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Sub-Poissonian light in the third-harmonic generation process is studied numerically
and analytically. Special regime exhibiting the time-stable maximum sub-Poissonian be-

haviour with the Fano factor F =~ 0.81 is found and analyzed. Theoretical prediction of
the Fano factor and explanation of the extraordinary time stability of the sub-Poissonian
behaviour are given using the semiclassical method of classical trajectories.

1 Introduction

The second- and higher-harmonic generation processes offer a very effective
method for the production of strong coherent light with shorter wavelength (UV
and X light) [1] and for the generation of light with more controlled level of noise
(the squeezed, antibunched or sub-Poissonian light).

The light with photocount-noise level smaller than the shot-noise limit is called
the sub-Poissonian light. Such optical field has obviously better signal-to-noise ra-
tio than any classical light and can have many applications in, e.g., precise pho-
tometry, spectroscopy or optical communications. In experiments, the Fano factor
F = Var (n) / (n) is often used for a simple description of the photon-number statis-
tics. Here, (n) represents the mean number of detected photons and Var(n) is its
variance. Since the shot-noise limit is obtained by detection of coherent light (sat-
isfying Var(ncon) = (ncon)), an optical field is sub-Poissonian if F' < Fon = 1. Such
kind of light has no classical analogue and can be properly described by quantum
optics only. Since the classic experiment of Short and Mandel [2], sub-Poissonian
light has been generated and observed in many laboratories {3].
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Recently, the third harmonic generation (THG) has also attracted a considerable
interest as an effective material-diagnostic tool (see, e.g., [4]). THG, in compari-
son with second-harmonic generation, is generally a weak process but, being dipole
allowed, occurs in all materials, including dielectric materials with inversion sym-
metry. | |

In the previous paper [5] we studied the second-harmonic generation process. We
proposed the optimal method to generate light with the smallest photon-number
noise and specified the conditions, under which the production of this noise-reduced
light is the most stable in time. It was shown that the best results are obtained
for the fundamental and second-harmonic coherent inputs in phase and with the
amplitude ratio 2:1. Under this initial condition, the second-harmonic output 1s
sub-Poissonian with the Fano factor F = 5/6 = 0.83 (i.e., 0.79dB below the shot-
noise limit) for wide ranges of interaction lengths and input intensities. The above
conclusion was proved numerically by solving the Schrodinger equation and con-
firmed analytically by applying the semiclassical method of classical trajectories.

In the present paper we will study the third harmonic (and subharmonic) gen-
eration process and its photon statistics. We shall see that this process is similar
in many aspects to the second-harmonic generation and analogous methods can
be used for solving it. We shall show, as our main result, that the lowest-value
time-stable Fano factor of the third-harmonic output mode is F' = 13/16 and the
observed noise should be 0.90 dB below the shot-noise limit. This low-level noise 1s
nearly independent of the interaction length and input intensities by assuming only
that the relative amplitudes are in the optimal ratio 3:1 and the coherent input
beams are in phase.

In quantum optics, the third-harmonic generation or three-photon down conver-
sion (third-subharmonic generation) are described by the interaction Hamiltonian

H =hg (ala) +af’as). (1)

where a; and as denote annihilation operators of the fundamental and third-
harmonic modes, respectively, and g is a nonlinear coupling parameter. Since no
exact solution of quantum dynamics of the model (1) can be found, some appropri-
ate analytical approximations or numerical methods have to be used for describing
the conversion efficiency, quantum noise statistics or other characteristics of the
process [6,7]. Here, we apply several methods including (i) short-time quantum
expansions, (ii) numerical solution of the Schrédinger equation, (i) strong-field
classical solutions, and (iv) classical trajectory method.

