}{3} = \frac{1}{3} \equiv \frac{a}{b}$$

$$\Rightarrow \quad \left|\frac{a}{b} - x\right| = \left|\frac{1}{3} - \frac{65}{256}\right| = 0.079 \dots \neq \frac{1}{2b^2} = \frac{1}{18} = 0.055 \dots$$

-1 | M

 $\Rightarrow \quad \text{PERIOD } r \neq 3$

459

optimized version of the 7-qubit circuit for Shor's factorization of N = 15

(gates C, E, F, H are removed)

Quantum Fourier transform and its inverse for 3 qubits

461

where the rotations are $R_2 = R(90^0), R_3 = R(45^0)$

Outline

- 1. Generalized projective measurements
- 2. Positive operator valued measure (POVM)
- 3. Kraus representation
- 4. Damping channels for a single qubit
- 5. Imperfect photocount detectors
- 6. Bell-state and GHZ-state analyzers
- 7. Fidelity and other measures of quality of the state generation
- 8. Entanglement measures

von Neumann-type projective measurement	467 positive operator valued measures (POVM)
is represented by complete, orthonormal set of states $ \mu angle$	$=$ set of A_{μ} 's
	which are positive Hermitian operators acting on original Hilbert space
$P_{\mu} = \text{Tr}\{ \mu\rangle\langle\mu ho_{ m sys}\}$	$\sum_{\mu}A_{\mu}=1$
where	• probability that a quantum system is in a particular state is given by the
P_{μ} – probability that the system is in state $ \mu\rangle$	expectation value of the POVM operator corresponding to that state
= probability of the measurement outcome μ	$P_{\mu} = \operatorname{Tr}(A_{\mu}\rho_{\mathrm{sys}})$
	Advantages of POVM over PV measures
$ \mu\rangle\langle\mu $ – ineasurement operator of projection operator also called the projection valued (PV) measure	• the number of available outcomes may differ from the number of avail- able preparations (of a given state) and the dimension of the Hilbert space.
 measurement operators, corresponding to nonorthogonal states, 	• POVM allow the possibility of measurement outcomes associated with nonorthogonal states .
do not commute and are therefore not simultaneously observable	• POVM allow extraction of more mutual information that can the usual von Neumann-type projective measurement
466	468
Generalized projective measurement	How to distinguish conclusively between
• Let's prepare an auxiliary quantum system (ancilla) in a known state $\hat{\rho}_{aux}$	two non-ortnogonal states: (at leat sometimes)
The combined , uncorrelated state of the original quantum system and the ancilla is	Cryptographic example of POVM
$(ho_{ m Sys} \otimes ho_{ m aux})_{mM,nN} = (ho_{ m Sys})_{mn} (ho_{ m aux})_{MN}$ A maximal test is then performed in the combined Hilbert space K.	non-orthogonal linear polarization states $ u\rangle$ and $ v\rangle$
Different outcomes correspond to orthogonal and complete projectors $ \mu\rangle\langle\mu $	$\langle u v angle = \cos heta$
- probability of outcome μ :	where θ the angle between polarization vectors
$P_{\mu} = \operatorname{Tr}[\mu\rangle\langle\mu (\rho_{\mathrm{sys}} \otimes \rho_{\mathrm{aux}})] = \sum_{m,n,M,N} (\mu\rangle\langle\mu)_{mM,nN}(\rho_{\mathrm{sys}})_{mn}(\rho_{\mathrm{aux}})_{MN}$	Can you distinguish whether qubit is in state \ket{u} or \ket{v} ?
which be rewritten as	general state
$P_{\mu} = \mathrm{Tr}(A_{\mu} ho_{\mathrm{sys}})$	$ \psi\rangle=lpha u angle+eta v angle$
where $(A_{\mu})_{mn} = \sum_{M,N} (\mu\rangle\langle\mu)_{mM,nN}(ho_{\mathrm{aux}})_{MN}$	

POVM operators

469

are not projective measurements

$$A_u = \frac{1 - |u\rangle\langle u|}{1 + \langle u|v\rangle}, \quad A_v = \frac{1 - |v\rangle\langle v|}{1 + \langle u|v\rangle}$$

 $A_? = 1 - A_u - A_v$ ₩ inconclusive measurement

probabilities of measurements

$$\begin{split} P_i &= \langle \psi | A_i | \psi \rangle \\ P_u &= |\alpha|^2 (1 - \cos \theta), \quad P_v &= |\beta|^2 (1 - \cos \theta), \quad P_i &= |\alpha + \beta|^2 \cos \theta \end{split}$$

₩

special input states

Neumark's theorem

471

complete projectors $|\mu\rangle\langle\mu|$ such that A_{μ} is the result of projecting $|\mu\rangle\langle\mu|$ from such a way that there exists, in the extended space \mathcal{K} , a set of orthogonal and One can extend the Hilbert space \mathcal{H} of states, in which the A_{μ} are defined, in \mathcal{K} into \mathcal{H} .

physical implication

There always exists an experimentally realizable procedure generating any desired POVM represented by given matrices A_{μ}

most general measurement operator

It is also generally thought that a POVM belongs to the most general test to which a quantum system may be subjected.

analogy

a pure state of the bipartite system AB may behave like

a mixed states when we observe subsystem A alone,

similarly

an orthonormal measurement of the system AB may be

a nonorthonormal POVM on A alone

472

is an orthonormal basis of the environment Hilbert space where $|\{k_i\}\rangle \equiv |k_1 \cdots k_i \cdots \rangle = \prod_i \otimes |k_i\rangle$ So let's analyze evolution of both the system and environment:

 $\rho(0) = \rho_S(0) \otimes \rho_E(0) \longrightarrow \rho_{SE}(t) = U(t)\rho_S(0) \otimes \rho_E(0)U^{\dagger}(t)$

reduced density matrix

 $\rho_S(t) = \operatorname{Tr}_E \left\{ \rho_{SE}(t) \right\} = \sum \left\langle \{k_i\} | \rho_{SE}(t) | \{k_i\} \right\rangle$

• The final state of an open system cannot be described by a unitary transfor-

an elegant representation to describe open system dynamics

basic idea

= operator sum representation

Kraus representation

mation of the initial state.

• alternatively, the evolution can be given in the so-called **Kraus representation**

473

$$\rho_S(t) = \sum_{k=0}^{\infty} A_k(t) \rho_S(0) A_k^{\dagger}(t)$$

in terms of Kraus operators

$$I_{k}(t) = \sum_{\{k_{i}\}}^{k} \langle \{k_{i}\} | U(t) | \{0\} \rangle$$

where \sum ' stands for summation under the condition $\sum_i k_i = k$

completeness relation

$$\sum_k A_k^{\dagger}(t) A_k(t) = I$$

drawback

it seems extremely difficult to use K.r. if the environment is at T > 0

474

i.e. the qubit remains intact with probability 1-p and error (bit flip and/or phase flip) occurs with probability p

evolution of single qubit in depolarizing channel

$$U_{SE}: |\psi\rangle_{S} \otimes |0\rangle_{E} \to \sqrt{1-p} |\psi\rangle_{S} \otimes |0\rangle_{E} + \sqrt{\frac{p}{3}} \Big[\sigma_{x} |\psi\rangle_{S} \otimes |1\rangle_{E} + \sigma_{y} |\psi\rangle_{S} \otimes |2\rangle_{E} + \sigma_{z} |\psi\rangle_{S} \otimes |3\rangle_{E} \Big]$$

