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Abstract
Sub-Poissonian light generation in non-degenerate three-wave mixing is
studied numerically and analytically within quantum and classical
approaches. Husimi Q-functions and their classical trajectory simulations
are analysed to reveal a special regime corresponding to the time-stable
sub-Poissonian photocount statistics of the sum-frequency mode.
Conditions for the observation of this regime are discussed. Theoretical
predictions of the Fano factor and explanation of the extraordinary
stabilization of the sub-Poissonian photocount behaviour are obtained
analytically by applying the classical trajectories. Scaling laws for the
maximum sub-Poissonian behaviour are found. Noise suppression levels in
non-degenerate versus degenerate three-wave mixing are discussed on
different time scales compared to the revival times. It is shown that the
non-degenerate conversion offers much better stabilization of the suppressed
noise in comparison to the degenerate process.

Keywords: Sub-Poissonian statistics, three-wave mixing, Fano factor,
classical trajectories

1. Introduction

For almost four decades, since the pioneering experiments of
Franken et al [1] and theoretical foundations laid down by
Bloembergen et al [2], multiwave mixing has unceasingly
been in the forefront of quantum-optical investigations
[3, 4]. In particular, three-wave mixing (TWM) has attracted
considerable interest as a parametric non-linear process of
conversion of two sub-frequency (say, ω1 and ω2) photons
into one sum-frequency (ω1 + ω2 → ω3) photon, together
with the inverse process. TWM can be observed in non-linear
crystals like ADP, KDP, LiNbO3 or BaTiO3 [5]. Both the total
energy, h̄ω1 + h̄ω2 = h̄ω3, and momentum, h̄k1 + h̄k2 = h̄k3,
of interacting photons are conserved. TWM is observable
for proper orientations of light beam polarizations and crystal

axes [4], therefore it can be considered as a parametric process.
TWM is used for the frequency-up conversion if ω1 → ω3 or
the frequency-down conversion if ω3 → ω1. The process is
also useful for the generation of non-classical light such as
squeezed, sub-Poissonian and antibunched light [6].

Before the computer era, quantum dynamics was
usually investigated under the short-time approximation only.
Nowadays, the Taylor series of quantum operators can be
found for almost any number of terms with the help of fast
computers and sophisticated software. However, these series
are usually convergent for short evolution times or even for
initial time only. Thus, numerical quantum methods (see,
e.g., [7]) fail in the simulation of long-time quantum evolution.
On the other hand, as we have shown in [8, 9], the method of
classical trajectories gives very good estimation in the case of
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strong-field interaction (practically, for photon numbers larger
than 10). The computational speed of the classical-trajectory
method does not depend on the numbers of interacting photons
and, moreover, for a larger number of photons obtains better
precision. Thus, the method is very fast and offers a
simple substitute for the tedious exact quantum numerical
calculations. The classical-trajectory method enables not
only numerical but also some analytical predictions, e.g., for
stationary Fano factors [8,9] or for maximum pump depletion
in TWM [10]. A method similar to ours to simulate classical
noise in TWM was used by Chmela [11].

In previous papers, we have studied degenerate processes
of wave mixing, including the second [8] and higher [9]
harmonic generations. Here, we generalize the former results
for non-degenerate wave mixing. It is well-known that both
degenerate and non-degenerate TWM can be used for the
generation of sub-Poissonian light [12, 13]. Nevertheless,
theoretical predictions of quantum parameters, like the Fano
factor, are most often derived under the short-interaction
(short-time or short-length) approximation (see, e.g., [12–14]),
thus valid for weak non-linear coupling of the optical fields
only. Motivated by papers of Nikitin and Masalov [15] and
of Bandilla, Drobný and Jex [16, 17], we analyse the long-
interaction evolution of TWM. The main result of this article
can be summarized as follows: the TWM can be a source of
time-stable sub-Poissonian light of the sum-frequency mode in
the no-energy-transfer regime. The deepest noise reduction,
with the Fano factor equal to 5/6, can be observed for the
balanced input amplitudes r1 = r2 = r3/

√
2. The same

degree of photocount noise suppression in the sum-frequency
mode can be achieved for degenerate TWM. However, the sub-
Poissonian light produced in non-degenerate TWM is better
stabilized compared to that in degenerate TWM. Moreover, the
Fano factors for the sub-frequency modes in non-degenerate
TWM are smaller than those for the degenerate process. This
and other results will be demonstrated analytically by applying
a method of classical trajectories and tested numerically within
the quantum approach.

