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Abstract. The Wehrl phase distribution is defined as a phase density of the Wehrl classical
information entropy. The new measure is applied to describe the quantum phase properties of some
optical fields including Fock states, coherent and squeezed states, and superposition of chaotic and
coherent fields. The Wehrl phase distribution is compared with both the conventional Wehrl entropy
and Husimi phase distribution (the marginal HusimiQ-function). It is shown that the Wehrl phase
distribution is a good measure of the phase-space uncertainty (noise), phase locking and phase
bifurcation effects. It is also demonstrated that the Wehrl phase distribution properly describes
phase randomization processes, and thus can be used in a description of the quantum optical phase.

1. Introduction

Quantum information-theoretic entropy is one of the most fundamental concepts of quantum
physics [1]. Quantum entropy, as a natural generalization of the Boltzmann classical entropy,
was proposed by von Neumann [2]. It has been applied, in particular, as a measure of quantum
entanglement, quantum decoherence, photocount statistics, quantum optical correlations,
purity of states, quantum noise or accessible information in quantum measurement (the capacity
of the quantum channel).

Classical information-theoretic entropy associated with quantum fields was introduced by
Wehrl [3] in terms of the Glauber coherent states and the Husimi Q-function [4]. A rigorous
proof that the von Neumann entropy tends to the Wehrl entropy in the classical limit h̄ → 0
was given by Beretta [5]. The von Neumann quantum entropy can be expanded in a power
series of classical entropies. As was shown explicitly by Peřinová et al [6], the first term
of this expansion is the Wehrl entropy. Bužek et al [7] related the von Neumann entropy
to the sampling entropies based on an operational approach to a phase-space measurement.
They also identified the Wehrl entropy as a particular example of the sampling entropy, when
the quantum ruler is represented by coherent states. Other aspects of the relation between
classical and quantum mechanical entropies have also been extensively studied (see, e.g.,
excellent surveys by Wehrl [8], and Ohya and Petz [1] with references included therein).

The Wehrl entropy has been successfully applied in a description of different properties of
quantum optical fields. In particular, it has been shown explicitly that the Wehrl entropy
is a useful measure of phase-space uncertainty (quantum noise, phase-space localization,
wavepacket spreading) [7, 9–13], quantum interference [9], decoherence [10, 14, 15],
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ionization [13], squeezing [15–17], Schrödinger cat formation [9,12,18] or, in general, splitting
of the Q-function [14]. Wehrl entropy for the common quantum states of light has been
analysed in detail, e.g., by Lee [16], Peřinová et al [6], Orłowski et al [12, 14, 17, 18], and
Bužek et al [7, 9].

The von Neumann entropy becomes zero for all pure states, and thus cannot be used
in discriminating them. Paradoxically, the Wehrl classical entropy is more sensitive in
distinguishing states than the von Neumann quantum entropy, since it depends on the choice
of pure states. However, there are properties of quantum fields, including phase properties,
which are not precisely enough described by the conventional Wehrl entropy. We apply a
new entropic measure—the Wehrl phase distribution, defined as the phase density of the
Wehrl entropy. We analyse several quantum and classical optical states of light to show
the usefulness and advantages of the Wehrl phase distribution in comparison with the Wehrl
entropy and conventional phase distributions, in particular those of Husimi, and Pegg and
Barnett.

2. Definitions

The density matrix ρ̂ for an arbitrary state of light can be represented by the Husimi classical-
like Q(α)-function [4]

Q(α) = 1

π
Tr(ρ̂|α〉〈α|) = 1

π
〈α|ρ̂|α〉 (1)

in terms of coherent states |α〉. Function (1) is normalized to unity, i.e.
∫
Q(α) d2α = 1, where

d2α ≡ dRe α dIm α = |α| d|α| dArgα. The Husimi representation (1) provides, equivalently
to the Glauber–Sudarshan or Wigner representations, a basis for a formal equivalence between
the quantum and classical descriptions of optical coherence [19].

