
J. Opt. B: Quantum Semiclass. Opt. 2 (2000) L10–L14. Printed in the UK PII: S1464-4266(00)11291-1

LETTER TO THE EDITOR

Sub-Poissonian photon statistics of
higher harmonics: quantum
predictions via classical trajectories
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Abstract. Second-harmonic generation in the no-energy-transfer regime can be a source of
quasi-stationary sub-Poissonian light as was recently shown by Bajer et al (Bajer J,
Haderka O and Peřina J 1999 J. Opt. B: Quantum Semiclass. Opt. 1 529). We generalize their
results for higher-harmonic generation by applying the numerical method of Hamiltonian
diagonalization and the analytical semiclassical description of classical trajectories. The
quasi-stationary behaviour of the sub-Poissonian photocount noise in the no-energy-transfer
regime is explained. An approximate formula for the Fano factor is derived for arbitrary
harmonics. It is predicted that the deepest quasi-stationary reduction of photocount noise in
the no-energy-transfer regime is achieved in the third-harmonic generation.
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1. Introduction

Second-harmonic generation has attracted considerable
interest as a candidate to generate nonclassical radiation
(see [1, 2] for a detailed account and bibliography). It was
demonstrated, in particular, that the photon antibunched, sub-
Poissonian [3], squeezed [4] and generalized squeezed [5,6]
light can be generated in this process. In experimental
schemes, second-harmonic generation is usually applied for
the sub-Poissonian and photon-antibunched light production,
whereas second-subharmonic generation (also referred to
as two-photon down conversion) is used for the squeezed-
light generation [1, 7]. Non-classical effects in higher-
harmonic generation have also been investigated, including
sub-Poissonian photocount statistics [2, 8–10], ordinary
squeezing [2, 11, 12], higher-order squeezing [13, 15]
according to the Hong–Mandel definition [5] and higher-
power-amplitude squeezing [14, 15] based on Hillery’s
concept [6].

We will study photocount statistics of N th-harmonic
generation processes. Photocount noise of the observed
statistics can simply be described by the (quantum) Fano
factor

F = Var(n)

〈n〉 , (1)

where 〈n〉 represents the mean number of detected photons
and Var(n) = 〈n2〉 − 〈n〉2 is the variance of photon number.
For F < 1, the light is referred to as sub-Poissonian since
it has photocount noise smaller than that of coherent (ideal
laser) light with the same intensity. Whereas for F > 1, the
light is called super-Poissonian exhibiting photocount noise
higher than the coherent-light noise.

Processes of the N th-harmonic or subharmonic
generation can be described by the conventional interaction
Hamiltonian (e.g., [2])

H = h̄g(aN1 a†
N + a†N

1 aN) (2)

for N = 2, 3, . . . . In (2), a1 and aN denote annihilation
operators of the fundamental and N th-harmonic modes,
respectively, and g is a nonlinear coupling parameter.

Investigations of non-classical effects in harmonic
generation have usually been restricted to the regime of short
interactions (short optical paths, short times, or short lengths).
Theoretical predictions of quantum parameters (including
the Fano F -factor or, equivalently, the MandelQ-parameter)
were obtained under the short-time approximation only (see,
e.g., [1, 2, 10]). This approximation is usually valid due to a
weak nonlinear coupling of the optical fields.

In a recent paper, Bajer et al [17] studied numerically
second-harmonic generation in a long-interaction regime.
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On testing different coherent input amplitudes in order to
minimize the Fano factor, they discovered a previously
unknown special regime yielding the long-interaction output
with the quasi-stationary sub-Poissonian photocount noise.
The regime occurs if the ratio of the amplitudes α1 and αN
is equal to N , i.e., if the initial coherent vectors are given by
|α1〉 = |Nr〉 and |αN 〉 = |r〉. This is a quantum analogue
of the so-called no-energy-transfer regime [18] known in
classical nonlinear optics as an evolution exhibiting no energy
transfer between the interacting modes, which occurs if the
initial amplitudes and phases fulfil the conditions r1 = NrN
and Nφ1 = φN , respectively. The intensities of both
modes remain quasi-constant in time during the interaction.
Obviously, in a quantum description some small energy
fluctuations between modes are observed as a consequence
of vacuum fluctuations. However, the influence of energy
fluctuations can be neglected for strong fields.