2. Quantum analysis

In the quantum approach, non-degenerate three-wave mixing
can be described by the interaction Hamiltonian (e.g., [12])

Ĥ = h̄g
(
â1â2â

†
3 + â

†
1 â

†
2 â3

)
, (1)

where âk and â
†
k denote, respectively, annihilation and creation

operators of the sub-frequency (labelled with subscript 1, 2)
and sum-frequency (subscript 3) modes; g is a non-
linear coupling parameter, which is related to the quadratic
susceptibility tensor χ(2) of a given non-linear optical crystal
and also dependent on the geometry of the laboratory set-up [4].

As in [9], we analyse the quantum Fano factors given
by Fk = (〈n̂2

k〉 − 〈n̂k〉2)/〈n̂k〉 for a photon-number operator

n̂k = â
†
k âk . The light is referred to as sub-Poissonian ifFk < 1

and super-Poissonian if Fk > 1.
For weak non-linear interactions or short crystal, the short-

time approximation can be applied for analytical predictions

Figure 1. Quantum dynamics out of NETR: cross sections of
single-mode Q-functions: Q1(Reα1, Imα1) and Q2(Reα2, Imα2)
for sub-frequency mode and Q3(Reα3, Imα3) for sum-frequency
mode at different scaled evolution times for initial coherent fields
with real amplitudes, αk(0) = rk , set to r1 = 6, r2 = 4 and r3 = 0.

of photocount noise suppression with Fk < 1 [12, 13]. The
Fano factors are approximated by

F 1,2 = 1 + 2r2
3 (gt)2 + 8

3 r1r2r3 sin θ (gt)3 + O{(gt)4},
F 3 = 1− 4

3 r1r2r3 sin θ (gt)3 + O{(gt)4}, (2)

where rk are the input coherent amplitudes and θ = φ1 +
φ2 − φ3 is the input phase mismatch. For sin θ > 0, the
sub-Poissonian statistics in the sum-frequency mode can be
observed. For θ = 0, we find the higher-order short-time Fano
factor expansion to be

F 3 = 1 +
(
r2

3 − 7r2
1 r

2
2 + 4r2

1 r
2
3 + 4r2

2 r
2
3

) (gt)4

3
+ O{(gt)5}.

It is seen that the sub-Poissonian light in the sum-
frequency mode is generated for some combinations of input
amplitudes rk . Since the Fano factors depend weakly on time
(i.e., in its third or higher-order power), it is difficult to observe
the sub-Poissonian light generation in the short-time regime.

To analyse the exact quantum dynamics of the TWM
process beyond the short-time approximation, we apply the
Walls–Barakat method [3] of Hamiltonian diagonalization for
the initial coherent states. Quantum analysis enables numerical
estimation of all statistical properties including photocount
noise. Complete quantum information of TWM dynamics can
be given by the Husimi Q-function defined to be

Q(α1, α2, α3) = π−3〈α1, α2, α3|ρ̂|α1, α2, α3〉, (3)

where |α1〉⊗|α2〉⊗|α3〉. In figures 1 and 2, we plot its marginal
single-mode Husimi Q-functions given by

Q(αk) =
∫

Q(α1, α2, α3)
∏
m �=k

d2αm, (4)

where k,m = 1, 2, 3. The Fano factors, presented in
figures 3 and 4, were calculated with the help of the marginal
Q-functions. Due to obvious computational difficulties, the
exact quantum results can be obtained for relatively small
numbers (up to a few hundred) of interacting photons only.

By analysing the numerical quantum solution we observe
that the basic features of the photon number evolution for
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Figure 2. Quantum dynamics in NETR: cross sections of marginal
Q-functions as in figure 1, but for r1 = 6, r2 = 4, and
r3 = r1r2/

√
r2

1 + r2
2 ≈ 3.328.

Figure 3. Quantum dynamics out of NETR: (a) photon numbers
〈n̂k〉 and (b) Fano factors Fk (k = 1, 2, 3) for coherent inputs with
real amplitudes r1 = 6, r2 = 4, and r3 = 0. For longer times, all the
modes become stationary with the super-Poissonian statistics,
Fk > 1.

Figure 4. Quantum dynamics in NETR: Fano factors F1 (thin-solid
curve), F2 (dashed curve), and F3 (thick-solid curve) versus scaled
time for different amplitudes of initial coherent fields: (a) r1 = 6,
r2 = 4, and (b) r1 = 6, r2 = 2 together with r3 = r1r2/

√
r2

1 + r2
2 .