Kraus operators

$$A_{\mu} = E \langle \mu | U_{SE} | 0 \rangle_E$$

$$A_0 = \sqrt{1-p}, \quad A_1 = A_2 = A_3 = \frac{p}{3}$$

475

POVM modifies a density matrix as follows

$$\rho_s \to \sum_{\mu} \sqrt{F_{\mu}} \rho_s \sqrt{F_{\mu}}$$

where

$$F_{\mu} = A^{\dagger}_{\mu}A_{\mu}$$

and A_{μ} are Kraus operators

three types of errors 1. bit flip error

t flip error
$$|0
angle
ightarrow |1
angle, |1
angle
ightarrow |0
angle |\psi
angle
ightarrow \hat{\partial}_x|\psi
angle$$

2. phase flip error

$$|0\rangle \to |0\rangle, \quad |1\rangle \to -|1\rangle$$
$$|\psi\rangle \to \hat{\sigma}_{z}|\psi\rangle$$

3. both errors

$$\begin{array}{l} |0\rangle \rightarrow i|1\rangle, \quad |1\rangle \rightarrow -i|0\rangle \\ |\psi\rangle \rightarrow \hat{\sigma}_{y}|\psi\rangle \end{array}$$

where the σ_k are the **Pauli operators**

$$\hat{\sigma}_x \equiv \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \quad \hat{\sigma}_y \equiv \begin{bmatrix} 0 & -i\\ i & 0 \end{bmatrix}, \quad \hat{\sigma}_z \equiv \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}$$

damping channels for a single qubit

477

1. amplitude-damping channel

$$\begin{split} |0\rangle_S |0\rangle_E &\to |0\rangle_S |0\rangle_E \\ |1\rangle_S |0\rangle_E &\to \sqrt{1-p} |1\rangle_S |0\rangle_E + \sqrt{p} |0\rangle_S |1\rangle_E \end{split}$$

2. phase-damping channel

$$\begin{split} &|\rangle_{S}|0\rangle_{E} \rightarrow \sqrt{1-p}|0\rangle_{S}|0\rangle_{E} + \sqrt{p}|0\rangle_{S}|1\rangle_{E} \\ &\rangle_{S}|0\rangle_{E} \rightarrow \sqrt{1-p}|1\rangle_{S}|0\rangle_{E} + \sqrt{p}|1\rangle_{S}|2\rangle_{E} \end{split}$$

- it is a ,,caricature" model of decoherence in real systems
- no bit flip in system!

3. depolarizing channel

$$|\psi\rangle_{S}|0\rangle_{E} \rightarrow \sqrt{1-p}|\psi\rangle_{S}|0\rangle_{E} + \sqrt{\frac{p}{3}} \Big[\sigma_{x}|\psi\rangle_{S}|1\rangle_{E} + \sigma_{y}|\psi\rangle_{S}|2\rangle_{E} + \sigma_{z}|\psi\rangle_{S}|3\rangle_{E} \Big]$$

478 conditional measurements using imperfect photocounters

 $\leq \overline{c}$

renormalization constant

POVM for photocount detectors (I)

Perfectly-Resolving Photon Counter

$$\hat{\Pi}_{N} = \sum_{m=0}^{\infty} \sum_{n=0}^{N} e^{-\nu} \frac{\nu^{(N-n)}}{(N-n)!} \eta^{n} (1-\eta)^{m-n} C_{n}^{m} |m\rangle \langle m|$$

$$\eta - \text{inefficiency}$$

$$\nu - \text{dark count rate}$$

Conventional Photon Counter (CPC)

$$\hat{\Pi}_0^c = \sum_{n=1}^{\infty} e^{-\nu} (1-\eta)^m |m\rangle \langle m|$$
 (No click

$$\hat{\Pi}_{1}^{c} = 1 - \hat{\Pi}_{0}^{c} \quad (\text{Click})$$

Dark count rate
$$\sim 100 - 1000 \text{ s}^-$$

POVM for photocount detectors (II)

single-photon counter

$\hat{\Pi}_{0}^{\nu l} = \sum_{m=0}^{\infty} e^{-\nu} (1-\eta)^{m} |m\rangle \langle m| \text{ (no clicks)}$ $\hat{\Pi}_{1}^{\nu l} = \sum_{m=0}^{\infty} \sum_{n=0}^{1} e^{-\nu} \frac{\nu^{(1-n)}}{(1-n)!} \eta^{n} (1-\eta)^{m-n} C_{n}^{m} |m\rangle \langle m| \quad (1 \text{ click })$ $\hat{\Pi}_{2}^{\nu l} = 1 - \hat{\Pi}_{0}^{\nu l} - \hat{\Pi}_{1}^{\nu l} \quad (2 \text{ clicks })$

• high dark count rate
$$\sim 10^4 \text{ s}^{-1}$$

Photocounters (photon count detectors)

481

• Si APD = Si avalanche photodiode (working in Geiger mode)

 $\eta\sim 70-80\%$

 $F_{\text{noise}} \ge 2 \implies \text{relatively high noise} \implies \text{useless for QC}$

• PMT = photomultiplier tube

 $\eta < 25\%$ ~~ for detection of single photon

- $\eta \sim 6\%$ for detection of two photons
- SSPM = solid state photomultiplier

 $\eta \sim 70-80\%$

 $F_{\text{noise}} = 1 \implies \text{basically noise free}$

• VLPC = visible light photon counters

with noise free avalanche photomultiplication

- $\eta \sim 88\%$ for detection of single photon
- $\eta \sim 47\%~$ for detection of two photons
- $\tau \sim 2ns \Rightarrow$ small resolution time (for detection of two photons)

Bell-state and GHZ-state analyzers

• How to discriminate between the optical Bell states?

$$|\Psi^{\pm}\rangle = \frac{|01\rangle \pm |10\rangle}{\sqrt{2}}$$
$$|\Phi^{\pm}\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}}$$

• Do they exist perfect linear Bell-state analyzers?

Is it possible to unambiguously discriminate between all the Bell states using only linear optics?

• How to distinguish experimentally the GHZ states?

$$\mathbf{g} = \mathbf{c}$$

$$\mathbf{polarization GHZ states}$$

$$|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|H\rangle|H\rangle|H\rangle + |V\rangle|V\rangle|V$$

$$|\Psi_{1}^{\pm}\rangle = \frac{1}{\sqrt{2}} (|V\rangle|H\rangle|H\rangle + |H\rangle|V\rangle|V\rangle$$

$$|\Psi_{2}^{\pm}\rangle = \frac{1}{\sqrt{2}} (|H\rangle|V\rangle|H\rangle + |V\rangle|H\rangle|V\rangle$$

$$|\Psi_{3}^{\pm}\rangle = \frac{1}{\sqrt{2}} (|H\rangle|H\rangle|V\rangle + |V\rangle|V\rangle|H\rangle$$

Not complete linear Bell-state analyzer

probability to discriminate unambiguously between all the Bell states is

$$P_{\rm success} \le \frac{1}{2}$$

[Calsamiglia i Lütkenhaus, 2000]

Do they exist perfect Bell-state linear analyzers?

No-go theorem:

There is no perfect Bell state linear analyzer on two qubits in polarization entanglement without conditional measurements.

Calsamiglia-Lütkenhaus theorem:

Within this subclass it is not possible to discriminate unambiguously four equiprobable Bell states with a probability higher than 50%.

Why no-go?

Linear optical elements can provide any arbitrary unitary mapping only over creation operators, not over a general input state.