The Wehrl classical information-theoretic entropy is defined via the Husimi Q-function
as follows [3]†:

SW = −
∫
Q(α) lnQ(α) d2α. (2)

The Wehrl entropy (2) is also referred to as the Shannon information of the Q-function [10].
We define the following entropic measure:

Sθ = −
∫
Q(α) lnQ(α)|α| d|α| (3)

which could be interpreted as the phase distribution‡ or phase density of the Wehrl entropy.
In fact, the Wehrl entropy (2) can be obtained from (3) by simple integration,

SW ≡ −
∫ ∫

Q(α) lnQ(α)|α| d|α| dθ =
∫
Sθ dθ (4)

where θ = Arg α. We refer to function (3) as the Wehrl phase distribution or Wehrl entropy
density. We will show some formal similarities but also essential differences between the

† The minor difference between the Wehrl entropy presented here and, e.g., that applied in [8, 9, 17, 18] is the factor
ln π resulting from the different normalization of the Husimi Q-function. However, the same normalization as ours
in (1) and (3) was used by, e.g., Keitel and Wódkiewicz [11].
‡ The conventional phase distributions [21] are normalized to unity. But our definition of the Wehrl phase distribution
Sθ is normalized to the state-dependent Wehrl entropy SW. One can redefine Sθ as S′

θ = Sθ /SW to obtain the
conventional mathematical distribution. However, we keep our normalization due to clear physical interpretation of
SW.
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Wehrl phase distribution (3) and conventional phase distributions, in particular, the so-called
Husimi phase distribution [21]

Pθ =
∫
Q(α)|α| d|α| (5)

defined as the marginal function of the Husimi Q-function.
In the next sections, we will calculate the Husimi Q-function, the Wehrl entropy and

the Wehrl and Husimi phase distributions for some common states of light. We will show
the advantages of the entropic measure (3) over the Wehrl entropy and conventional phase
distributions in a description of quantum phase properties of radiation.

3. Entropic description of fields with random phase

States with random phase are usually defined by uniform classical phase distributions [20,21],
the uniform Pegg–Barnett quantum phase distribution [21, 23] or, equivalently, by rotated-
quadrature distributions independent of the reference phase [22]. These definitions can also be
formulated in terms of the rotationally symmetric quasiprobability distributions, in particular,
the Wigner or Husimi functions [21,22]. Consequently, the states with random phase, described
by the phase-independent Husimi function Q(α) = f (|α|), also have the phase-independent
entropic density Sθ . Thus, the Wehrl entropy SW is simply related to its density Sθ by the
formula Sθ = SW/(2π). We briefly discuss two examples of such states.

3.1. Fock states

The Fock state |n〉 is described by the phase-independent Husimi Q-function in the form of
Poissonian distribution

Q(α) = 1

π

|α|2n
n!

exp(−|α|2). (6)

Consequently, the Wehrl phase distribution is given by

Sθ = 1

2π
SW = 1

2π
[1 + n− nψ(n + 1) + ln(πn!)] (7)

where ψ(n + 1) = −γ +
∑n

k=1
1
k

is digamma function defined by Euler’s constant γ .
Distribution (7) instantly comes from the well known expression for the Fock-state Wehrl
entropy obtained, e.g., by Orłowski [17] and Peřinová et al [6]. The Wehrl entropy and Wehrl
phase distribution for Fock states |n〉 in their dependence on photon number n are given in
figures 1 and 2(a), respectively.

3.2. Chaotic field

The chaotic (Gaussian) field is defined as a state with the maximal von Neumann entropy. Its
Husimi Q-function reads as [19]

Q(α) = 1

π(〈n̂ch〉 + 1)
exp

(
− |α|2

〈n̂ch〉 + 1

)
(8)

where 〈n̂ch〉 is the mean number of photons. The thermal (blackbody) radiation in thermal
equilibrium at temperature T is described by (8) with the mean photon number 〈n̂ch〉 =
{exp(h̄ω/kBT )− 1}−1, where kB is the Boltzmann constant. The Wehrl phase distribution of
the chaotic light is expressed by

Sθ = 1

2π
SW = 1

2π
[ln(〈n̂ch〉 + 1) + ln π + 1]. (9)
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Figure 1. Wehrl entropy as a function of mean photon numbers for: Fock states (〈n̂Fock〉 = n),
chaotic field (〈n̂ch〉), coherent state (〈n̂coh〉 = |α0|2), and squeezed vacuum (〈n̂sv〉 = sinh2 ζ ).