2 Quantum analysis

The first predictions of sub-Poissonian photon-number statistics in second- or
higher-harmonic generations were obtained under the short-time (gt < 1) ap-
proximation (see, e.g., [6,8]). For the coherent complex inputs a; = r;exp (141)
and az = rzexp (i¢3), the short-time evolutions of the Fano factors are given by
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(see, e.g.,{10])
Fi =1—12gtryrasinf + ---,

| 2
F3 = 1—36(gt)3r§‘(r%+‘2) rgsinf +---. (2)

The 1nitial phase difference 8 = 3¢ —¢3 determines (i) whether Eq. (2) describes the
harmonic generation (w +w +w — 3w) or the reversed process of subharmonic gen-
eration (3w — w +w +w), and (ii) whether the sub-Poissonian or super-Poissonian
light i1s generated in the first stage of the interaction. For example, in the case
of sinf > 0, the photon statistics of both generated outputs are sub-Poissonian,
Fi 3 <1. o | |

In the spontaneous short-time THG process (a3 = 0), the sub-Poissonian light
is generated as described by the solutions [10]

Fy = l—ﬁ(gt)zri’+---,
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On the contrary, the sub-Poissonian light is not observed (Fj3 > 1) in the
reversed spontaneous process, i.e., for &y = 0. Here, the subfrequency mode starts
at t = 40 with super-Poissonian statistics (F; = 3) as being composed only from
triplets of the subfrequency photons produced by the decay process of the pump
photons, i.e., 3w — w + w + w.

For longer interaction times (when the short-time condition, gt < 1, is not
fulfilled) no analytical predictions exist and numerical methods have to be applied.
We use two numerical methods to study the long-time quantum dynamics: (i) the
well-known method of diagonalization of Hamiltonian (1) originally used in Ref. 11
and (i1) the method of global characteristics based on the analysis of spectra of the
density matrix [12]. We obtain the following results: for random choice of initial
states a; and as, the evolution usually exhibits, after relaxation during initial short
period of time (for gt 2 1), a strongly super-Poissonian behaviour (F; 3 > 1) in
both modes. The only exception is a certain set of initial states concentrated along
the ine oy = 3r, 3 = r, » > 0 (see Fig. 1) for the phase mismatch 8 = 0. It is worth
noting that the zero mismatch is required in this case, contrary to the out-of-phase
mismatch (# = 7/2) needed to achieve the maximum sub-Poissonian behaviour in
the short-time limit. _ |

Instead of standard time evolution plots, the global Fano-factor characteristics
Fai [12] seem to be the best representation of the long-time sub-Poissonian be-
haviour of the third harmonic mode. In Fig. 1, we plot the global Fano factors in
their dependence on the input coherent amplitudes of the fundamental (a;) and
third-harmonic (a3) modes. By analyzing Fig. 2, we find that the global Fano factor
F3g of the harmonic mode remains constant at the value F3 = 0.81 < 1 along the
hne oy = 3r, oz = r for a wide range of amplitudes » but not close to the origin,
Le. r > 1. .

For comparison, we study the long-time dynamics by applying the standard
quantum method of diagonalization of Hamiltonian (1). Our quantum analysis leads
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Fig. 1. Global Fano factor F3g of the third-harmonic mode in the plane of initial coherent
real ( = 0) amplitudes a1 and a3. Labels denote regions of the globally sub-Poissoman,
Poissonian and super-Poissonian dynamics.
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Fig. 2. Global Fano factors of the fundamental (Fig) and third-harmonic (F3;) modes

for initial states a1 = r and a3 = r/3, with 8 = 0. Solid curves represent the numerical

results obtained by solving the Schrdinger equation, and dashed lines are the analytical
results given by the method of classical trajectories.

to the conclusion that, under the above initial conditions, the time-stable sub-
Poissonian behaviour is observed with the Fano factor F3 approximately the same as
the global Fano factor F3g. Example of some typical time evolution is given in Fig. 3.
One can see that the harmonic mode, aftet settling-down from its initial relaxation
oscillations, remains sub-Poissonian independently of the interaction time. In the
classical theory of THG this is called the no energy transfer [13] since in this case
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Fig. 3. Time evolution of a) mean photon numbers and b) Fano factors in the fundamental

and third-harmonic modes for the no-energy-transfer case, 1.e., for the initial conditions
a1 = 10 and a3 = 10/3.

(and only here) the energy and photon numbers of both modes are conserved in
~ time, and n, (t) = 97% = const and ng(t) = r? = const holds. So, a question arises
why in this case the output photon-number statistics remains sub-Poissonian in the
harmonic mode and weakly super-Poissonian in the fundamental mode with nearly
constant Fano factors F; = 1.81 and F3 = 0.817!) In what follows we will try to
elucidate this behaviour.