Bajer et al [17] also applied the approximate method of
classical trajectories to explain time stability of the solutions,
and compared with numerical predictions of the photocount
noise. In particular, the quasi-stationary behaviour of
the second harmonic in the no-energy-transfer regime was
described by the semiclassical Fano factor F2 = 5

6 ≈ 0.83
and tested to be in a good agreement with the numerical value
of the quantum Fano factor.

In this letter, we generalize forN th-harmonic generation,
the numerical and analytical results derived in [17] for the
special case of N = 2. We will show, as our main
result, that higher-harmonic generation in the no-energy-
transfer regime can serve as a source of the quasi-stationary
sub-Poissonian light. We will derive a formula for the
semiclassical Fano factor having its minimum of FN = 0.81
at N = 3. Thus, we conclude that quasi-stationary light
with the most suppressed photocount noise in the no-energy-
transfer regime is produced in the process of third-harmonic
generation.

2. Classical trajectory analysis

The complete quantum solution of the model given by
Hamiltonian (2) can only be found by applying sophisticated
numeric methods on a fast computer. However, since
we are interested in a special type of solution for strong
fields we can adopt approximate methods of, e.g., classical
trajectories [19] and obtain some analytical results. The
method adequately simulates quantum noise for various
nonlinear optical processes if the initial conditions are
properly chosen to describe the quantum noise of coherent
states. Along the lines of the classical trajectory method,
we choose initial amplitudes α = a and blur them with
Gaussian noise, which results in α = a + x + iy, where x and
y are real Gaussian stochastic quantities with the identical
variances σ 2 = 1

4 . In this case, we get correct quantities
for the quantum noise parameters including the semiclassical
squeezing variance

Scl = Var(X) = Var(αe−iθ + α∗eiθ ) = 4σ 2 = 1 (3)

and the semiclassical Fano factor

Fcl = α∗2α2 − α∗α2

α∗α
= 4σ 2(a2 + σ 2)

a2 + 2σ 2
= a2 + 1

4

a2 + 1
2

→ 1.

(4)

We assume strong initial fields (i.e. a 	 1). As will explicitly
be demonstrated, this classical description of quantum noise
breaks down for weak fields (a < 1). To calculate statistical
moments, including the Fano factor (4) or the squeezing
variance (3), one needs to solve the classical evolution for
each process separately and then, to average the analysed
statistical moments over all obtained trajectories.

The semiclassical process of the N th-harmonic
generation can be described by the pair of complex
differential equations [20]

α̇1 = −igNα∗N−1
1 αN,

α̇N = −igαN1 .
(5)

On introducing real amplitudes and phases, αk = rkeiφk , (5)
can be transformed into the system of three real equations:

ṙ1 = −gNrN−1
1 rN sin θ,

ṙN = grN1 sin θ,

θ̇ = g
(
rN1

rN
−N2rN−2

1 rN

)
cos θ,

(6)

where θ = Nφ1 − φN is the phase mismatch. Equations (6)
have two integrals of motion:

E = r2
1 +Nr2

N = n1 +NnN,

� = rN1 rN cos θ.
(7)

On extraction of r1 and θ from (6), we find an equation for
the amplitude rN :

(rN ṙN/g)
2 + �2 = r2

N(E −Nr2
N)
N (8)

or its simpler form for the intensity nN = r2
N :

(
ṅN

2g

)2

= nN(E −NnN)N − �2. (9)

The general solution for nN(t) is a periodic function
oscillating between the values nmin and nmax. For N = 2
and 3, the solution is given in terms of the Jacobi elliptical
functions.