Figure 2. Wehrl phase distribution (solid circles) versus Pegg–Barnett or, equivalently, Husimi
phase distribution (dashed circle) in polar coordinates for (a) Fock states and (b) chaotic fields
with the mean photon numbers n = 〈n̂ch〉 equal to: 0 (innermost solid circle), 10, 20, 30, 40, 50
(outermost circle).

The Wehrl entropy SW, given by (9), was discussed by Peřinová et al [6], Peřina [19], and
Orłowski [17]. The Wehrl entropy for the chaotic field as a function of the mean photon
number 〈n̂ch〉 is presented in figure 1. Perfectly circular polar-coordinate representations of
the phase-independent Wehrl phase distribution for the chaotic field are plotted in figure 2(b)
for the same mean photon numbers as those depicted in figure 2(a) for Fock states. It is seen
that Fock and chaotic fields have the same distribution Sθ in the limit of zero intensity only.
With increasing intensity, the Wehrl phase distribution and, consequently, the Wehrl entropy
increase faster for the chaotic field than for Fock states.

The Pegg–Barnett phase distribution [23] and the marginal quasiprobability phase
distributions [21], including function (5), are equal to

Pθ = 1

2π
(10)

for any state with random phase. The Wehrl phase distributions (7) and (9), although
independent of phase, remain dependent on the mean number of photons in the field with
random phase. A comparison of the phase distributions Sθ and Pθ for the random-phase states
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is clearly presented in figure 2. We conclude that the Wehrl phase distribution contains more
information than the conventional phase distributions, but still fulfills the requirement for a
good measure of phase properties.

4. Entropic description of partial phase states and phase locking

We will show, by referring to the examples of pure or ‘noisy’ coherent fields, that the Wehrl
phase distribution describes properly the influence of noise on the coherent field and the phase
locking effect observed by the increasing mean number of photons of the partial phase states†.

4.1. Signal with noise

A superposition of coherent signal with complex amplitude α0 and chaotic noise with the mean
photon number 〈n̂ch〉 can be described by the following Husimi Q-function [19]:

Q(α) = 1

π(〈n̂ch〉 + 1)
exp

(
−|α − α0|2

〈n̂ch〉 + 1

)
. (11)

On integration, according to definition (3), we find the closed-form expression of the Wehrl
phase distribution for the superposition of coherent signal and noise as follows:

Sθ = 1

2π
exp[−(X2

0 −X2)]{√πX[erf(X) + 1]f1 + exp(−X2)f2} (12)

where

fj = X2
0 −X2 + ln[〈n̂ch〉 + 1] + ln π + j/2 (13)

and

X = |α0|√
〈n̂ch〉 + 1

cos(θ − θ0) (14)

which, for the special choice of θ , is denoted by X0 = X(θ = θ0) = |α0|/
√

〈n̂ch〉 + 1, where
θ0 is the phase of α0. Analogously, for the field described by (11), we derive the following
Husimi phase distribution:

Pθ = 1

2π
exp[−(X2

0 −X2)]{√πX[erf(X) + 1] + e−X2} (15)

where X is defined by (14). It is seen, by comparing (12) with (15), that the Wehrl phase
distribution Sθ differs from the Husimi distribution Pθ by the factors fj . Function (12) reduces
to (15) by putting f1 = f2 = 1. The Wehrl entropy for the field (11) reads as [6, 19]

SW = ln(〈n̂ch〉 + 1) + ln π + 1 (16)

which can be obtained by direct integration of (12). The Wehrl entropy (16) is independent
of the complex amplitude of the coherent signal. Distribution (12) reduces to the phase-
independent function (9) for the chaotic field without coherent signal (α0 = 0). The Wehrl
phase distribution for the Glauber coherent state is another special case of (14).

† Although, the partial phase states are usually considered to be pure (see, e.g., [23]), we analyse mixed states, which
also go over into the phase states in the limit of high signal-to-noise ratio.