1. Fidelity Measures of quality of the state generation

= Uhlmann's transition probability for mixed states

$$F(\hat{\rho}_{\mathrm{exp}}, \hat{\rho}_{\mathrm{th}}) \,=\, \left\{ \mathrm{Tr}\left[\sqrt{\sqrt{\hat{\rho}_{\mathrm{th}}} \hat{\rho}_{\mathrm{exp}}} \sqrt{\hat{\rho}_{\mathrm{th}}} \right] \right\}^2$$

signal

Kerr

 $\hat{\rho}_{\rm th}$ – theoretically predicted density matrix $\hat{\rho}_{exp}$ – density matrix for the experimentally generated state

2. Bures distance

a measure of discrepancy between $\hat{\rho}_{exp}$ and $\hat{\rho}_{th}$:

$$D_B(\hat{
ho}_{\mathrm{exp}}||\hat{
ho}_{\mathrm{th}}) = 2 - 2\sqrt{F(\hat{
ho}_{\mathrm{exp}},\hat{
ho}_{\mathrm{th}})}$$

• it satisfies the usual metric properties including symmetry

$$D_B(\hat{\rho}_{\exp}||\hat{\rho}_{th}) = D_B(\hat{\rho}_{th}||\hat{\rho}_{\exp})$$

3. Quantum relative entropy = Kullback-Leibler 'distance' 496

$$S(\sigma || \rho) = \operatorname{Tr}(\sigma \lg \sigma - \sigma \lg \rho)$$

it is not a true metric since

$$S(\sigma || n) \neq S(n || \sigma)$$

$$S(\sigma || \rho) \neq S(\rho || \sigma)$$

4

$$S(\sigma || \rho) \neq S(\rho || \sigma)$$

$$S(\sigma || \rho) \neq S(\rho || \sigma)$$

$$S(\sigma||\rho) \neq S(\rho||\sigma)$$

$$S(\sigma || \rho) \neq S(\rho || \sigma)$$

$$(o||q)c \neq (q||o)c$$

5. Relative entropy of entanglement

over set \mathcal{D} of all separable states ρ :

 $\bar{\rho}$ is the separable state closest to $\sigma.$

 $E(\sigma) = \min_{\rho \in \mathcal{D}} S(\sigma || \rho) = S(\sigma || \overline{\rho})$

minimum of the quantum relative entropy

$$\sigma(\sigma||\sigma) \neq \sigma(\sigma||\sigma)$$

$$S(\sigma||\rho) \neq S(\rho||\sigma)$$

- used by us in the tomographic reconstruction of physical density matrices

QND – Fock filter

Criteria for a good entanglement measure

 ρ – the density matrix of a given state

C1. $E(\rho) \ge 0$ $E(\rho) = 0$ for an **unentangled state** $E(\rho) = 1$ for a **Bell state** C2. local unitary transformations $U_A \otimes U_B$ do not change $E(\rho)$

C3. LOCC operations cannot increase $E(\rho)$

C4. Entanglement is **CONVEX** under discarding information: $\sum_{i} p_{i} E(\rho_{i}) \ge E(\sum_{i} p_{i}\rho_{i})$ i.e., mixing cannot increase $E(\rho)$ **C5.**^{*} $E(\rho)$ should reduce to the entropy of entanglement for a **pure state**

Measures of entanglement

- entanglement of formation E_F
- entanglement cost $E_C = \lim_{n \to \infty} \frac{E_F(\rho^{\otimes n})}{n}$
- relative entropy of entanglement E_R
- entanglement of distillation E_D
- •

for pure states

$$E_F = E_C = E_R = E_D$$

for mixed states

 $E_F \geq E_C \geq E_R \geq E_D$

Negativity

[Życzkowski et al. PRA'98, Eisert, Plenio JMO'99, Vidal, Werner, PRA'02]

501

a quantitative version of the Peres-Horodecki entanglement criterion [Peres, PRL'96, Horodecki et al., PLA'96] $N(\alpha) = \max f(0) = 2 \min \alpha d$

 $N(\rho) = \max\{0, -2\min_{i}\mu_{i}\}\$ $N(\rho) = \max\{0, -2\sum_{i}\mu_{i}\}\$

where μ_i eigenvalues of the partial transpose of ho

Logarithmic negativity

 $E_N(\rho) = \log_2[N(\rho) + 1]$ a measure of the PPT entanglement cost

[Audenaert et al. PRL'03, Ishizaka PRA'04]

 E_N gives upper bounds on the teleportation capacity and the entanglement of distillation E_D [Vidal, Werner PRA'02]

502

Relative entropy of entanglement (REE) [Vedral, Plenio, Jacobs, Knight, PRA'1997] $E(x) = \inf_{x \in [x_1, x_2]} = E(x_{11}) = E(x_{11})$

$$E(\sigma) = \inf_{\rho \in \mathcal{D}} S(\sigma || \rho) = S(\sigma || \rho^*)$$

 ρ^* – the closest separable state to σ

quantum relative entropy

or a quantum Kullback-Leibler distance

$$S(\sigma||\rho) = \operatorname{Tr}(\sigma \log \sigma - \sigma \log \rho)$$

NOTE:

 $S(\sigma || \rho)$ is a "distance" between σ and ρ

• but it is not a true metric:

it is neither symmetric nor satisfies the triangle inequality

• it is not a unique measure of the distance:

see also Bures measure with the Uhlmann transition probability (or fidelity) $S'(\sigma || \rho) = 2 - 2\sqrt{F(\sigma, \rho)}$ with $F(\sigma, \rho) = [Tr(\sqrt{\rho}\sigma\sqrt{\rho})^{1/2}]^2$

504

Bell-inequality violation

For two qubits the Bell inequality due to Clauser, Horne, Shimony and Holt (CHSH) [PRL'69]:

 $|\operatorname{Tr}(\rho \mathcal{B}_{\mathrm{CHSH}})| \leq 2$

where Bell operator is

 $\mathcal{B}_{CHSH} = \mathbf{a} \cdot \boldsymbol{\sigma} \otimes (\mathbf{b} + \mathbf{b}') \cdot \boldsymbol{\sigma} + \mathbf{a}' \cdot \boldsymbol{\sigma} \otimes (\mathbf{b} - \mathbf{b}') \cdot \boldsymbol{\sigma}$

and arbitrary ρ in Hilbert-Schmidt basis is

$$\rho = \frac{1}{4} \left(I \otimes I + \mathbf{r} \cdot \boldsymbol{\sigma} \otimes I + I \otimes \mathbf{s} \cdot \boldsymbol{\sigma} + \sum_{n,m=1}^{3} t_{nm} \sigma_n \otimes \sigma_m \right)$$

with $t_{nm} = \operatorname{Tr} \left(\rho \, \sigma_n \otimes \sigma_m \right)$

Horodecki et al. [PLA'95] showed that

 $\max_{\mathcal{B}_{CHSH}} \operatorname{Tr} \left(\rho \, \mathcal{B}_{CHSH} \right) = 2 \, \sqrt{M(\rho)}$ where $M(\rho) = \max_{j < k} \{ u_j + u_k \};$

 u_j are eigenvalues of $U_{\rho} = T_{\rho}^{T} T_{\rho}$; $T_{\rho} = [t_{nm}]_{3\times 3}$

505		
	(BIV)	
	riolation	
	quality v	
	Bell-ine	
	of the	
	egree	

ă

Horodecki theorem: the Bell inequality is violated iff $M(\rho) > 1$

useful parameter

$$B(\rho) \equiv \sqrt{\max\left\{0, M(\rho) - 1\right\}}$$

then

state ho admits local hidden variable model the maximal violation of Bell inequality ↑ ↑ $B(\rho) = 0$ $B(\rho) = 1$

Entanglement measures for two-qubit pure states $|\Psi\rangle = c_{00}|00\rangle + c_{01}|01\rangle + c_{10}|10\rangle + c_{11}|11\rangle$

 $C(\Psi) = N(\Psi) = B(\Psi) = 2|c_{00}c_{11} - c_{01}c_{10}|$

506

Two-qubit Werner states

1. Definition

Mixture of the maximally entangled state (singlet) $|\Psi^-\rangle$ and the (separable) maximally mixed state [Werner, PRA'89]:

$$\rho_W = p |\Psi^-\rangle \langle \Psi^-| + \frac{1-p}{4} I \otimes I \quad \text{for} \quad 0 \le p \le 1$$

2. Degree of Bell-inequality violation

$$B(\rho_W) = \max\{0, 2p^2 - 1\}^{1/2}$$

thus the Werner state violates the Bell inequality $\operatorname{iff} 1/\sqrt{2}$

3. Concurrence & negativity

$$C(\rho_W) = N(\rho_W) = \max\left\{0, \frac{1}{2}(3p-1)\right\}$$

states are entangled iff 1/3 .