The only elementary solution of (6) is obtained for the
vanishing initial phase mismatch (θ = 0) and the initial
amplitudes satisfying the condition r1 = NrN . The solution
reads as

α1(t) = r1 exp(−igtrN−1
1 + iϕ),

αN(t) = rN exp[N(−igtrN−1
1 + iϕ)]

(10)

and has a form of the so-called no-energy-transfer solution,
since the amplitude and energy in both the interacting modes
remain constant n1(t) = |α1(t)|2 = r2

1 and nN(t) =
|αN(t)|2 = r2

N [18]. We will use the method of classical
trajectories along the lines of the analysis presented in [17].
We solve a large set of separated processes described by (5),
where input amplitudes fulfil the conditions for the no-
energy-transfer case. We choose initial amplitudes α1 = Nr
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andαN = r , and blur them with Gaussian noise, which results
in

α1 = Nr + x1 + iy1,

αN = r + xN + iyN,
(11)

where xk and yk are real and mutually independent Gaussian
stochastic quantities with the identical variances σ 2 = 1

4 .
We assume strong initial fields, i.e. r 	 1. The integrals of
motion, given by (7), can be expressed in a form of corrections
in successive powers of r:

E = N(N + 1)r2 + E1 + E0, (12)

where
 E1 = 2N(x1 + xN)r,

 E0 = x2
1 + y2

1 +N(x2
N + y2

N),
(13)

and

� = NNrN+1 + �N + �N−1 + �N−2 + · · · , (14)

where

 �N = NN(x1 + xN)r
N,

 �N−1 =
[
N − 1

2
(x2

1 − y2
1 ) +N(x1xN + y1yN)

]

×NN−1rN−1.

(15)

The lower-order terms �N−2, �N−3, . . . can be neglected
in further considerations. On assumption of strong
interacting fields (r 	 1), we substitute

nN = E

N(N + 1)
+ ε, (16)

where ε is a small correction of stationary value. Then, (9)
can be rewritten as(
ṅN

2g

)2

= nN(E −NnN)N − �2

≈ NN−1

(N + 1)N+1
EN+1 − NN

2(N + 1)N−2
EN−1ε2 − �2

= NN

2(N + 1)N−2
EN−1(A2 − ε2) (17)

on omission of higher-order terms involving ε3, ε4, . . . . One
arrives at the simple equation

(
ε̇

2g

)2

= NN

2(N + 1)N−2
EN−1(A2 − ε2). (18)

Thus, the solution of (9) reads as

nN(t) = E

N(N + 1)
+ A sin(#gt + ϕ)

= r2 + B + A sin(#gt + ϕ), (19)

where frequency # is given by

# =
√

2NNEN−1

(N + 1)N−2
(20)

and

A = r

N + 1

√
4(x1 −NxN)2 + 2N(N + 1)(y1 − yN)2

B =  E1

N(N + 1)
= 2

N + 1
r(x1 + xN).

(21)

The phase correction ϕ can be derived from the equation
nN(0) ≈ 2rxN = B + A sin ϕ. From (7), a result similar
to (19) is obtained for the fundamental mode:

n1(t) = E −NnN(t)
= N2r2 +N2B −NA sin(#gt + ϕ). (22)

It is seen that both solutions (19) and (22) are given in a form
of large constants weakly perturbed by harmonic functions.
Now, on applying the classical trajectory method, one should
perform averaging over all solutions (19) and (22) to calculate
the required statistical moments. Here, we calculate the
first- and second-order field-intensity moments necessary for
determination of the Fano factors. The mean intensities of
the fundamental and harmonic modes are simply given by
n1 = N2r2 and nN = r2, respectively. The second-order
moments of field intensity are found to be

n2
1 = N4r4 +N4B2 + 1

2N
2A2,

n2
N = r4 + B2 + 1

2A
2.