The sub-frequency mode becomes super-Poissonian, F1,2 > 1. By
contrast, the sum-frequency mode becomes sub-Poissonian, F3 < 1.
Dotted lines represent the classical trajectory predictions of F cl

k to
which all the quantum curves tend asymptotically.

non-degenerate TWM are in agreement with those for the
harmonic generation processes, as recently reported in [8,9]. In
particular, we observe the so-called no-energy-transfer regime
(NETR) [16–18], for which the energies and intensities of
both modes remain constant in time during the interaction.
Although small energy flows between the modes appear as
a consequence of vacuum fluctuations, their influence is
negligible for strong fields. NETR in three-wave mixing can
be observed if the amplitudes and phases of the initial coherent

fields are matched as follows (equation (18) in [16]):

1

r2
3

= 1

r2
1

+
1

r2
2

,

φ3 = φ1 + φ2. (5)

Usually, i.e., for the initial coherent fields not satisfying (5),
all the Fano factors are stabilized in the super-Poissonian
statistics after a short (gt |rk| � 1) relaxation period. Thus,
the outputs have high-level photocount noise. In figure 1, we
present a typical quantum evolution of the single-mode Husimi
functions Q(α1) and Q(α1) for the initial amplitudes r1 = 6,
r2 = 4 and r3 = 0. The corresponding evolutions of the photon
numbers and Fano factors are presented in figure 3.

Different behaviour is observed if the initial phase φ3 and
amplitude r3 of the sum-frequency mode fulfil the condition for
NETR. This distinction is clearly seen by comparing figures 1
and 2 forQ-functions or figures 3 and 4 for the Fano factors. In
figure 4, the Fano factors are calculated for two different pairs
of the initial amplitudes of sub-frequency modes: (a) r1 =
6, r2 = 4 and (b) r1 = 6, r2 = 2 and the sum-frequency-mode
amplitude r3 fulfilling (5). We observe that all the Fano factor
curves start at Fk (0) = 1 and after some relaxations become
stationary at much lower noise levels than those for fields out
of NETR. The sub-frequency mode remains super-Poissonian
with F 1,2 (t) > 1, whereas the sum-frequency mode becomes
sub-Poissonian with F 3 (t) < 1. The most suppressed noise
is observed for the balanced inputs, given by r1 = r2 and
r3 = r1/

√
2, as a special case of condition (5). For those inputs,

the Fano factor in the time limit tends to F 3 (t →∞) ≈ 0.83.
As we have shown in [8, 9], the same degree of the

Fano factor can be obtained in degenerate TWM. Thus, one
can address the following objection: Why study the same
parameter in the closely related non-degenerate version? First,
we stress that the same Fano factor is obtained in a special
case only: for the sum-frequency mode in NETR for long-
interaction times and high-intensity fields. By contrast, these
factors are distinct for the sub-frequency mode under the same
initial conditions. In general, the results even for the sum-
frequency mode in these two processes are different for initial
conditions either not fulfilling (5) or for lower intensity fields
or different time periods. Second, we will show that the
Fano factors for non-degenerate TWM are better stabilized
than those for degenerate TWM for much longer evolution
times. This is an important advantage of the non-degenerate
conversion.

For better comparison, let us analyse in detail degenerate
TWM described by

Ĥ ′ = h̄g′
(
â2

1 â
†
3 + â

†2
1 â3

)
. (6)

For clarity, observables calculated for degenerate TWM are
marked with prime to distinguish them from those for model (1)
and we keep subscript 3 (not 2) for the sum-frequency mode.
Hamiltonian (6) formally differs from (1) in the assumption
of â1 = â2 only. But we also put g′ = g/

√
2 for better

synchronization of oscillations in photon numbers 〈n̂′k〉 and
〈n̂k〉. Sub-Poissonian statistics in degenerate TWM were
analysed in our former works [8, 9]. In figures 5 and 6,
we compare exact quantum evolutions of the mean photon
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Figure 5. Non-degenerate versus degenerate TWM out of NETR:
Photon numbers 〈n̂k〉 and Fano factors Fk (k = 1, 3) are obtained for
initial amplitudes r1 = r2 = 6 and r3 = 0, whereas 〈n̂′k〉 and F ′k are
for r ′1 = 6 and r ′3 = 0. All quantities with (without) prime
correspond to degenerate (non-degenerate) TWM.