↑

Entanglement without Bell inequality violation for $p \in \left(\frac{1}{3}, \frac{1}{\sqrt{2}}\right)$

CONJECTURE

Entanglement measures should impose the same ordering of states

 $E'(
ho_1) < E'(
ho_2) \Leftrightarrow E''(
ho_1) < E''(
ho_2)$

QUESTIONS:

Can this condition be violated? Yes.

Eisert and Plenio [J. Mod. Opt. 1999] - numerical example

Is it a necessary condition for consistency of entanglement measures? Strange, but no. **Eisert-Plenio conclusion from Monte Carlo simulations:**

ordering of states can depend on the applied measures of entanglement

Virmani-Plenio theorem:

are either equivalent or do not impose the same state ordering which reduce to the entropy of entanglement for pure states, all good asymptotic entanglement measures,

Why is it so?

It is implied by the requirements of equivalence and continuity of the measures on pure states

Is it physically reasonable?

transformed to each other with unit efficiency by LOCC. Yes, as these incomparable states cannot be

Can we avoid the state-ordering ambiguity?

examining the problems of how to prepare and use the entanglement. No, if we want to define entanglement measures for

512 Upper & lower bounds for negativity vs concurrence

Questions

1. Can we find analytical examples of two-qubit states for which entanglement measures impose different orderings ?

2. Are there mixed states more entangled than pure states **???**

3. Can we find a physical process manifesting the different orderings ?

513 Upper & lower bounds for negativity vs concurrence

[Verstraete et al. JPA'01]

$$C(\rho) \ge N(\rho) \ge \sqrt{\left[1 - C(\rho)\right]^2 + C^2(\rho)} + C(\rho) - 1 \equiv f_C(\rho)$$

Structure of the extremal states:

$$1. N(\rho) = C(\rho) \iff$$

the eigenvector corresponds to the negative eigenvalue of ρ^{TA} is a Bell state

 \Rightarrow states have the maximum negativity for a given concurrence

2.
$$N(\rho) = f_C(\rho) \iff$$

two eigenvalues are vanishing and the other two correspond to eigenvectors, which are a Bell state and separable state orthogonal to it \Rightarrow states have the minimum negativity for a given concurrence

514

- Examples of the minimum-negativity states
- 1. Horodecki state $\rho_H(p) = p |\psi_-\rangle\langle\psi_-| + (1-p)|00\rangle\langle00|$
- 2. Horodecki-like state $\rho'_H(p) = p|\psi_-\rangle\langle\psi_-| + (1-p)|\psi'\rangle\langle\psi'|$ where $|\psi'\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$ \Rightarrow concurrence $C(\rho_H) = p$

negativity
$$N(\rho_H) = \sqrt{(1-p)^2 + p^2} - (1-p)$$

• Examples of the maximum-negativity states

1. pure states

- 2. Bell diagonal states
- 2(a) Werner state $ho_W(p) = p |\psi_-\rangle\langle\psi_-| + rac{1-p}{4}I \otimes I$

$$\Rightarrow N(\rho_W) = C(\rho_W) = \max\{0, \frac{3p-1}{2}\}$$

Regions of different state orderings for negativity N and concurrence ${\cal C}$

Two states, when one corresponds to a point O (or X) and the other to any other point in yellow regions, exhibit different state orderings for N and C.

Explicit examples of states extremely violating the ordering condition

Let us choose the Horodecki state:

$$\rho X = \rho H (1/2$$

and the Werner states:

$$p_{Y} = \rho_{W}(\sqrt{2}/3),$$

$$p_{Z} = \rho_{W}(2/3),$$

$$p_{V} = \rho_{W}(1/3 + \sqrt{2}/6),$$

pure state $|\Psi(p)\rangle = \sqrt{p} |01\rangle + \sqrt{1-p} |10\rangle;$

$$p_{Y} = |\Psi(p)\rangle \langle \Psi(p)| \text{ for } p = 1/2 \pm \sqrt{1+2\sqrt{2}}/4,$$

$$p_{Z} \text{ for } p = 1/2 \pm \sqrt{3}/4,$$

$$p_{V} \text{ for } p = 1/2 \pm \sqrt{14}/8$$

or

(c) states for which $C(\rho_1) - C(\rho_2) = -[N(\rho_1) - N(\rho_2)]$ (b) states with constant concurrence

States specifically violating the ordering condition $\bar{\rho}(p,q) = p|\psi_{-}\rangle\langle\psi_{-}| + (1-p)|\psi_{q}\rangle\langle\psi_{q}|$ with $|\psi_q\rangle = \sqrt{1-q}|00\rangle + \sqrt{q}|01\rangle$ 518

then

$$N(\bar{\rho}(p,q)) = \sqrt{1-2p(1-p)(1-q)} - (1-p)$$

$$C(\bar{\rho}(p,q)) = p$$
• Three classes of states:
1. states with the same negativity N_0 :
 $p' = \bar{\rho}(p,q')$ for $q' = \frac{N_0[N_0+2(1-p)]-p^2}{2p(1-p)}$
2. states with the same concurrence C_0 :
 $p'' = \bar{\rho}(C_0,q)$
3. states giving exactly opposite predictions:

REE for Bell diagonal (including Werner) states REE vs concurrence and negativity

 $E_W(C) = E_W(N) = \frac{1}{2} \left[(1+C) \log(1+C) + (1-C) \log(1-C) \right]$

REE for pure states

$$E_P(C) = E_P(N) = H\left(\frac{1}{2}[1 + \sqrt{1 - C^2}]\right)$$

$\sigma_H = C |\psi_-\rangle \langle \psi_-| + (1 - C) |00\rangle \langle 00|$ **REE** for Horodecki states

$$E_H(C) = (C-2)\log(1 - C/2) + (1 - C)\log(1 - C)$$
$$E_H(C = \sqrt{2N(1 + N)} - 1)$$

Numerics for two-qubit REE:

520

[Vedral and Plenio, PRA'1998]

Caratheodory's theorem:

at most $(\dim(H_A) \times \dim(H_B))^2$ products of pure states Any state in \mathcal{D} can be decomposed into a sum of

Thus, any disentangled 2 qubit state can be given by

$$=\sum_{i=1}^{16} p_i |\psi_{Ai}\rangle \langle \psi_{Ai}| \otimes |\psi_{Bi}\rangle \langle \psi_{Bi}|$$

$$\rho = \sum_{i=1} p_i |\psi_{Ai}\rangle \langle \psi_{Ai}| \otimes |\psi_{Bi}\rangle \langle \psi_{Bi}|$$

here are at most
$$15 + 16 \times 4 = 79$$
 real parameters

∜

How to minimize $S(\sigma || \rho)$ over 79 parameters?