(23)

in terms ofA2 = r2(2N2+N+1)(N+1)−2 andB2 = 2r2(N+

1)−2. We note that B vanishes. The term sin2(#gt + ϕ)
can simply be estimated as 1

2 for sufficiently long time t ,
when n and F become time independent. Relaxation in
nk(t) and Fk(t) is observed for short times t due to the
presence of the harmonic sine function. The mean value
of the frequency (20), given by

# ≈
√

2N(N + 1)(Nr)N−1, (24)

enables estimation of the oscillation period Tosc = 2π/#,
whereas the standard deviation

 # ≈
√

2N(N + 1)NN−1rN−2N − 1

N + 1
(25)

determines the duration Trel = 2π/ # of relaxation. By
comparing the characteristic times Tosc and Trel, one finds that
the evolution time can be scaled by τ = #gt to synchronize
optimally the oscillations of the exact quantum solutions for
different N . These synchronized oscillations of the Fano
factors are clearly presented in figures 1(a) and (b).

Finally, we arrive at the semiclassical Fano factors

Fcl1 = n2
1 − n1

2

n1
= 1

2

6N2 +N + 1

(N + 1)2
, (26)

FclN = n2
2 − n2

2

n2
= 1

2

2N2 +N + 5

(N + 1)2
, (27)

which are the compact-form classical analogues of the
quantum Fano factors. The semiclassical Fano factors for
the fundamental and higher harmonics for various values of
N are listed in tables 1 and 2, and plotted in figures 2(a)
and (b), respectively.
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(a)

(b)

Figure 1. Time evolution of the exact quantum Fano factors:
(a) F1 = F1(N) for the fundamental mode and (b) FN for the
harmonic mode in N th-harmonic generation for N=2 (thickest
curve), 3, 4, 5 (thinnest curve). Time t is rescaled with frequency
#, given by (24), and coupling constant g. The harmonic-mode
amplitude is r = rN = 5. The dotted lines represent the
semiclassical Fano factors, given by (26) and (27). It is seen that
the fundamental mode is super-Poissonian, whereas the harmonic
mode is sub-Poissonian for all non-zero evolution times.

Table 1. Quasi-stationary values of the quantum Fano factors F1

and their semiclassical approximations F cl1 , given by (26), for the
fundamental mode in N th-harmonic generation with N = 1–5 in
the no-energy-transfer regime. The values of F1 are calculated for
r = rN = 5.

N F1 F cl1 (F1 − F cl1 )/F1

1 1 1 0

2 1.502 9291 3
2 0.0020

3 1.820 2032 29
16 0.0042

4 2.032 3293 101
50 0.0061

5 2.183 0414 13
6 0.0075

Our solutions (26) and (27) for N = 2 reduce to
the results derived in [17]. By analysing (27), we find
that the higher harmonics evolve into quasi-stationary sub-
Poissonian states (FclN < 1) for any N > 1. Except for
the second harmonic, the photocount noise reduction in the
higher harmonics becomes less effective with increasing
N . Thus, the deepest noise reduction occurs for the third
harmonic as described by the Fano factor Fcl3 = 13

16 =
0.8125. The photocount noise reductions for the second

Table 2. Same as in table 1, but for the N th-harmonic mode; F clN
are calculated from (27).

N FN F clN |FN − F clN |/FN
1 1 1 0

2 0.832 288 00 5
6 0.001 3

3 0.811 259 70 13
16 0.001 5

4 0.819 249 02 41
50 0.000 92

5 0.833 311 27 5
6 0.000 026

(a)

(b)

Figure 2. Semiclassical (solid bars) and quantum (dithered bars)
Fano factors versus order N of harmonic generation for
(a) fundamental and (b) N th-harmonic modes in the
quasi-stationary no-energy-transfer regime. (a) and (b) for
N = 1–5 correspond to tables 1 and 2, respectively. It is seen that
the quantum results are well fitted by the semiclassical Fano
factors. According to both descriptions, the third-harmonic mode
has the most suppressed photocount noise.

