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Abstract
The Wehrl information entropy and its phase density, the so-called Wehrl
phase distribution, are applied to describe Schrödinger cat and cat-like (kitten)
states. The advantages of the Wehrl phase distribution over the Wehrl entropy
in a description of the superposition principle are presented. The entropic
measures are compared with a conventional phase distribution from the Husimi
Q-function. Compact-form formulae for the entropic measures are found
for superpositions of well separated states. Examples of Schrödinger cats
(including even, odd and Yurke–Stoler coherent states), as well as the cat-
like states generated in the Kerr medium, are analysed in detail. It is shown
that, in contrast to the Wehrl entropy, the Wehrl phase distribution properly
distinguishes between different superpositions of unequally weighted states
with respect to their number and phase-space configuration.

PACS numbers: 0365, 0367, 4265

1. Introduction

Schrödinger cats or cat-like states (kittens) are the striking manifestations of the superposition
principle at the boundary between the quantum and classical regimes [1]. Especially
since the 1980s, the Schrödinger cats have attracted much interest in quantum and atom
optics or quantum computing by allowing controlled studies of quantum measurement,
quantum entanglement and decoherence. Further interest has recently been triggered by first
experimental demonstrations of Schrödinger cats on mesoscopic [2] and also macroscopic [3]
scales.

We will analyse simple prototypes of the Schrödinger cat and cat-like states in entropic
and phase descriptions. The Wehrl classical information entropy is defined to be [4]

Sw ≡ −
∫
Q(α) lnQ(α) d2α (1)
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Table 1. Are the Wehrl information entropy, its density or Husimi PD good measures of the
properties of classical and quantum fields?

Wehrl Husimi Wehrl
No Measures entropy PD PD

1 Discrimination of fields with random phase yes no yes
2 Photon-number uncertainty yes no yes
3 Discrimination of coherent states with different intensity no yes yes
4 Phase locking no yes yes
5 Phase bifurcation no yes yes
6 Schrödinger cats with different weights no yes yes
7 Schrödinger cat-like states with different weights no yes yes

where Q(α) is the Husimi function given by Q(α) = π−1〈α|ρ̂|α〉 as the coherent-state
representation of density matrix ρ̂. The Wehrl classical information entropy, also referred to as
the Shannon information of the HusimiQ-function, can be related to the von Neumann quantum
entropy in different approaches [5,6], in particular in relation to a phase-space measurement [7].
It has been demonstrated that the Wehrl entropy is a useful measure of various quantum-field
properties, including quantum noise [6–12], decoherence [9, 13], quantum interference [10],
ionization [12], or squeezing [8, 14, 15]. Moreover, it has been shown that the Wehrl entropy
gives a clear signature of the formation of the Schrödinger cat and cat-like states [11, 16]
and a signature of splitting of the Q-function [13]. Here, we will show explicitly that the
Schrödinger cat and cat-like states are, in general, not uniquely described by the conventional
Wehrl entropy. Thus, for better description of Schrödinger cat and cat-like states, we apply
another entropic measure—the so-called Wehrl phase distribution (Wehrl PD), defined to be
the phase density of the Wehrl entropy [17]:

Sθ ≡ −
∫
Q(α) lnQ(α)|α| d|α| (2)

where θ = Argα. The Wehrl PD is simply related to the Wehrl entropy via integration, i.e.
Sw = ∫

Sθ dθ . The Wehrl PD is formally similar to a conventional phase distribution from the
HusimiQ-function, defined to be (see, e.g., [18])

Pθ ≡
∫
Q(α)|α| d|α| (3)

which is referred to as the Husimi phase distribution (Husimi PD). The main physical advantage
of the Wehrl PD over the conventional PDs (including that of Husimi) lies in its information-
theoretic content. The Wehrl entropy, which is the area covered by the Wehrl PD, is a measure
of information that takes into account the measuring apparatus (homodyne detection) used to
obtain this information. Various other advantages of the Wehrl PD over the conventional PDs
and the Wehrl entropy itself in a description of quantum and classical optical states of light were
demonstrated in [17]. Several examples of applications of the Wehrl PD are listed in table 1.
Example 1 is a consequence of the Wehrl-entropy sensitivity in discriminating different fields
with random phase. By contrast, the conventional PDs are the same for arbitrary random-
phase fields. Example 2 originates from the fact that the Werhl entropy is directly related to
the phase-space measurement [7], thus in particular carrying information about the photon-
number uncertainties. On the other hand, the conventional PDs do not measure photon-number
properties. Examples 3–5, discussed in detail in [17], show advantages of both the Wehrl and
conventional PDs over the Wehrl entropy. In the next sections we will compare descriptions of
the Schrödinger cat and cat-like states in terms of the Wehrl entropy, and the Wehrl and Husimi
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Figure 1. Equientropic Schrödinger cat and cat-like superpositions of N = 2, 3, 4 states. Husimi
Q-functions (a)–(c) and the corresponding polar plots of Wehrl phase distributions (d)–(f ) for well
separated (N < Nmax(α0 = √

12) = 7) superposition states described by the same Wehrl entropy.