5164 A Miranowicz et al

4.2. Coherent states

The Husimi Q-function for the Glauber coherent state |α0〉 reads as

Q(α) = 1

π
exp{−|α − α0|2}. (17)

Coherent state (17) is the most common example of the partial phase state [23]. The Q-
function (17) is the special case of (11) for the signal field without noise (〈n̂ch〉 = 0). Thus,
the Wehrl phase distribution for the coherent state is given by (12), while the Husimi phase
distribution is equal to (15), where fj = X2

0 −X2 + ln π + j/2 andX = |α0| cos(θ − θ0). The
s-parametrized phase distribution for the coherent state was obtained by Tanaś et al [24].
Their solution in the special case for s = −1 reduces to the Husimi phase distribution
Pθ(α0, nch = 0), given by (15).

The second term in braces of (12) plays an essential role for small |α0|. By expanding (12)
in power series of |α0|, and by putting 〈n̂ch〉 = 0, we find

Sθ = 1 + ln π

2π
+

1 + 2 ln π

4
√
π

|α0| cos(θ − θ0) + O(|α0|2) (18)

which is the approximation of the Wehrl phase distribution (12) for the coherent state with
small amplitude. The corresponding Husimi phase distribution

Pθ = 1

2π
+

1

2
√
π

|α0| cos(θ − θ0) + O(|α0|2) (19)

is obtained from the exact expression (15). For |α0| = 0, both Sθ andPθ are phase independent.
For large |α0|, the first term of (12) predominates resulting in the following asymptotic formula:

Sθ ≈ f1√
π
X exp[−(X2

0 −X2)]. (20)

The error function erf(X) in (12) was replaced by unity in the derivation of (20). Similarly,
the asymptotic Husimi phase distribution is

Pθ ≈ 1√
π
X exp[−(X2

0 −X2)]. (21)

The asymptotic formulae (20) and (21) are valid for −π/2 � (θ − θ0) � π/2 only. But (12),
given in terms of error function, holds for arbitrary phase θ . From (16) it follows that the Wehrl
entropy for any coherent state is constant and equal to SW = 1 + ln π as shown in figure 1. In
contrast, the density Sθ of the Wehrl entropy is dependent on the coherent-state intensity.

The Wehrl phase distribution is depicted for the coherent signals in figures 3(a)–(c) and
for the superpositions of the coherent signal and noise in figures 3(d)–(f ) for various values of
the coherent-signal amplitude α0. It is seen that, for the fixed mean number of chaotic photons,
〈n̂ch〉, the density Sθ becomes sharper with the increasing mean number of coherent photons,
〈n̂coh〉 = |α0|2. This is a signature of the so-called phase locking. It is known [21,23] that the
phase locking can be described (see dashed curves in figure 3) within the conventional optical
phase formalisms. Here, we propose alternative entropic description of the phase locking (see
the solid curves in figure 3).

Further conclusions can be drawn by comparing figures 3(a)–(c) and 3(d)–(f ) for different
values of the chaotic-field intensity 〈n̂ch〉 but fixed coherent-signal intensity |α0|2. We observe
that (i) the area (which is the Wehrl entropy SW) covered by the density Sθ increases, while
(ii) the entropy density itself becomes less phase dependent with increasing noise. Thus, the
Wehrl phase distribution serves as a measure of both (i) noise (phase-space uncertainty) and
(ii) phase randomization (decoherence).
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Figure 3. Wehrl (solid curves) versus Husimi (dashed curves) phase distributions in polar
coordinates for coherent states (a)–(c) and superpositions of coherent signal and noise (〈n̂ch〉 = 10)
(d)–(f ) with the coherent amplitude α0 equal to: 0 (a), (d), 0.8 (b), (e), 1.6 (c), (f ). Dotted circles
denote the Wehrl phase distribution for α0 = 0.

5. Entropic description of phase bifurcation

The bifurcation phenomenon arising in the phase probability distribution of highly squeezed
states was discovered by Schleich et al [26]. We explain this effect by using the Wehrl phase
distribution.