 $S(\sigma || \rho)$ is a convex function

 $\rho''' = \bar{\rho}(p,q''')$ for $q''' = 1 + \frac{[N(\rho) + C(\rho) + 1 - 2p]^2 - 1}{2n(1-n)}$

2p(1-p)

a convex function over a convex set can only have a global minimum \mathcal{D} is a convex set (convex hull) of its pure states

Numerical simulations of 5×10^4 states

number of electrons: from 0 to hundreds size of q-dots: from 30 nm to 1 micron parameters

number of electrons in a q-dot can be adjusted by changing the dot electrostatic environment useful property

number of electrons

small metal or semiconductor boxes that hold a well-defined Quantum dots (q-dots or artificial atoms) are

528

What are the quantum dots?

wit	lantum
h quantum	information
dots	processing

1. based on electron spins of quantum dots

using optical methods

F im dots

using NMR methods

<u>5</u>		
based		
on		
nuclear		
spins		
of		
quantu		

10.	? • • • • • • • • • • • • • • • • • • •	* •	×, -
, ii	, ,	s.	2

∄ Ì

ħ

Class 1	Concurrences $C(\sigma') < C(\sigma'')$	Negativities $N(\sigma') < N(\sigma')$	σ")
2	$C(\sigma') < C(\sigma'')$	$N(\sigma') > 1$	$N(\sigma'')$
ω	$C(\sigma') > C(\sigma'')$	$N(\sigma') < J$	$N(\sigma'')$
4	$C(\sigma') < C(\sigma'')$	$N(\sigma') < 1$	$N(\sigma'')$
S	$C(\sigma') = C(\sigma'')$	$N(\sigma') = I$	$V(\sigma'')$
9	$C(\sigma') < C(\sigma'')$	$N(\sigma') = I$	$V(\sigma'')$
7	$C(\sigma') = C(\sigma'')$	$N(\sigma') < i$	$V(\sigma'')$
8	$C(\sigma') < C(\sigma'')$	$N(\sigma') < I$	$V(\sigma'')$
9	$C(\sigma') = C(\sigma'')$	$N(\sigma') = I$	$V(\sigma'')$
10	$C(\sigma') < C(\sigma'')$	$N(\sigma') = I$	$V(\sigma'')$
11	$C(\sigma') = C(\sigma'')$	$N(\sigma') < 1$	$N(\sigma'')$
12	$C(\sigma') > C(\sigma'')$	$N(\sigma') = I$	$V(\sigma'')$
13	$C(\sigma') = C(\sigma'')$	$N(\sigma') > I$	$V(\sigma'')$
14	$C(\sigma') < C(\sigma'')$	$N(\sigma') > 1$	$V(\sigma'')$

Table 1: All cases of different state orderings by E, C & N.

526

All cases of different state orderings

$$\begin{aligned} & |1\rangle_{h} & (||_{h}) > ||_{h} > ||_$$

2. valence-band levels $|v\rangle_n$ are far off resonance.

533

conduction band

535 Derivation of q-dot interaction Hamiltonian

Frenkel-type model or Heisenberg model

 $\hat{H}_{\text{int}} = \hbar \sum_{n \neq m} T_{nm} \left[\hat{\sigma}_n^+ \hat{\sigma}_m^- + \hat{\sigma}_n^- \hat{\sigma}_m^+ + \gamma (\hat{\sigma}_n^+ \hat{\sigma}_m^+ + \hat{\sigma}_n^- \hat{\sigma}_m^-) \right]$ Spin van der Waals (SVW) model

Frenkel model for T_{nm} =const

 $\hat{H}_{\text{int}} = \kappa \sum_{n \neq m} [\hat{\sigma}_n^+ \hat{\sigma}_m^- + \hat{\sigma}_n^- \hat{\sigma}_m^+ + \gamma (\hat{\sigma}_n^+ \hat{\sigma}_m^+ + \hat{\sigma}_n^- \hat{\sigma}_m^-)]$

Conservative SVW model (CE model)

SVW model for $\gamma = 0$

 $\hat{H}_{\text{int}} = \kappa \sum_{n \neq m} \hat{\sigma}_n^+ \hat{\sigma}_m^- + \hat{\sigma}_n^- \hat{\sigma}_m^+$

Non-conservative SVW model (NCE model)

SVW model for $\gamma = 1$

 $\hat{H}_{\text{int}} = 4\kappa \sum_{n \neq m} \hat{\sigma}_n^x \hat{\sigma}_m^x$

Entangled webs in spin van der Waals (SVW) model

Tight bound for symmetric sharing of entanglement $C_{ij} \leq 2/N$

[Koashi, Bužek, Imoto, PRA'00]

Q-dot bipartite entanglement in SVW model

Quantum Computing Based on Nuclear Magnetic Resonance (NMR)

- 1. nuclear qubits and qudits
- 2. control of nuclear spins
- 3. pseudo-pure states
- 4. quantum gates
- 5. quantum algorithms
- 6. tomography of nuclear spins

caffeine molecule - qubits encoded in nonequivalent C-nuclei

CHEMICAL NAME : 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione

542

544

Zeeman interaction

quadrupole interaction

2nd order shifts

(usually neglected)

 ${}^{\circ}$

 $\omega_{01} = \omega_0 - \omega_0$

 ε_{0}

 $\omega_{12} = \omega_0$

 ω_{12}

 $\frac{3}{2}, \frac{1}{2}$

°

 \hat{s}

 $\omega_{23} = \omega_0 + \omega_q$

 $\omega_{_{23}}$

 $\left|\frac{3}{2},-\frac{3}{2}\right\rangle$

quartit = ququart = 4-level qudit

- M magnetization vector of an ensemble of nuclear spins
- \mathbf{B}_0 static magnetic field
- \mathbf{B}_1 magnetic field component of the r.f. field
- M_{xy} transverse component of M precessing in the x-y plane (Larmor precession)

 M_z – longitudinal component of M static along B_0

546

rotations via NMR techniques

Z-rotation

corresponds to free evolution of a spin-1/2 system without r.f. fields

 $\hat{\mathcal{H}}_0 = \frac{1}{2}\hbar\omega_0\hat{\sigma}_z$

- Hamiltonian
- solution of Schödinger equation

$$|\psi(t_p)\rangle = \hat{R}_z(\omega_0 t_p)|\psi(0)\rangle$$

in terms of the propagator

$$\hat{R}_{z}(\omega_{0}t_{p}) = \exp\left[\frac{1}{i\hbar}\hat{\mathcal{H}}_{0}t_{p}\right] = \begin{bmatrix} e^{-i\omega_{0}t_{p}/2} & 0\\ 0 & e^{i\omega_{0}t_{p}/2} \end{bmatrix},$$

which is equal to $\hat{Z}(\theta)$ for $\theta = \omega_0 t_p$.

X- and Y-rotations

assumptions

coil is along x-axis generating an r.f. pulse field

 $\mathbf{B}_{\mathrm{rf}}(t) = B_{\mathrm{rf}} \cos(\omega_{\mathrm{ref}} + \phi_p) \mathbf{e}_x$

- ϕ_p is the phase of the pulse
- $-B_{\rm rf}$ is the amplitude of the oscillating r.f. field

 - $-\omega_{
 m ref}$ is the spectrometer reference frequency

- spin Hamiltonian during the r.f. pulse set on resonance
 - - $\omega_{\rm Larmor} = \omega_{\rm ref}$
- Hamiltonian in the rotating frame
- $\hat{\mathcal{H}}'_{\mathrm{rf,rot}} = \frac{\hbar\omega_{\mathrm{nut}}}{2} (\hat{\sigma}_x \cos \phi_p + \hat{\sigma}_y \sin \phi_p)$ where $\omega_{\rm nut} = \gamma B_{\rm rf}$ is the nutation frequency

solution of Schödinger equation

549

nutation angle $\theta_p = \omega_{nut} t_p$, and general phase ϕ_p can be given as for a pulse at resonant frequency ω of duration t_p , which corresponds to the

$$|\psi(t_p)\rangle = \hat{\chi}(\phi_p, \theta_p) |\psi(0)\rangle$$

where the **propagator** is

$$\begin{split} \hat{\chi}(\phi_p, \theta_p) &= \exp\left[\frac{1}{i\hbar}\hat{\mathcal{H}}'_{\mathrm{rf,rot}}t_p\right] \\ &= \exp\left[-\frac{i}{2}\theta_p(\hat{\sigma}_x\cos\phi_p + \hat{\sigma}_y\sin\phi_p)\right] \\ &= \left[\cos\frac{\theta_p}{2} - i\exp(-i\phi_p)\sin\frac{\theta_p}{2} - i\exp(-i\phi_p)\sin\frac{\theta_p}{2}\right] \\ &= \hat{Z}(\phi_p)\hat{X}(\theta_p)\hat{Z}(-\phi_p) \end{split}$$

special cases

$$\hat{X}(\theta) = \hat{\chi}(0,\theta)$$

 $\hat{\chi}(\theta) = \hat{\chi}(\pi/2,\theta)$

selective rotations in a quartit

 $X_{01}(\frac{\pi}{2})$

$$\begin{split} \hat{X}_{01}(\frac{\pi}{2}) &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 & 0\\ -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \hat{X}_{12}(\frac{\pi}{2}) &= \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0\\ 0 & -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \\ \hat{X}_{02}(\frac{\pi}{2}) &= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 1\\ -\frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \hat{Y}_{01}(\frac{\pi}{2}) &= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \dots \\ \hat{X}_{01}(\pi) &= \begin{pmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \dots \end{split}$$