numbers and Fano factors for degenerate (〈n̂′k〉 and F ′k for
k = 1, 3) and non-degenerate (〈n̂k〉 and Fk) TWM for the
same initial conditions. We observe similar behaviour for
short times gt � 1 only. For longer times (also for gt < 1)
results are not equal by any means. Different predictions of
quantum evolutions for models (1) and (6) come from different

commutation relations: [â1, â
†
2 ] = 0 for non-degenerate

TWM and [â1, â
†
2 ] ≡ [â1, â

†
1 ] = 1 for degenerate TWM. As

a result, constants of motion are different: N̂ ′total(t) ≡ n̂′1(t) +
2n̂′3(t) = const for degenerate TWM, whereas n̂1(t)− n̂2(t) =
const and n̂1(t) + n̂3(t) = const for non-degenerate TWM.
We note that N̂total(t) ≡ n̂1(t) + n̂2(t) + n̂3(t) �= const in
the latter process. Evolutions, presented in figures 5 and
6 for degenerate and non-degenerate TWM, are distinct in
amplitudes and frequency of oscillations as well as in the
level of their ‘saturation’. For example, the limiting value of
the sum-frequency Fano factor for degenerate TWM is lower
than that for non-degenerate TWM for evolution out of NETR
(see figure 5(d)). While the sub-frequency Fano factor in
NETR is considerably higher for degenerate compared to non-
degenerate TWM (see figure 6(c)).

In figures 1–6, we have analysed the time regime which
is long compared to the typical interaction times for known
crystal lengths. However, the time is short compared to the
revival times for such systems. The question arises about
the photon-number noise suppression on such a long scale.
This analysis will show an advantage of non-degenerate over
degenerate TWM related to the stabilization of the suppressed
photon-number noise. In figures 7 and 8, we present the long-
time evolution for 0 < gt < 100 of the mean photon numbers
and Fano factors for both non-degenerate (〈n̂k〉 and Fk) and
degenerate (〈n̂′k〉 and F ′k) TWM. We observe that the revivals
are strongly pronounced for (i) degenerate TWM (right-hand
side of figures 7 and 8) compared to the non-degenerate process
(left-hand side), and (ii) outside NETR (figure 7) rather than
in NETR (figure 8). Thus, the non-degenerate TWM in NETR
exhibits the highest stability. Even for longer evolution times
as 100 < gt < 1000 of non-degenerate TWM, the oscillations
are similar to those for 0 < gt < 100 and it is hardly

Figure 6. Non-degenerate versus degenerate TWM in NETR: 〈n̂k〉
and Fk are calculated for initial amplitudes r1 = r2 = 6 and
r3 = 6/

√
2, whereas 〈n̂′k〉 and F ′k are for r ′1 = 6 and r ′3 = 3.

Figure 7. Revivals and collapses in degenerate TWM versus those
in non-degenerate TWM out of NETR. Initial conditions are the
same as in figure 5.

difficult to classify them as a typical revival. Oscillations
in 〈n̂k〉 are of order 10−3 and in Fk are of order 10−2 even
for such small initial amplitudes equal to α1 = α2 = 6 and
α3 = 6/

√
2. Our analysis is restricted to initial coherent

inputs. It is worth noting that the revivals are much stronger for
quantum input fields such as, e.g., Fock states. In conclusion,
although the degenerate and non-degenerate TWM lead to
approximately the same photon-number noise suppression in
the sum-frequency mode for NETR (see figure 6(d)), the
non-degenerate process offers much better stabilization of the
suppressed noise for long evolution times (compare figures
8(c) and 8(d)).

In the following sections, we will apply an approximate
method of classical trajectories to explain the extraordinary
stabilization of the observed photocount noise and to estimate
analytically the level of noise suppression for NETR.

3. Classical analysis

A complete quantum solution of the model given by
Hamiltonian (1) can be found numerically only. Yet, in a
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Figure 8. Revivals and collapses in degenerate and non-degenerate
TWM in NETR with the same initial conditions as those in figure 6.

special case for strong fields, analytical results can be obtained
by applying approximate classical methods.

In analogy to quantum Hamiltonian (1), the classical
model of non-degenerate TWM can be described by [4]:

H = g
(
α1α2α

∗
3 + c.c.

)
, (7)

where αk are the complex amplitudes of the kth mode and g is
a non-linear coupling parameter. From (7), one readily obtains
the following complex differential equations

α̇1 = − igα∗2α3,

α̇2 = − igα∗1α3,

α̇3 = − igα1α2. (8)

It is easy to show by comparing (8) with equations (12)
and (13) from [8] that the classical models for degenerate
and non-degenerate TWM are equivalent for α1 = α2 and
arbitrary evolution times. To get equations of motion for
degenerate TWM, it is enough to replace g by

√
2g′ and α3

by
√

2α′3 in (8). As was discussed in the previous section, the
quantum evolutions of degenerate and non-degenerate TWM
are equivalent for gt � 1 only.