5.1. Squeezed states

The ideal squeezed states (two-photon coherent states) are defined to be [25]

|α0, ζ 〉 = D̂(α0)Ŝ(ζ )|0〉 (22)

where D̂(α0) = exp(α0â
† − α∗

0 â) is the displacement operator and

Ŝ(ζ ) = exp( 1
2ζ

∗â2 − 1
2ζ â

†2) (23)

is the unitary squeeze operator. For simplicity, we assume that the squeeze parameter ζ is real.
The squeezed vacuum is the special case of (22) for the displacement parameter α0 = 0. The
Husimi Q-function for the state (22) is

Q(α) = 1

πσ1σ2
exp

{
− Im 2(α − α0)

σ 2
1

− Re 2(α − α0)

σ 2
2

}
(24)

where σ1,2 =
√
(e±2ζ + 1)/2. We find, by assuming that α0 is real, the following Wehrl phase

distribution for the squeezed state:

Sθ = 1

2π

σ1σ2

σ 2
exp[−(X2

0 −X2)]{√πX[erf(X) + 1]f1 + exp(−X2)f2} (25)
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where

fj = σ 2
2

(
X2

0

σ 2
− X2

σ 2
1

)
+ ln(πσ1σ2) +

j

2
(26)

and σ ≡ σ(θ) = {σ 2
1 cos2 θ + σ 2

2 sin2 θ}1/2; X ≡ X(θ) = σ1/(σ2σ)α0 cos θ , and X0 =
X(θ = 0) = α0/σ2. Distribution (25) for the squeezed state has the same structure as (12) for
the coherent signal field with noise, apart from the extra coefficient σ1σ2σ

−2, and modified
definitions of the functions fj and X. For ζ = 0, which results in σ = σ1 = σ2 = 1,
equation (25) reduces to a special case of (12) for the real coherent state (θ0 = 〈n̂ch〉 = 0). If
we put f (i) → 1, function (25) will describe the Husimi phase distributionPθ for the squeezed
state obtained by Tanaś et al [21, 24]:

Pθ = 1

2π

σ1σ2

σ 2
e−(X2

0−X2){√πX[erf(X) + 1] + e−X2}. (27)

On integrating the Wehrl phase distribution (25), one readily obtains the Wehrl entropy

SW = ln(π cosh ζ ) + 1 = 1
2 ln[〈n̂sv〉 + 1] + ln π + 1 (28)

in agreement with the well known results for the squeezed states shown by Lee [16], Keitel
and Wódkiewicz [11] and Orłowski [17]. In (28), 〈n̂sv〉 = sinh2 ζ is the mean photon number
for the squeezed vacuum. The Wehrl phase distribution (25) depends on the displacement
parameter α0 via the functions X and X0. However, the Wehrl entropy (28) is independent of
the displacement α0.

Distribution (25) is exact and valid for arbitrary values of α0, but has rather complicated
structure in comparison with (28). We approximate the Wehrl phase distribution for a highly
displaced (α2

0 � 1) squeezed state as (for cos θ > 0)

Sθ ≈ f1√
π

σ1σ2

σ 2
X exp[−(X2

0 −X2)]. (29)

For α2
0 � 1, distribution (25) can be expanded in power series in α0. We find the following

small-amplitude Wehrl phase distribution:

Sθ = 1

2π

σ1σ2

σ 2

{√
πX

[
1

2
+ ln(πσ1σ2)

]
+ ln(πσ1σ2) + 1

}
+ O(α2

0). (30)

The Wehrl phase distribution for the squeezed vacuum, i.e., in the limit α0 → 0, is given by

Sθ = 1

2π

σ1σ2

σ 2
[ln(πσ1σ2) + 1] (31)

as a special case of (30). The Wehrl entropy (28) for the squeezed vacuum is presented in
figure 1. Since function (28) is independent of the displacement parameter α0, the Wehrl
entropy for the arbitrary squeezed state |α0, ζ 〉 as a function of 〈n̂sv〉 = sinh2 ζ is the same
as the Wehrl entropy for the squeezed vacuum plotted in figure 1. It is seen, by comparing
plots in figure 1 for the same mean photon number, that the Wehrl entropy for the squeezed
state is smaller than the entropies for Fock or chaotic fields, but greater than the coherent-state
entropy. The Wehrl phase distribution is plotted in figures 4(a)–(c) for squeezed vacua and
in figures 4(d)–(f ) for squeezed states with the displacement parameter α0 = 1 and different
values of the squeeze parameter ζ . The distribution (31) for a squeezed vacuum has a two-peak
structure, which changes into a flat distribution in the limit of no squeezing (ζ = 0). However,
the distribution (25) for the squeezed state with nonzero displacement parameter undergoes a
transition from a single- to double-peak distribution by increasing the squeeze parameter ζ or
by decreasing the displacement parameter α0. This behaviour of the entropic distribution (25)
arises from the competition between the coherent component exhibiting a single-peak structure
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Figure 4. Bifurcation of Wehrl (solid curves) and Husimi (dashed curves) phase distributions for
squeezed states with: α0 = 0 (squeezed vacuum) (a)–(c) and α0 = 0.8 (d)–(f ) for different values
of the squeeze parameter: ζ = 0.4 (a), (d), ζ = 0.8 (b), (e), and ζ = 1.2 (c), (f ). Dotted curves
denote Wehrl phase distributions for vacuum (a)–(c) and coherent state with α0 = 0.8 (d)–(f ).