PDs. Our analytical and numerical results are briefly summarized in table 1 by examples 6
and 7.

2. Equientropic cat and cat-like states

First, we will show that the conventional Wehrl entropy does not uniquely distinguish between
different superpositions of unequally weighted states. Let us analyse in detail the following
superposition of N coherent states:

|α0〉N = CN

{√
1 − (N − 1)xN |α0〉 +

√
xN

N−1∑
k=1

∣∣∣∣ exp

(
ik

2π

N

)
α0

〉}
(4)

where CN is the normalization constant and xN+1 are the roots of

fN+1(x) = 2(1 −Nx)(1−Nx)xNx − 1. (5)

In particular equation (5) has the following roots: x2 = 1
2 , x3 = 0.11 . . . , x4 = 0.063 . . . . For

N = 2, the state |α0〉2 is the even coherent state, given by (10). We observe that the quantum
superpositions |α0〉N of well separated coherent states have the same Wehrl entropy, equal to

lim
(|α0|/N)→∞

Sw(|α0〉N) = 1 + ln 2π (6)

for any finite N > 1. The Q-functions for three different states with N = 2, 3 and 4
well separated components are depicted in figures 1(a)–(c). In the high-amplitude limit, the
interference terms in theQ-function vanish and the normalization CN becomes unity. The Wehrl
entropy for these states is equal to Sw = 1+ln 2π−εN with the corrections (a) ε2 < 0.000 002,
(b) ε3 < 0.000 065 and (c) ε4 < 0.0012 for the intensity |α0|2 = 12. As proceeds from (6),
these corrections can be made arbitrarily small by increasing |α0| in comparison toN . In fact,
for any quantum superposition of macroscopically distinguishable states, other superposition
states can be found with the same Wehrl entropy but distinct number of components. Thus,
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one can conclude that the conventional Wehrl entropy is not sensitive enough in discriminating
cats from unequally weighted cat-like states. The main purpose of this paper is to apply a new
entropic measure and to show its advantages over the conventional Wehrl entropy in describing
macroscopically distinguishable superpositions of states.

3. New entropic description of cat and cat-like states

A standard example of the Schrödinger cat is a superposition of two coherent states |α0〉 and
|−α0〉 in the form (see, e.g., [19])

|α0, γ 〉 = Nγ {|α0〉 + exp(iγ )| − α0〉} (7)

with normalization

Nγ = {
2
[
1 + cos γ exp(−2|α0|2)

]}−1/2
. (8)

For special choices of the superposition phase γ , the state |α0, γ 〉 reduces to the well known
Schrödinger cats, including the Yurke–Stoler coherent state for γ = π/2 [20]:

|α0〉YS = |α0, π/2〉 = 1√
2
(|α0〉 + i| − α0〉) (9)

and the even (γ = 0) and odd (γ = π ) coherent states [21]:

|α0, 0〉 = N0 (|α0〉 + | − α0〉) = 1√
cosh |α0|2

∞∑
n=0

α2n
0√
(2n)!

|2n〉 (10)

|α0, π〉 = Nπ (|α0〉 − | − α0〉) = 1√
sinh |α0|2

∞∑
n=0

α2n+1
0√
(2n + 1)!

|2n + 1〉 (11)

respectively. The Husimi function for the Schrödinger cat |α0, γ 〉 can be given in form of the
sum

Q(α) = N 2
γ [Q1(α) + 2Q12(α) +Q2(α)] (12)

of the coherent components (k = 1, 2)

Qk(α) = 1

π
exp

{ − ∣∣α + (−1)kα0

∣∣2}
(13)

and the interference term

Q12(α) = 1

π
exp(−|α|2 − |α0|2) cos[γ + 2|α| |α0| sin(θ0 − θ)] (14)

where θ0 is the phase of α0. There is no compact-form exact expression of the phase
distributions for the Schrödinger cat defined by (7). The states analysed in our former work [17]
are among a few examples where the phase distributions can be expressed analytically in a
compact form. Nevertheless, for well separated (|α0| 
 1) coherent states |α0〉 and | − α0〉,
we find that the Wehrl PD can be approximated by

Sθ ≈ 1
2

{
Scs
θ (α0) + Scs

θ (−α0) + ln 2
[
P cs
θ (α0) + P cs

θ (−α0)
]}

(15)

in terms of the Werhl and Husimi phase distributions for coherent states [17]:

Scs
θ (α0) = 1

2π
eX

2−X2
0
{
e−X2

f2 +
√
πX [1 + erf(X)]f1

}
(16)

P cs
θ (α0) = 1

2π
eX

2−X2
0
{
e−X2

+
√
πX [1 + erf(X)]