First, we can calculate the Husimi @-functions, as we did In our previous paper
[5]. In the no-energy-transfer case, one could observe that the cross sections of
‘both the Husimi @-functions evolve from small circles centered at a 3 to a rotated
banana (or crescent) shapes and, finally, to ring shapes. The observed time stability
of the photon-number statistics can be explained as a result of the stability of the
)-function cross-section rings. The evolution proceeds exactly in the same manner
as in the case of the second-harmonic generation discussed in detail in Ref. 5. Thus,
for brevity, we do not present the Q-functions graphically here.

1} The global Fano factor gives, in general, only a prediction of the mean value of the time-
dependent Fano factor, as the time development exhibits typically an oscillatory character. In the
no-energy-transfer case, however, the Fano factors alinost do not oscillate and the global Fano
factor coincides with the quasi-steady state of the Fano factor.
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The Husimi Q-functions are very wide, therefore no direct linearization of the

quantum problem is possible and, probably, no pure quantum technique can yield
the observed “magic” values F; =~ 1.81 and F3 =~ 0.81. The only answer to our
question concerning the quantitative sub-Poissonian behaviour can be obtained,
somewhat surprisingly, by applying the method of classical trajectories as will be
shown 1n the following.

3 Classical trajectory analysis

It is well known that the classical solution -of THG is simpler than the quantum
one and can serve as a good approximation for strong fields. It gives correct pre-
“dictions of the output light intensities and frequency-conversion efliciency. Unfor-
tunately, it cannot yield any information about the noise and statistical properties
of the generated light, and the quantum model has to be adopted in the analysis.
The method of classical trajectories [14,15] is of course based on the deterministic
classical solutions but the quantum noise can be introduced artificially to the model
and simulated by (Gaussian distribution of initial amplitudes. For inputs strong 1n
comparison to quantum noise, the method gives results in a very good agreement
with the quantum-optical predictions as, e.g., graphically compared in Ref. 5.

In the classical trajectory approach, one assumes the input stochastic amplitudes
of the fundamental mode 1n the form a; = a0+ 21 +1y; and of the third-harmonic
mode as oz = azp+ r3+1y3, where 2 and y; are real (zaussian stochastic quantities
with the identical variances 02 = 1/4. With this choice of the noise variance, we
find the expected values of quadrature squeezing Var(X;) = Var (are™ + aje’) =

2(.a:_§+ -3;2-) = 402 = 1 and the Fano factor

O | | R
P = Var (m,) B afzzaﬁ — (a};ak) B 4o (aﬁn + 0'2)
Tom . o - afp+ 207

2

=402 (1- S 4. | mdo? = L. (4)

2
ak{l"

Here, we have also assumed that the field is strong in comparison to its noise,
ie., a2y > o2, In this approach, one needs to solve numerically or analytically
thousands of the classical TH(G trajectories. Then, the mean values are simply
obtained by averaging (as denoted by the horizontal bar over the quantities) over
all the trajectories.

Let us now recall the classical results of the third-harmonic generation process
described by the following system of the two complex differential equations [9]

l.’t'l —3iga’{2a3 :

(5)

(\Ea —igﬂf? :
By introducing real amplitudes and phases, a; = rie'®*, Eq. (5) can be transformed
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into the system of the following three real equations

f’l = —391’%1’3 sin 9,-
?-'3 = gr? sin 9, (6)

é =g (-E-E- — 91‘11‘3) (‘.OSH,
where 6 = 3¢1 — ¢3. The system of Egs. (6) has two integrals of motion:

E =r}+3r=n;+3n;s,

[' = T’?Tg cos @ .

(7)

By extracting r; and @ from (6), the equation for the amplitude r3 is obtained as
('*"3""'3/1?)2 +I'?=r3(E - 3r§)3. Yet simpler form has the equation

(23)2 +I? = ng (E - 3n3)° (8)

29
for the intensity ng = r%. Equation (8) can be solved by separation of variables as

dn;;

SV — )
\/n3 (E —3ng)” — I'?

The solutions are periodic and can be expressed by Jacobi elliptical functions. The
general solutions have rather complicated and lengthy structure. But considering
the purpose of our paper, it is sufficient to analyze their special cases only.