and the squeezed-vacuum component having a double-peak structure. The above transition
of the Wehrl phase distribution indicates the phase bifurcation phenomenon discovered by
Schleich et al [26] by analysing the Pegg–Barnett phase distribution with increasing value of
the product of the squeeze and displacement parameters for the state (22). Alternatively, the
phase bifurcation can be analysed (see dashed curves in figure 4) in terms of the marginal
quasiprobability distributions [21, 24]. The squeezed-state phase bifurcation has a simple
physical interpretation according to the principle of the overlap area in the phase space [26].

In the limit of strong squeezing ζ � α2
0 , the peaks of the Wehrl phase distribution (25)

are centred at θ = ±π
2 and can be approximately expressed by

Sθ ≈ exp(ζ − 2α2
0)

2π

[
ζ + 2α2

0 + ln
(π

2

)
+ 1

]
(32)

which shows that the peak height of Sθ is proportional to ζeζ if we neglect the parameter
α0, which is small in comparison with ζ . In the same squeezing limit but for θ �= ±π

2 ,
distribution (25) simplifies to

Sθ ≈ e−ζ

2π
sec2 θ

{√
2πα0

[
erf(

√
2α0) +

cos θ

| cos θ |
]
f1 + exp(−2α2

0)f2

}
(33)

where fj ≈ ln( π2 )+ s + j

2 is obtained as the approximation of (26). For squeezed vacuum, (33)
reduces to

Sθ ≈ 1

2π
f2e−ζ sec2 θ. (34)
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Functions (33), (34) are proportional to exp(−ζ ), so the Wehrl phase distribution is negligible
for θ not close to ±π

2 . The exact function (25), presented graphically in figure 4, can be
approximated by (32), (33) if the condition ζ � α2

0 is fulfilled.
The appearance of the phase bifurcation, for the fixed squeeze parameter ζ , depends on

the value of the displacement parameter α0. Since function (28) is independent of α0, one can
conclude that the conventional Wehrl entropy does not reveal the phase bifurcation effect for
the squeezed state. In contrast, the Wehrl phase distribution (25), having a structure with two
sharp peaks in the limit of high squeezing, properly describes this bifurcation.

6. Conclusions

We have proposed a new entropic measure—the Wehrl phase distribution, which can be
interpreted as the phase density of the Wehrl classical information-theoretic entropy. We
have applied the Wehrl phase distribution to describe quantum mechanical phase properties
of some common optical fields, in particular, Fock states, coherent and squeezed states, and
superposition of chaotic and coherent states. We have shown, in particular, that the Wehrl
phase distribution clearly describes states with random phase and partial phase states, and also
the effects of phase randomization, phase locking and phase bifurcation of quantum states
of light. For comparison, we have also described these fields in terms of the Wehrl entropy
and conventional phase distributions, including those of Husimi, and Pegg and Barnett. We
have shown explicitly that the Wehrl phase distribution, in contrast to the conventional Wehrl
entropy, reveals the phase bifurcation of squeezed states and phase locking of partial phase
states. The Wehrl phase distribution also contains more information than the conventional
phase distributions. In particular, the Wehrl phase distribution, in contrast to the Husimi or
Pegg–Barnett distributions, depends on the intensity of the states with random phase (including
Fock and chaotic fields). Thus, the Wehrl phase distribution combines the advantages of both
the Wehrl entropy and conventional phase distributions serving as a good measure of various
properties of quantum optical fields.
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