By introducing real amplitudes and phases, αk = rkeiφk ,
equation (8) can be transformed into the following four real
equations

ṙ1 = − gr2r3 sin θ,

ṙ2 = − gr1r3 sin θ,

ṙ3 = gr1r2 sin θ,

θ̇ = g

(
r1r2

r3
− r1r3

r2
− r2r3

r1

)
cos θ, (9)

where θ = φ1 +φ2−φ3 is the phase mismatch. The system (9)
has three integrals of motion

E1 = r2
1 + r2

3 = n1 + n3,

E2 = r2
2 + r2

3 = n2 + n3,

K = r1r2r3 cos θ. (10)

By extracting r1, r2 and θ from (9), the equation for the
remaining amplitude r3 reads as

(r3ṙ3/g)
2 + K2 = r2

3

(
E1 − r2

3

) (
E2 − r2

3

)
(11)

or, equivalently, for the intensity n3 = r2
3 as

(ṅ3/2g)2 = n3 (E1 − n3) (E2 − n3)−K2

= (a − n3) (b − n3) (n3 − c) , (12)

where the numbers a � b � c are the roots of the cubic
equation n3 (E1 − n3) (E2 − n3) − K2 = 0 satisfying the
conditions abc = K2, a+b+c = E1 +E2, and ab+ac+bc =
E1E2. Then, the solution for n3 (t) is found to be

n3 (t) = c + (b − c) sn2
[√

a − cgt + φ0, k
]
, (13)

where sn(u, k) is the Jacobi elliptic function with k =
√

b−c
a−c

and φ0 is the initial phase given by the elliptic integral of the
first kind

φ0 = F (z, k) =
∫ z

0

dx√
1− k2 sin2 x

, (14)

where z = arcsin
√
(n3(0)− c)/(b − c). One observes that

n3 is a periodic function oscillating between the values c and
b with the period given by T = 4F

(
π
2 , k

)
/g.

In two special cases, solution (13) reduces to the
elementary solutions:

n3 (t) = r2tanh2(rgt) (15)

for r1 = r2 = r and r3 = 0, and

n3 (t) = r2sech2(rgt) (16)

for r1 = r2 = 0 and r3 = r . Another elementary solution is
obtained for the initial fields fulfilling conditions (5). In this
case, the solution reads as (k = 1, 2, 3)

αk (t) = rk exp

(
−i

r1r2r3

r2
k

gt

)
, (17)

which describes the classical no-energy-transfer regime [18],
since the amplitudes and energies of all interacting modes
remain constant, i.e., nk(t) = |αk(t)|2 = r2

k . We conclude
that the NETR observed in the quantum numerical analysis
presented in the previous section corresponds to the classical
solution (17).

4. Classical trajectory analysis

Classical solutions, as presented in the previous section, do not
describe quantum noise. Nevertheless, they can be used for the
simulation of quantum noise if the initial complex amplitudes
are chosen randomly. This approach, referred to as the method
of classical trajectories, has been applied successfully in a
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description of noise in various quantum-optical phenomena
[8–11, 15–20]. By analysing Q-functions and Fano factors,
we will show that the method of classical trajectories properly
simulates photocount noise in TWM processes.

To calculate statistical moments, like the Fano factors,
one needs to analyse the classical evolution of each process
(trajectory) separately and then average the moments over all
the obtained trajectories. The classical Fano factor, defined to
be

F cl = n2 − n̄2

n̄
, (18)

can be obtained by classical trajectory averaging. We denote
this averaging by bar to distinguish it from quantum ensemble
averaging indicated by brackets. We will apply the method of
classical trajectories along the lines of the analysis presented
in [8]. We choose the initial amplitudes to be αk = rk and blur
them with the Gaussian noise, which results in

αk = rk + xk + iyk, (19)

where xk and yk are mutually independent real Gaussian
stochastic quantities with the identical variances σ 2 = 1/4.
We assume further that the fields are strong, i.e., rk � 1.

By substituting (19) into (10), the integrals of motion can
be expressed as

E1 = |α1|2 + |α3|2 = r2
1 + r2

3 + c1,

E2 = |α2|2 + |α3|2 = r2
2 + r2

3 + c2,

K = Re
(
α1α2α

∗
3

) = r1r2r3 + d1, (20)

where c1, c2 and d1 are small corrections of E1, E2 and K ,
respectively, depending on rk , xk and yk . To eliminate the
linear term in the right-hand side of (12), we substitute

n3 = 1

3
E2 +

1

3
E1 − 1

3

√(
E2

2 − E1E2 + E2
1

)
+ ε

= n30 + b + ε, (21)

where ε is a small correction of stationary value n30 +b. Under
the strong-field approximation (rk � 1), one can neglect the
small correction ε3 and the right-hand side of (12) can be
approximated by the quadratic function '2