Two elementary solutions of Eq. (6) can be found easily. One of them is obtained
for the imtial phase mismatch § = 7. Here, we find that I" = 0, and

29dt —

1
3(gr2t)’ +1°

rs (t) = \/_ (o) - o
W=7 3(gr2t)’ +1 .

This monotonic solution represents the third-harmonic generation from vacuum
(s = 0), which corresponds to the well-known hyperbolic secant and tangent
solution of SHG process. The second elementary solution is obtained for the initial
zero phase mismatch § = 0 and the initial amplitudes satisfying the condition
r1 = 3rs. The solution reads

() = r

ey () = 3rexp(—9igrit + ip),

az (t) = rexp(—2Tigr?t + 3ip). (11)

Eq. (11) represents the so-called no-energy-transfer solution, since the amplitude
and energy 1n every interacting mode remain constant [13]. We apply the classical
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trajectory analysis for the no-energy-transfer solution (11). Thus, we assume the
initial amplitudes a; = 37 and az = r and blur them by Gaussian noise, which
results in oy = 3r4+z; +iy; and az = r+z3+1ys. The classical integrals of motion,
given by Eq. (7), can be rearranged in the form of successive corrections

E =122 4 AE; + AE),

12
I‘=27r4+AI’3+AI‘2+A1"1+AFg, ( )

where AE; = 6r (z1 + 23); AEy = 23 +y2 +3 (2% + y3); AI'3 = 27r° (21 + z3), and
Al = 9r? (a:f — y? + 32123 + 3y y;_:,). The lower-order terms Ay and Ay can be
neglected in further considerations. The denominator in Eq. (9), after substitution
of ng = -1le+6 with some small correction ¢, can be approximated by the quadratic

function, n3(E — 3n3)° — I'? ~ 3 E* — ZE%? — I'? = 2 E? (A% ~ ¢%) if one
neglects the higher-order terms involving ¢ and €*. Under this approximation, we

can integrate Eq. (9), which finally leads to the simple result

ng(t) = -iE;IZ- + A cos (f2gt)

= r?’ 4+ B 4 Acos(f2gt), (13)

where 2 = /4 E, A = %r\/ﬁ(ya—y1)2+(m1--3:1:3)2, and B = $AE; =

-%r(:vl + z3). For the fundamental (or subharmonic) mode we obtaln the similar
result

ny (t) = E — 3nz = 9r* + 9B — 3A cos (£2gt) . (14)

Both solutions (13) and (14) are given by constants weakly perturbed by a har-
monic function. Due to the frequency dispersion, the different solutions are drifting
in phase and create a banana-shaped cloud in the phase space, which for longer
evolution times goes over into a full ring [5]. Now, one can perform the averaging
of the solutions (13) and (14) to calculate the requested moments. We get

it = 9r?, n? = 8lrt+ 8182 + A2,
(15)

nz = r?, n3=r*+ B2+ ;A%

where A% = Lr2¢? = Ur2and B? = r?¢? = {r?, whereas B = (0 and cos? (2¢t) =
1. Finally, we arrive at the Fano factors in the form of rational numbers

1 [ — 1-=\ 9 111 29
_ 4 5otz . 2 2 Y
Fl“r2(93+2‘4) 3738 " 16
l l 1 111 13 (16)
Fi= = B2+ -A?) =4 =— = —.
3 r2(3+2 ) 3 T32% T 16

These numbers agree very well with the values obtained by numerical study of the
quantum problem.
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4 Conclusions

We have shown numerically that, for a special choice of initial states a; =
3r,az3 = r,r > 1 and the phase mismatch 8 ~ 0, the third-harmonic mode exhibits
sub-Poissonian photon-number statistics with the Fano factor F3 ~ 0.81. This value

remains unchanged for sufficiently strong input amplitudes » > 1 during the whole
time evolution, gt 2 1. Similarly, the Fano factor of the fundamental mode also

exhibits relatively small and stable noise, but i1s super-Poissonian with F; ~ 1.81.
We have shown that these results can also be derived by the method of classical

trajectories in the approximation of strong field. This method gives the results
Fy = % = 1.8125, F3 = i—g’ = 0.8125 surprisingly similar to those obtained in the
quantum model by solving the Schrodinger equation.
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VS96028. A.M. acknowledges the scholarship of the Japanese Ministry of Education.
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