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Analysis of Mode Mismatch in Quantum Scissors Device
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(l? Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
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Abstract— Effect of mode mismatch between the in-
put fields of a quantum scissors device is studied using
the continuum mode representation. It has been ob-
served that mode mismatch has a large deteriorating
effect when a strong coherent state is used to prepare
the desired state.

I. Introduction-Possible applications of nonclassi-
cal states in quantum communication and information
processing has stimulated a growing interest in the gen-
eration and engineering of Fock states and their su-
perpositions. Such states can be prepared using either
nonlinear medium or conditional measurements at the
output ports of an array of beamsplitters {1]. Quan-
tum scissors device (QSD) proposed by Pegg et al. is
a relatively simpler scheme for the preparation of su-
perposition states in the form ao|0) + a;]1) [2]. This
brilliant scheme seen in Fig.1 is based on the genera-
tion of the desired superposition state by truncating
a coherent input state. Conditional measurement at
two photon counters placed at the output ports of a
beam splitter after mixing the coherent state with one
of the modes of an entangled photon pair at this beam
splitter forms the basic principle behind this scheme.
Recently, we have shown that the QSD scheme is prac-
tically realizable with the available technology of pho-
ton counting and single photon generation with the
condition that the coherent state to be truncated has
low intensity [3]. However, in that study, the analy-
sis was performed considering that the coherent and
single photon states are in perfectly matching single
modes. Since the scheme is based on the interference
of lights from independent sources (e.g., single pho-
ton from parametric down conversion and a coherent
light), the two input modes can be different and a good
mode matching may constitute a major challenge in
experiment. A theoretical study to understand the ef-
fects of mismatch in QSD scheme is necessary. In this
paper, we present the results of this study and discuss
mode match effects on the fidelity of truncation.

II. Continuum States of the QSD-For the study of
mode mismatching, it is necessary to use a multimode
theory. Here we use the continuum mode formalism
developed in [4]. In QSD scheme shown in Fig.1, we
assume that the single photon state at the input mode

of BS1 is prepared in a mode defined with a mode
function of £(w) and the coherent state at BS2 is pre-
pared in f(w). Using the general formalism introduced
in [4], the input states of the QSD can be written as

(1)
(2)

11;)a, = A1 (©)10)a,
o5 B)e, = 172 3™ (B (B)]0)

n=0

for the single photon state and the coherent state, re-

spectively. /ilT and B}T are called ”field operators”
and given as

At = / At (w)d; ' () 3)

Bl(p) = / dwp(w)bs' () (4)

where @' and b?;T are the creation operators of the
corresponding input modes of BS1. The commutator
between field operators of different modes corresponds
to the overlap between the mode of single photon state
and that of the coherent state. Using Gram- Schmidt
othogonalization method, we can decompose § as £ =

YoB + 1o where yo = (£,0) and 71 = (£,0). o is
orthogonal to § and can be calculated using

|0y

b, | Bs1

|1:5)

Figure 1: Basic configuration of QSD. The states at BS
inputs are the continuum single photon and coherent
states with modes £ and f, respectively.

|o:B)
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&— B
V1= |’70|2

Then any field operator of mode £ can be decom-
posed in terms of modes ¢ and f as follows B(¢) =
0B (B) + 71 Bt (0). With the input state 11, €)a,10)a,
at BS1, the resultant output state at the output of
BS1 can be written as

6,6, = {70115 8)5,10)s, + 71]1; )6, [0)s,]
+T1[7010>b2|1;13>61 +71|0>1)2,1;U)bz] (6)

Using the input output relation for BS2 together with
Eq. (1)-(4) and performing a conditional measurement
with the photon counters at the outputs, one can find
the truncated output state. From the previous works,
it is known that for 50:50 beamsplitters and ideal pho-
ton counters, a single photon detection at D3 and no
photon detection at D2 will give the desired truncated
state with fidelity equals to 1 provided that perfect
mode matching is achieved. However, here, due to the
mismatch introduced by ¢ mode, there will be a dis-
tortion in the truncated output state. We consider two
cases; (¢) both detectors are perfectly mode matched
to A mode, and (ii) detectors have broad mode detec-
tion and can detect photons in both 8 and ¢ modes.
Upon detection of one photon at detector D3 and 0
photon at detector D2, the unnormalized output trun-
cated states for these two cases will be

(5)

g =

le1)s, = 1[0t + ayora(ta + r2)]|0)s, +
arsti[vl1; B, + 111500, ] (7
lp2)s, = rita[vo + ]|0)s, +
araty [10l1; B)s, + 11|15 0)s,] (8)

The single photon state in mode ¢ at the output states
must be noted as the effect of mode mismatch. The
fidelity of the generated output state to the desired one

|(I))bx = “0>bl + all;ﬁ)bx] (9)

1+ |af?
is calculated using Fi_12 = |[(®|piz1,2)s,1|* for both
cases. The plots of these calculations are given in
Fig.2 and Fig.3 as a function of mismatch parame-
ter || for various input coherent state intensities |2
(A)0.1, (B)0.5, (C)1, (D)2, (E)16. It can be seen from
these figures that increasing intensities of coherent in-
put state cause stronger degradation in fidelity of trun-
«cation for both cases. For the second case, with a weak
intensity coherent state, mode mismatch causes only a
slight decrease in fidelity of truncation; for a mismatch
value of 0.8, fidelity is still higher than 0.9.
III. Conclusion-Mode mismatch effects in a QSD is
studied using the continuum mode description of the
input states. It has been understood that for detec-
tors with unit eficiency and zero dark count, mode
mismatch does not constitute a serious problem in the
truncation of weak intensity coherent states.
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Figure 2: Fidelity of truncation with detectors per-
fectly mode matched to mode 8.
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Figure 3: Fidelity of truncation with detectors which
can count photons in both modes ¢ and £.
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