(
a2 − ε2

)
. Thus,

one gets the simple equation

ε̇2 = (2g')2
(
a2 − ε2

)
, (22)

which leads to the solution of (12) in the following form

n3 (t) = n30 + b + a sin (2g't + ϕ) , (23)

where n30 = r2
3 = r2

1 r
2
2/(r

2
1 + r2

2 ). The coefficients a, b and ',
together with c1 and c2, are complex functions of rk and noise
parameters xk and yk . With the help of integrals of motions,
given by (10), solutions for other modes (k = 1, 2) can readily
be found as

nk(t) = Ek − n3(t) = r2
k + ck − b − a sin(2g't + ϕ). (24)

We observe that all three solutions, given by (23) and (24),
are of the form of large constants slightly perturbed by the
same harmonic function. In figures 9 and 10, we present

Figure 9. Classical simulation of typical quantum dynamics out of
NETR: clouds of 10 000 points representing marginal Q-functions
for the same initial conditions and times as in figure 1.

Figure 10. Classical simulation of quantum dynamics in NETR for
the same cases as in figure 2.

a classical simulation of quantum dynamics by calculating
time evolutions of 10 000 points in phase space according
to classical equations of motion. These representations
correspond to the Husimi Q-functions presented in figures 1
and 2, respectively. By comparing figures 1 and 2 or,
equivalently, figures 9 and 10, we observe two distinct types of
evolution determined by the initial amplitudes to be in NETR
or out of it.

The classical and quantum descriptions are principally
different in detail. Thus, our plots of the Q-function based on
the exact quantum solution of TWM (figures 1 and 2) and those
obtained by an approximate classical simulation (figures 9
and 10) also differ in detail. The discrepancies are more
pronounced for lower amplitude inputs and longer interactions.
Moreover, the methods of graphical representations are
different: a topographical picture of Qk(α) versus a cloud
of classical points. Nevertheless, “it is surprising how close
the clouds of dots are to the Q-function” [15]. The clear
correspondence between figures 2 and 10 or 1 and 9 justifies
our application of the classical trajectory approximation.

As the next step of the classical trajectory method, one has
to perform averaging of solutions (23) and (24) to calculate
the desired moments. We find that the mean values of the
parameters occurring in solution (24) are b̄ = c1 = c2 = 0
and

'̄ =
√
r2

1 + r2
2 − r2

3 =
√

r4
2 + r2

1 r
2
2 + r4

1

r2
1 + r2

2

(25)

256



Quantum versus classical descriptions of sub-Poissonian light generation in three-wave mixing

together with their mean quadratic moments

b2 = 2A

r2
2 + r2

1

(2r8
1 + r6

1 r
2
2 + 2r4

1 r
4
2 + r2

1 r
6
2 + 2r8

2 ),

(c1 − b)2 = 2A

r2
2

(4r8
1 + 10r6

1 r
2
2 + 11r4

1 r
4
2 + 7r2

1 r
6
2 + 2r8

2 ),

(c2 − b)2 = 2A

r2
2

(2r8
1 + 7r6

1 r
2
2 + 11r4

1 r
4
2 + 10r2

1 r
6
2 + 4r8

2 ),

a2 = 2A(4r6
1 + 7r4

1 r
2
2 + 7r2

1 r
4
2 + 4r6

2 ), (26)

given in terms of the auxiliary function

A = r2
1 r

2
2

8(r4
1 + r2

1 r
2
2 + r4

2 )
2
. (27)

The phase ϕ can be obtained from (23) at t = 0. Thus, the
photon-number mean values are simply equal to n̄k = r2

k and
their variances are given by (k = 1, 2, 3)

n2
k − n̄2

k = (ck − b)2 +
1

2
a2 (28)

in terms of the moments (26) and c3 ≡ 0. The term

sin2 (2g't + ϕ) has simply been estimated as 1
2 for sufficiently

large t , when n̄k and Fk become time independent. Thus, we
arrive at the following Fano factors

F cl
1 = 1 + A(8r4

1 + 5r2
1 r

2
2 + 5r4

2 ),

F cl
2 = 1 + A(5r4

1 + 5r2
1 r

2
2 + 8r4

2 ),

F cl
3 = 1− 3A(r2

1 + r2
2 )

2, (29)

whereA is given by (27). As one could expect, the formulas for
F cl

k are symmetric with respect to exchange of the subscripts
1 ←→ 2. We finally conclude that TWM in the no-energy-
transfer regime can be a source of time-stable sub-Poissonian
light in the sum-frequency mode as described by the Fano
factor

F cl
3 (ρ) = 1− 3ρ(1 + ρ)2

8(1 + ρ + ρ2)2
� 1, (30)

depending on the ratio of the mean intensities of initial coherent
fields defined by ρ = r2

1/r
2
2 if r1 > 0 or ρ = r2

2/r
2
1 if r2 > 0.