 $X_{01}(\pi)$

 $\begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$

 $(0 \ 0 \ 0 \ 1)$

551 Who has introduced NMR quantum computing?

the method has been developed independently by:

- 1. Cory, Fahmy, Havel in the article on "NMR spectroscopy: an experimentally accessible paradigm for quantum computing" (1996)
- 2. Gershenfeld and Chuang in "Bulk quantum computation" (1996).

How to generate pseudo-pure states?

pseudo-pure states (PPS) or effective pure states

can be obtained via

- 1. spatial averaging
- 2. temporal averaging
- 3. logical labeling

Here, we describe only a version of spatial averaging.

How to obtain pseudo-pure states?

552

population of the spin energy level $|k\rangle$

$$V_k = A + (4 - k)\Delta$$

where

$$A = \frac{N}{4} - \frac{5N\hbar\omega_0}{8k_BT}, \quad \Delta = \frac{N\hbar\omega_0}{4k_BT},$$

$$N - \text{total umber of spins}$$

where

$$4 = \frac{N}{4} - \frac{5N\hbar\omega_0}{8k_BT}, \quad \Delta = \frac{N\hbar\omega_0}{4k_BT},$$

$$N - \text{total umber of spins}$$

$$\frac{|2\rangle \bullet \bullet \bullet}{|1\rangle \bullet \bullet \bullet \bullet}$$

$$\frac{|0\rangle \bullet \bullet \bullet \bullet \bullet}{\text{thermal}}$$

 $\bullet \bullet \leftrightarrow \Delta$ – relative occupation of the corresponding quantum level **Assumption:** quadrupole interaction *«* Zeeman interaction

Note: A does not contribute to the observed NMR signal

 ω_0 – Larmor frequency

• states $(-|k\rangle)$

Interchanging pseudo-pure states in a quartit

Whether $|11\rangle$ or $|00\rangle$ is the most populated depends on our labeling and direction of external magnetic field. 556 How to prepare equally-weighted superposition of pseudo-pure states in a quartit?

Apply gate equivalent to two-qubit Hadamard gate.

 $\frac{1}{2}\sum_{k}|k\rangle$

•••• ••••

••••• .

0)

1>

thermal

qubit B

 $R_k(\theta)$

 $\frac{2}{2}$

 $R_k(\theta)$

 $-\omega_{23}$

|||

 ω_{12}

 $\hbar a \overline{a_{01} \ddagger R_k(heta)} ig|{}^1
ight
angle {}^0
ight
angle$

Ш

 $\hbar\omega_{23}|R_k(\theta)$

 $R_k(\theta)$

 $\boldsymbol{\omega}_{_{01}}$

 $| 3 \rangle$

qubit A

557

560

How to rotate "qubit" B in a quartit?

R A

simultaneous application of pulses

561

How to rotate "qubit" A in a quartit?

NOT gate for a qubit

$$\hat{\mathcal{I}}_{\text{NOT}} = \hat{\sigma}_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = i\hat{X}(\pi)$$

NOT gate for qubit A in a quartit

$$\hat{U}_{\text{NOT}}^{A} = \hat{U}_{\text{NOT}} \otimes \hat{I} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \hat{U}_{\text{NOT}}^{A} = i\frac{\hat{X}_{02}(\pi)\hat{X}_{13}(\pi)}{\hat{X}_{13}(\pi)}$$

NOT gate for qubit B in a quartit

$$\hat{U}_{\text{NOT}}^{B} = \hat{I} \otimes \hat{U}_{\text{NOT}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \hat{U}_{\text{NOT}}^{B} = i \frac{\hat{X}_{01}(\pi) \hat{X}_{23}(\pi)}{\hat{X}_{23}(\pi)}$$

566

Hadamard gates via rotations

567

• Hadamard gate for a qubit

$$\hat{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} = i \hat{X}(\pi) \hat{Y}(\frac{\pi}{2}) = i \hat{Y}(\frac{\pi}{2}) \hat{Z}(\pi)$$

Hadamard gate for qubit A in a quartit

$$\hat{H}^{A} = \hat{H} \otimes \hat{I} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1\\ 1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1 \end{bmatrix} = i \hat{Y}_{12}(\pi) \hat{X}_{01}(\pi) \hat{Y}_{01}(\frac{\pi}{2}) \hat{X}_{23}(-\pi) \hat{Y}_{23}(-\frac{\pi}{2}) \hat{Y}_{12}(-\pi) \hat{Y}_{12}(-\pi) \hat{Y}_{13}(-\pi) \hat{Y}_{13}(-\pi$$

Hadamard gate for qubit B in a quartit

$$\hat{H}^{B} = \hat{I} \otimes \hat{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0\\ 1 & -1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 1 & -1 \end{bmatrix} = i\hat{X}_{01}(\pi)\hat{Y}_{01}(\frac{\pi}{2})\hat{X}_{23}(\pi)\hat{Y}_{23}(\frac{\pi}{2})$$

$$\begin{array}{c} \sqrt{2} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \\ \end{array}$$

568 Equivalent realizations of Hadamard gate
$$H^B$$
 (up to factor i)

qubit A

qubit B 🗕

Η

 $\omega_{_{23}}$

I

III

 $\omega_{_{12}}$

I

 H^{B}

T

 $\omega_{_{01}}$

I

I

Ш

|||

 $Y(\frac{\pi}{2}) \mapsto X(\pi) \mapsto$

 $\dashv Z(\pi) \dashv Y(\frac{\pi}{2}) \vdash$

 $Y(\frac{\pi}{2}) \mid X(\pi) \mid$

 $- Z(\pi) - Y(\frac{\pi}{2}) -$

Ш

CNOT gates via rotations

$$\hat{U}_{\text{CNOT1}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \text{diag}([1, 1, 1, -1]) \cdot Y_{12}(\pi) \hat{Y}_{23}(\pi) \hat{Y}_{12}(-\pi)$$

SWAP	out	00	10	01	11
	-u i	00	01	10	11
CNOT 2	out	00	11	10	01
	-u i	00	01	10	11
CNOT1	out	00	01	11	10
	- L L	00	01	10	11

CNOT gates of 2 virtual qubits

a circuit for Grover search in two qubits

NMR detections of magnetization of a spin-3/2

584

diagonal elements marked in boxes: • M_{xy} -detection of a two spin-1/2 system enables determination of the off-

	ح ا	>> 	
ρ_{30}	$ ho_{20}$	$ ho_{10}$	ρ_{00}
ρ_{31}	ρ_{21}	ρ_{11}	$ ho_{01}$
$ ho_{32}$	ρ_{22}	$ ho_{12}$	$ ho_{02}$
ρ_{33}	ρ_{23}	ρ_{13}	$ ho_{03}$

• M_{xy} -detection of a spin-3/2 system gives the other off-diagonal elements:

	Ч 	>> 	
ρ_{30}	$ ho_{20}$	ρ_{10}	ρ_{00}
ρ_{31}	ρ_{21}	$ ho_{11}$	$ ho_{01}$
ρ_{32}	ρ_{22}	$ ho_{12}$	$ ho_{02}$
$ ho_{33}$	ρ_{23}	$ ho_{13}$	$ ho_{03}$

• M_z -detection of a spin-3/2 system gives:

Ô || $\begin{bmatrix} \hline D00 & \rho_{01} & \rho_{02} & \rho_{03} \\ \rho_{10} & \hline D11 & \rho_{12} & \rho_{13} \\ \rho_{20} & \rho_{21} & \hline D22 & \rho_{23} \\ \rho_{30} & \rho_{31} & \rho_{32} & \hline D33 \end{bmatrix}$

fomography of 4-level system				$X_{23} \left \left X_{13} \right \right $	$ \begin{array}{c c} & & \\ \hline \\ & & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$	X_{12} X_{22} X_{23} X_{23}	X_{01} \downarrow	(3+2+1)=6	so 12 readouts (including Y-rotations)	588 a natural set of rotations for tomography of a quartit state	• single-photon transitions	$\hat{R}_1 = \hat{X}_{01}(rac{\pi}{2}), \hat{R}_2 = \hat{Y}_{01}(rac{\pi}{2}) \ \hat{\mathcal{D}}_2 = -\hat{\hat{Y}}_{12}(\pi) \hat{\mathcal{D}}_1 = -\hat{\hat{Y}}_{12}(\pi)$	$\hat{R}_5 = \hat{X}_{23}(\frac{\pi}{2}), \hat{R}_6 = \hat{Y}_{23}(\frac{\pi}{2})$	• two-photon transitions	$\hat{R}_7 = \hat{X}_{02}(rac{\pi}{2}), \hat{R}_8 = \hat{Y}_{02}(rac{\pi}{2}) \ \hat{R}_9 = \hat{X}_{13}(rac{\pi}{2}), \hat{R}_{10} = \hat{Y}_{13}(rac{\pi}{2})$	there and the second se	• unce-proton transmons $\hat{R}_{11} = \hat{X}_{03}(rac{\pi}{2}), \hat{R}_{12} = \hat{Y}_{03}(rac{\pi}{2})$
NMR quantum state tomography is a method for complete reconstruction of a given density	is a mean of comprete reconstruction of a given density matrix $\hat{\rho}$ in a serious of NMR measurements.	Principle ideas	• M_{xy} and M_z detections give only some elements of $\hat{ ho}$	• The remaining matrix elements can be obtained by rotating the original density matrix $\hat{\rho}$ through properly chosen rotational operations \hat{R}_k :	$\hat{ ho}^{(k)} \;=\; \hat{R}_k \hat{ ho} \hat{R}_k^\dagger$	1. Chuang's set of rotations for M_{xy} tomography of 2 qubits	$\hat{R}_1 = \hat{I} \otimes \hat{I}, \hat{R}_2 = \hat{I} \otimes \hat{X}, \hat{R}_3 = \hat{I} \otimes \hat{Y}, \ \hat{R}_{\cdot} - \hat{Y} \otimes \hat{I} \hat{R}_{\cdot} - \hat{X} \otimes \hat{Y} \hat{R}_{\cdot} - \hat{X} \otimes \hat{Y}$	$egin{array}{lll} \mathbf{n}_4 &= oldsymbol{\Lambda} \otimes oldsymbol{I}, & \mathbf{n}_5 = oldsymbol{\Lambda} \otimes oldsymbol{I}, & \mathbf{n}_6 = oldsymbol{\Lambda} \otimes oldsymbol{I}, & \hat{R}_7 &= \hat{Y} \otimes \hat{I}, & \hat{R}_8 = \hat{Y} \otimes \hat{X}, & \hat{R}_9 = \hat{Y} \otimes \hat{Y} & \end{array}$	where $\hat{X}\equiv\hat{X}(rac{\pi}{2}),\hat{Y}\equiv\hat{Y}(rac{\pi}{2})$	586 2. other sets of rotations for tomography of n -qubits	$n=1 \Rightarrow x, I$ $n=2 \Rightarrow xx, II, IX, IY;$	$n=3 \Rightarrow XXX, III, IIY, XYX, YII, XXY, IYY$ $n=4 \Rightarrow XXXX, IIII, IIYY, YYXX, IIIY, XYXX, YXYI, IXYI, IIIX, XIYY, YXII, YYXY, XYXI, IIYX, IXYI, IIYI, IIYI$	$n=5 \Rightarrow xxxxx$, וווו, үүүү, וווXX, XXYY, ҮҮXII, IIXIY, XYXXI, YXIYY, XXXI, XXYX, XXYIX, IIYYI, IIYYI, IIYYI, XXYIX, IYYYX, IIYYY, XIXIY, IIYYI, IXYIX, XYYXI, YYYXI, YYXXI, YYYXY, IIXYI, XYIII, XYII	ΙΥΥΙΚ, ΥΥΧΥΥ, ΙΧΙΧΧ, ΧΙΧΧΥ, ΧΧΧΙΧ, ΧΥΙΥΙ, ΥΧΥΧΧ, ΠΥΙΥ, ΙΥΙΧΥ π-6	Ш−0 ⇒ ХХХХАХ, ІШІІ, ТТТТТ, ІЛХАТТ, ХАТТІІ, ТТІІХХ, ІАІТХТ, АТАГТІ, ҮГҮХІК, ІІХҮҮХ, ХХҮПҮ, ҮҮІХХІ, ІІҮІХІ, ХХІХҮХ, ҮҮХҮГҮ, ГҮҮХІХ, ХПҮХҮ, ҮХХІҮІ, ІХШҮ, ІҮҮХХІ, ХШҮҮХ, ҮІХХІҮ, ҮХХІХХ, ХҮХҮІ, ХҮҮҮҮ, ҮҮТҮҮ, ГИҮҮХХ, ХІҮХХХ, ХҮХПҮ, ІІХҮҮ, ІХХҮҮХ, ХХІХІХ, ҮПҮХҮ, ҮХҮГҮҮ, ГҮҮІХ, ҮҮІХХҮ, ІХҮҮХҮ,	ҮХҮШ, ҮҮШҮА, ШАШ, АБАААА, НҮАХҮҮ, АААААИ, АТТТТТ, ШАТЫА, ТИТАИ, ІХШХҮ, ХИШІ, ІХХҮҮҮ, ІҮІҮХІ, ХҮҮІҮІ, ҮХХҮХХ, ХХХШҮ, ҮІШІ, ҮІҮХҮХ, ХҮІ- ІХХ, ҮҮХҮП, ҮҮҮХХІ, ІХХҮІХ, ҮХІХІХ, ҮХІҮҮІ, ШХҮҮ, ХІХҮХҮ, ХҮХХХХ, ШҮ-	ІХҮ, ІХҮІҮХ, ХІҮҮІІ, ХХІХҮҮ, ХҮҮҮҮХ, ҮІХІҮІ, ҮҮҮІІХ, ІХІҮІҮ, ҮҮІІХ, ХХҮХХХ, ХҮІХІҮ, ҮІХІҮҮ, ІХІІХІ, ІХХХІІ, ІХУХІІ, ІҮҮҮІ, ІҮХІХІ, ХІІҮҮ, ХІІХҮІ, ҮІҮХХ, ҮХҮІХҮ, ҮҮХХҮХ, ШХХХ, ШХІІХ, ПҮҮІІ, ХХШХІ, ХХХҮҮХ, ХҮҮХІҮ, ШҮҮХ, ПҮҮҮҮ, ІҮІҮІХ, ІҮХІХҮ, ХІХХХІ, ҮІІҮХХ, ҮХХХҮҮ, ІШХХ, ШХҮҮІ, ШҮНХ, ПҮҮҮҮ, ПҮҮҮ.