and fifth harmonics are predicted to be the same, although
the quantum analysis (see table 2) reveals that they differ
slightly (<1%). As given by (26), the fundamental mode has
solely the super-Poissonian photocount statistics (Fcl1 > 1)
with noise monotonically growing in N for the no-energy-
transfer regime. For N = 1 the process is linear and
no change in the photon statistics occurs. The interacting
modes remain coherent with unit Fano factors for both modes.
It is worth noting that qualitatively different photocount
statistics of the fundamental mode are observed in the short-
interaction regime. In this case, Kozierowski and Tanaś [3]
showed that the output light, both at the second harmonic and
fundamental frequencies, has the sub-Poissonian photocount
statistics.
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3. Quantum analysis

In order to test the validity of our semiclassical results, we
give an exact quantum analysis of N th-harmonic generation
on applying a numerical method of the Hamiltonian
diagonalization proposed by Walls and Barakat [16]. The
method can be applied for arbitrary initial photon statistics.
Nevertheless, for the purpose of this letter, we restrict our
analysis solely to the initial coherent fields. Due to the
obvious computational difficulties, the results can be obtained
only for small numbers of interacting photons. The analysis
of about 100 interacting photons practically reaches our
computational capabilities.

For better comparison of theoretical predictions for
different order processes, we have plotted in figure 1 the
quantum Fano factors for both interacting modes in the no-
energy-transfer regime with N = 2–5 and r = 5. One
can see that all the curves start from F1,N (0) = 1 for
the input coherent fields and become quasi-stationary after
some relaxations. The quantum and semiclassical Fano
factors coincide for high-intensity fields and longer times
(t ∼ 50/(#g)).

All fundamental modes remain super-Poissonian
F1(t) > 1, whereas the N th harmonics become sub-
Poissonian FN(t) < 1. The most suppressed noise is
observed for the third harmonic with the Fano factor F3 ≈
0.81. In figure 1, we have included the predictions of
the classical trajectory method (plotted as dotted lines) to
show that they properly fit the exact quantum results for
the evolution times t ∼ 50/(#g). The small residual
differences result from the fact that the amplitude r was
chosen to be relatively small (r = 5). This value does not
precisely fulfil the condition r 	 1. We have taken r = 5
as a compromise between the asymptotic value r → ∞
and computational complexity to manipulate the matrices
of dimensions 1000 × 1000. Unfortunately, we cannot
increase amplitude r arbitrarily due to serious computational
difficulties.

The numerical values of the quantum Fano factors in
comparison with their semiclassical approximations for the
fundamental mode, given by (26), are presented in their
dependence on N in table 1 and figure 2(a). Analogously,
those values for harmonics are presented in figure 2(b) and
table 2 as calculated by the numerical quantum method and
from analytical semiclassical formula (27). It is seen that
the approximate predictions of the Fano factors according
to (26) and (27) fit very well the values obtained on applying
the numerical quantum method. Actually, the differences
between the approximate and exact values are hardly visible
on the scale of figure 2. Nevertheless, some small (<1%)
differences in F1,N (see tables 1 and 2) can be explained by
the fact that the value of r for numerical analysis was chosen
too small.

We have shown, in agreement with the results presented
in [17], that the method of classical trajectories gives very
good predictions in the case of strong-field interactions (i.e.
for photon numbers much larger than 1). The calculation
speed of the method does not depend on the number of
interacting photons. However, better approximation is
achieved with increasing number of photons. Thus, the

method is very fast and significantly simplifies the tedious
exact quantum calculations.

4. Conclusions

We have analysed N th-harmonic generation processes as a
generalization of the results for N = 2 derived in [17]. We
have shown numerically in a quantum description that the
fundamental and N th-harmonic modes evolve into quasi-
stationary states in the no-energy-transfer regime. Good
analytical predictions of the Fano factors for both the
fundamental and harmonic modes were obtained under
the semiclassical approximation in the strong-field limit.
Quantum analysis has completely confirmed our predictions
derived via classical trajectories. The fundamental mode
evolves into a quasi-stationary state with the super-
Poissonian (F1 > 1) photocount statistics, whereas the N th
harmonic goes over into a sub-Poissonian (FN < 1) quasi-
stationary state. We have found that the most suppressed
photocount noise is obtained for the third harmonic as
described by the Fano factor F3 = 0.81.
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