The sub-frequency fields become super-Poissonian with the
Fano factors

F cl
1 (ρ) = F cl

2 (1/ρ) = 1 +
ρ(5 + 5ρ + 8ρ2)

8(1 + ρ + ρ2)2
� 1. (31)

In figure 11, the classical predictions of the Fano factors are
depicted as a function r1/r2. By analysing (30) and figures 4,
6, and 11, we conclude that the sum-frequency mode is solely
sub-Poissonian (F cl

3 � 1) and the strongest noise suppression
is obtained for r1 = r2 = r3/

√
2, when F cl

3 = 5/6 ≈ 0. 833.
For highly unbalanced input intensities r1 � r2 or r1 � r2,
all the Fano factors approach unity F cl

1 ≈ F cl
2 ≈ F cl

3 → 1.
Mutually equal Fano factors, estimated by F cl

1 = F cl
2 = 5/4 =

1. 25, are predicted for the balanced inputs r1 = r2 = r3/
√

2.
The maximum values of the Fano factors, estimated by F cl

1 =
F cl

2 = max = 1. 255, are obtained for slightly unbalanced

Figure 11. Classical predictions of Fano factors F cl
k (k = 1, 2, 3)

versus ratio r1/r2 of the input coherent-field amplitudes. Small
circles represent the quantum Fano factors Fk obtained from the
exact quantum solutions presented in figures 4 and 6.

inputs: r1 = 1. 136r2 to maximize F cl
1 and for r1 = 0. 881r2

to maximize F cl
2 .

We have predicted in [8, 9] the stationary sub-Poissonian
Fano factors for the second (F cl

2 = 5/6) and third (F cl
3 =

13/16) harmonic generations within NETR. The minimum
value of the sum-frequency-mode Fano factor for non-
degenerate TWM is the same as that obtained for degenerate
TWM (i.e., second-harmonic generation) [8], but higher than
that for degenerate four-wave mixing (i.e., third-harmonic
generation). However, for the sub-frequency mode, the Fano
factors for non-degenerate TWM are smaller than those for
degenerate cases, namely F cl

1,2(1) = 5/4 instead of 3/2 and
29/16, respectively.

In figures 3 and 4, we have compared evolutions of the
exact quantum Fano factors Fk (depicted by solid or dashed
curves) with their classical estimations, F cl

k (dotted lines). One
observes that all the curves start at Fk = 1 for initial coherent
fields and after some relaxations become quasi-stationary with
Fk ≈ F cl

k , given by (29). It is worth noting that very good
estimation is achieved even for relatively small amplitudes,
e.g., rk � 6. We conclude that the conditions for NETR in
quantum dynamics and suppression of the observed quantum
noise levels are well explained by the classical trajectory
method.

Finally, we will compare scaling properties of the Fano
factors in their dependence on light intensity and initial
amplitude for degenerate and non-degenerate TWM. Drobný et
al [17] calculated the scaling laws under the truncated Wigner
approximation for the maximum sub-Poissonian photon-
number noise in TWM. Their formulas are valid also in the
limit of r = α1(0) → ∞. Here, we focus on nonlinear
fits for finite ranges of r only. Let us investigate the scaling
properties of the maximum sub-Poissonian character of the
sum-frequency mode corresponding to the first minimum of
the F3 and F ′3 curves in figures 3(b), 4, 5(d), and 6(d). In
figure 12, we plot the exact quantum numerical values of
mint F3(x, t) ≡ F3(x, tmin) or mint F

′
3(x, t) ≡ F ′3(x, t

′
min) as

a function of initial amplitudes x = r1 = r2 = r ′1 and of
intensities x ≡ 〈n̂3(tmin)〉 = 〈n̂′3(t ′min)〉. We fit those minima
with the exponent and polynomial functions of parameters
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Table 1. Scaling laws axb for non-degenerate TWM (mint F3(x)) and degenerate TWM (mint F
′
3(x)) out of NETR. Initial conditions are

1 < r1 = r2 � 10, 1 < r ′1 � 20, and r3 = r ′3 = 0.

No Fitted function a b Error

1 mint F3(r1) 0.8819 −0.1254 0.0004
2 mint F3(〈n̂3〉) 0.8560 −0.0572 0.0001
3 mint F

′
3(r
′
1) 0.7694 −0.0906 0.0003

4 mint F
′
3(〈n̂′3〉) 0.7352 −0.0427 0.0003

Table 2. Polynomial fit (ax2 + bx + c)/x2 for non-degenerate (mint F3(x)) and degenerate (mint F
′
3(x)) TWM in NETR. Initial conditions

are 1 < r1 = r2 � 10, 1 < r ′1 � 20, r3 = r1/
√

2, and r ′3 = r ′1/2.