[Viola <i>et al.</i> '01]	10. quantum Fourier transform	
	9. noiseless subsystems	$egin{array}{lll} Y_{02}(heta) &=& Y_{12}(\pi)Y_{01}(heta)Y_{12}(-\pi) \ &=& \hat{Y}_{01}(\pi)\hat{Y}_{13}(- heta)\hat{Y}_{01}(-\pi). \end{array}$
g scheme) [Chang <i>et al.</i> '01]	8. Schulman-Vazirani algorithm (a coolin	$\hat{Y}_{01}(\pi)\hat{X}_{12}(- heta)\hat{Y}_{01}(-\pi),$
[Tseng <i>et al.</i> '00]	7. quantum simulation	$\hat{X}_{02}(heta) = \hat{Y}_{12}(\pi) \hat{Y}_{23}(- heta) \hat{Y}_{12}(-\pi), \ \hat{X}_{02}(heta) = \hat{Y}_{12}(\pi) \hat{X}_{01}(heta) \hat{Y}_{12}(-\pi)$
[Vandersypen <i>et al.</i> '00]		$\begin{array}{ll} &=& Y_{12}(\pi) X_{23}(-\theta) Y_{12}(-\pi), \\ \hat{Y}_{13}(\theta) &=& \hat{Y}_{23}(\pi) \hat{Y}_{12}(\theta) \hat{Y}_{23}(-\pi) \\ & \hat{f}_{12}(\theta) \hat{Y}_{23}(-\pi) \end{array}$
tangled qubits [Kim <i>et al.</i> '00] sm)	5. refined Deutsch-Jozsa algorithm for en (a meaningful test of quantum paralleli	tomography without two-photon rotations $\hat{X}_{13}(\theta) = \hat{Y}_{23}(\pi)\hat{X}_{12}(\theta)\hat{Y}_{23}(-\pi)$
[Linden <i>et al.</i> '98]	4. Deutsch-Jozsa algorithm	
[Nielsen et al.'98]	3. quantum teleportation	$= \hat{Y}_{01}(\pi) \hat{Y}_{23}(\pi) \hat{Y}_{12}(-\theta) \hat{Y}_{23}(-\pi) \hat{Y}_{01}(-\pi)$
[Cory <i>et al.</i> '98]	2. quantum error correction	$= \hat{Y}_{01}(\pi)\hat{X}_{13}(-\theta)\hat{Y}_{01}(-\pi)$ $= \hat{Y}_{-1}(\pi)\hat{Y}_{-1}(\theta)\hat{Y}_{-1}(-\pi)$
[Laflamme et al.'97]	1. generation of GHZ states	$egin{array}{lll} \dot{X}_{03}(heta) &= \dot{Y}_{13}(\pi) \dot{X}_{01}(heta) \dot{Y}_{13}(-\pi) \ &= \hat{Y}_{02}(\pi) \dot{X}_{23}(- heta) \dot{Y}_{02}(-\pi) \end{array}$
592 gorithms on spin-1/2 nuclei	NMR implementations of 3-qubit al	590 tomography without three-photon rotations
luding X and Y-rotations)	so 56 readouts (inc	
+3 +2 +1 = 28	7 +6 +5 +4	so let us apply both rotation before read-outs
		$\hat{\rho}'' = \begin{bmatrix} \rho_{00} & \cdots & \cdots & \cdots & \cdots \\ \cdots & \rho_{11} & \cdots & \frac{1}{2}(\rho_{22} - \rho_{23} - \rho_{32} + \rho_{33}) & \cdots & \cdots \\ \cdots & \cdots & \frac{1}{2}(\rho_{22} + \rho_{23} + \rho_{32} + \rho_{33}) \end{bmatrix}$
		$\hat{ ho}$ after $\hat{R}_5 = \hat{X}_{23}(rac{\pi}{2})$ 7
1100 100		$\hat{\rho}' = \begin{bmatrix} \frac{1}{2}(\rho_{00} - \rho_{01} - \rho_{10} + \rho_{11}) & \dots & \dots \\ \dots & \dots & \frac{1}{2}(\rho_{00} + \rho_{01} + \rho_{10} + \rho_{11}) & \dots & \dots \\ \dots & \dots & \dots & \rho_{22} & \dots \\ \dots & \dots & \dots & \dots & \rho_{33} \end{bmatrix}$
		$\hat{ ho}$ after $R_1=X_{01}(rac{\mu}{2})$

589

rotations in M_z -based tomography

e.g. $\hat{
ho}$ after $\hat{R}_1 = \hat{X}_{01}(rac{\pi}{2})$

tomography of 8-level system

11. quantum erasers	593 [Teklemarian <i>et al.</i> '01]	595 11. Deutsch-Jozsa algorithm	S
12. quantum chaotic map (baker's map)	[Weinstein et al.'02]	12. refined Deutsch-Jozsa algorithm for entangled qubits	
13. phase estimation algorithm	[Lee <i>et al.</i> '02]	(a meaningful test of quantum parallelism)	
14. Hogg algorithm	[Peng <i>et al.</i> '02]	13. Grover algorithm (with cancellation of systematic errors)	
15. half-adder and subtractor operations [Mura	ili et al.'02, Kumar et al.'02]	14. Schulman-Vazirani algorithm (a cooling scheme)	
16. adiabatic quantum optimization algorithm	[Steffen et al.'03]	15. noiseless subsystems	
17. quantum state and process tomography	[Vandersypen et al.'04]	16. quantum Fourier transform	
18. test of phase coherence in electromagneticall	y induced transparency (EIT)	17. quantum erasers	
	[Murali <i>et al.</i> '04]	18. quantum baker's map	
NMR implementation of a seven-oubit	algorithm	19. phase estimation algorithm	
Shor's factorization algorithm	[Vandersypen <i>et al.</i> '01]	20. Hogg algorithm	
)	- -	21. adiabatic quantum optimization algorithm	
	594		9
w hat can be done with three v	irtual qubits?	empirical Moore's law	
possible QIP applications of sl	pin-7/2 nuclei	Gordon E. Moore - a co-founder of Intel.	
 implemented (in liquid NMR systems 		 original Moore's law (1965) 	
1. quantum simulation	[Khitrin <i>et al.</i> '01]	The number of transistors and resistors on a chip doubles every 18 months.	
2. half-adder and subtractor operations [Mura	ali <i>et al.</i> '02, Kumar <i>et al.</i> '02]	modified Moore's law (1975)	
3. test of phase coherence in EIT	[Murali <i>et al.</i> '04]	The number doubles every 24 months.	
 not implemented yet 		1965 - approximately 60 devices on a chip.	
6 quantum tomography		2007 - Dual-Core Intel Itanium 2 chip contains 1.7 billion	

- nography yua
- 7. generation of GHZ states
- 8. quantum error correction

9. quantum teleportation

10. logical labeling

2

transistors

• the end of Moore's law?

2018 - estimated year for reaching the fundamental limits

10,000,000,000

Moore's Law

597

,000,000,000

Itanium 2
 (9 MB cache

- 1. Superposition
- 2. Interference
- Entanglement
 Non-cloning
- 5. Uncertainty

purely quantum applications of QC

1. Quantum cryptography 2. Quantum teleportation

advantages of QC

- superfast (Shor) and fast (Grover) algorithms

- understanding new aspects of measurement theory

- improvement of precision spectroscopy
- understanding dissipation in mesoscopic system
- partial control of decoherence
- quantum state engineering
- quantum simulations

Quantum Computing is the frontier of

- Information Science

 - Cryptography
 Quantum physics including
 Quantum Optics
 Nanotechnology

component of any world view that seeks to be fundamental" David Deutsch "Quantum computers must be a