No Fitted function r1 a b c Error

1 mint F3(r1) > 1 0.5474 0.1104 0.2956 0.0003
� 1 0.5519 0.0643 0.3894 0.0007

2 mint F3(〈n̂3〉) > 1 0.5562 0.3143 −0.1618 0.0001
� 1 0.5559 0.3240 −0.2057 0.0008

3 mint F
′
3(r
′
1) > 1 0.5495 0.1195 0.3510 0.0003

� 1 0.5541 0.0406 0.5739 0.0012
4 mint F

′
3(〈n̂′3〉) > 1 0.5558 0.2057 −0.0607 0.0001

� 1 0.5556 0.2121 −0.0783 0.0005

Figure 12. Maximum photon-number noise suppression for
non-degenerate (curves A and C) and degenerate (B and D) TWM:
Time-minimized Fano factors, mint F3 and mint F

′
3, as a function of

(a) initial amplitudes r ≡ r1 = r ′1 and (b) mean photon numbers
〈n̂3〉 = 〈n̂′3〉. Curves: A (with diamonds), initial amplitude r3 = 0;
B (with circles), r ′3 = 0; C (with solid triangles),
r3 = r1/

√
2 = r/

√
2; D (with empty triangles), r ′3 = r ′1/2 = r/2.

The marked points are obtained from the exact quantum solutions
and are fitted with the functions given in tables 1 and 2.

listed in tables 1 and 2. The errors, given in the last column,
are estimated by the standard deviation. We observe that the
scaling laws axb for non-degenerate and degenerate TWM give
good approximation of the exact values out of NETR only.
However, the axb law fails to describe with good precision
mint F3(x) and mint F

′
3(x) in NETR at least for intensities up

to 100 photons. Thus, instead of the exponent law we apply
the (inverse) polynomial fit of the form (ax2 + bx + c)/x2,
where we introduce x−2 in relation to the definition of the Fano
factor. By contrast to the exponent fits, the polynomial laws
give very good predictions of the maximum sub-Poissonian
behaviour at least for 1 < r1 = r2 � 10 and 1 < r ′1 � 20
as seen in figure 12 and table 2. The scaling laws of Drobný
et al [17] differ slightly from ours presented in table 1. The
minor differences in the fitted parameters result from different
ranges of r used in the fitting procedures and from application
of the truncated Wigner approximation in [17] compared to
our exact quantum method.

On the other hand, the Fano factors for the balanced
(r1 = r2) non-degenerate TWM under NETR conditions
for long times and high intensity fields do not depend on

light intensity, which follows from equations (30) and (31).
Similarly, there are no scaling properties of the Fano factors
in degenerate TWM for long times and high intensity fields in
NETR, i.e., under the same conditions as those assumed in our
classical trajectory analysis.

5. Conclusions

We have analysed the long-time interactions in non-degenerate
three-wave mixing. To the best of our knowledge, our
quantum analysis is the first presentation of the exact and
completely quantum solution of non-degenerate three-wave
mixing. In literature, a special solution can be found for
initial sub-frequency fields with zero amplitudes α1 = α2 =
0 only. The no-energy-transfer regime for proper choices
of amplitudes and phases of the initial coherent fields has
been observed. We have compared the evolutions of the
Husimi Q-functions and their classical trajectory simulations
for processes in the no-energy-transfer regime and out of it.
We have shown numerically using the quantum-mechanical
approach that three-wave mixing in the no-energy-transfer
regime exhibits the time-stable photocount statistics. This
phenomenon was explained analytically by applying the
method of classical trajectories. We have shown that the
sub-frequency mode become super-Poissonian with the Fano
factor F1,2 > 1, whereas the sum-frequency mode becomes
sub-Poissonian with F3 < 1. We have found that the
most suppressed photocount noise, given by F3 ≈ 5/6, is
obtained for the balanced initial intensities r2

1 = r2
2 of the

sub-frequency mode and the sum-frequency intensity equal
to r2

3 = r2
1/2 as determined from condition (5) for the no-

energy-transfer regime. Scaling laws and polynomial fits for
the maximum sub-Poissonian behaviour have been found for
different processes and initial conditions. We have compared
in detail the non-degenerate and degenerate conversions on
time scales short and long compared to the revival times.
We have observed that non-degenerate three-wave mixing,
contrary to the degenerate conversion, exhibits stabilization
of the suppressed photon-number noise even on the revival
time scale.
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Peřina J, Hradil Z and Jurčo B 1994 Quantum Optics and
Fundamentals of Physics (Dordrecht: Kluwer) sect 85

Bachor H A 1998 A Guide to Experiments in Quantum Optics
(Weinheim: Wiley-VCH Verlag) ch 9
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