}
(17)
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respectively, where

fj = X2
0 −X2 + ln π + j/2

X = |α0| cos(θ − θ0)
(18)

and X0 = X(θ = θ0) = |α0|. Moreover, erf(X) is the error function. As was discussed
in [17], the Wehrl and Husimi PDs for coherent states differ by the factors fj only. The
Q-function and Wehrl PD for the cat |α0, γ 〉 with well separated components (|α0| 
 1) are
presented in figures 1(a) and (d), respectively. In this case, the contribution of the interference
term Q12(α) is negligible. Thus, the Q-function and Wehrl PD for |α0|2 = 12 are practically
independent of the superposition coefficient γ , and the difference between the exact Wehrl PD
and its approximation, given by (15), vanishes. This can be understood better by analysing
figure 2, where the Wehrl and Husimi PDs are depicted for different values of separation
amplitude α0 for three superposition parameters γ corresponding to the Yurke–Stoler, even
and odd coherent states. It is apparent, in both the Wehrl and Husimi PDs, that the differences
among cats described by (9)–(11) diminish with increasing amplitudeα0 and would completely
disappear even at |α0| = 2.4 on the scale of figure 2. It is also seen that the maximum values
of Pθ and Sθ depend on the separation amplitude |α0|. However, in the case of the Wehrl PD
only, the area under the curve is amplitude dependent, being an indicator of the phase-space
uncertainty. Despite the formal similarities, the Wehrl and Husimi PDs differ recognizably for
superposition of states which are not well separated (|α0| < 1). For example, the Wehrl PD
for the even coherent state is less than that for the odd cat for all phases θ at small values of
separation parameter (|α0| � 0.8). The physical interpretation of this behaviour can be given
as follows. The contribution of the vacuum (single-photon) state is dominant for the even
(odd) coherent state with small separation parameter. According to the entropic analysis of
quantum noise [17], the Wehrl PD for vacuum is smaller than that for the single-photon state
for all phases θ . This implies that Seven

θ < Sodd
θ for |α0| � 1. In contrast, this inequality does

not hold for the corresponding Husimi PDs: P even
θ can be less but also greater than P odd

θ for
some values of phase θ at |α0| � 0.8. The Wehrl PD for the Yurke–Stoler coherent state, SYS

θ ,
approaches Sodd

θ for θ < π and Seven
θ for θ > π , as the best presented in figure 2 for |α0| = 1.2.

In comparison, the Husimi PD PYS
θ differs more significantly from P even

θ and P odd
θ than the

corresponding Wehrl PDs for the same |α0| < 2.4.
The Wehrl entropy for the cat, given by (7), has been studied numerically by Bužek

et al [10] for arbitrary superposition phase γ , whereas Jex and Orłowski [16] and Vaccaro
and Orłowski [11] studied the Wehrl entropy for the Yurke–Stoler coherent state generated
in a Kerr-like medium. In figure 3, we show the Wehrl entropies Sw for the cat |α0, γ 〉 in
dependence on the superposition phase γ for various values of the separation amplitude α0.
The curve forα0 = 0.8 corresponds to the case analysed by Bužek et al [10]. The discrepancies
between Wehrl entropies for the even, odd and Yurke–Stoler cats vanish with increasing |α0|.
The Wehrl entropy in the high-amplitude limit (|α0| 
 1) can be approximated by

Sw ≈ 1 + ln π − |c1|2 ln |c1|2 − |c2|2 ln |c2|2 (19)

which for superpositions of equal-amplitude states reduces to Sw ≈ 1 + ln(2π). This value can
be obtained by integrating the approximate Wehrl PD, given by (15). On the scale of figure 3,
the curve representing the Wehrl entropy for α0 = 2.4 is practically indistinguishable from the
entropy in the infinite-amplitude limit.

The Schrödinger cat-like state, also referred to as the kitten state5, is a generalization
of the Schrödinger cat for a macroscopically distinct superposition state with more than two
5 The term ‘Schrödinger’s kitten’ in the above sense was coined by Agarwal et al [22]. In contrast, some authors (e.g.
Taubes [23]) prefer to use this term to refer to a small (mesoscopic) Schrödinger cat, which should be macroscopic
according to Schrödinger’s original idea [1].
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Figure 2. Wehrl and Husimi phase distributions for three types of Schrödinger cat: even (thick
solid curves), odd (thin solid curves) and Yurke–Stoler (dashed curves or those with diamonds)
coherent states for different values of the coherent amplitude α0.

Figure 3. Wehrl entropy for Schrödinger cat |α0, γ 〉 in
dependence on the superposition phase γ for different
values of the coherent amplitude α0.

components. In particular the normalized superposition of N coherent states

|α0〉N =
N∑
k=1

ck| exp(iφk)α0〉 (20)

is the standard example of the Schrödinger cat for N = 2 and the Schrödinger kitten for
N > 2. Equation (20) is valid for arbitrary number, amplitudes and phases of the states in
the superposition. The state defined by (7) is a special case of (20) for two coherent states
with opposite phases (φ2 − φ1 = π ) and c2/c1 = exp(iγ ). The Husimi Q-function for the
Schrödinger cat-like state reads as [19, 24]

Q(α) = Q0(α) + Qint(α) =
N∑
k=1

|ck|2 Qk(α) + 2
∑
k>l

|ck||cl| Qkl(α) (21)
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where the free part,Q0(α), is the sum of the coherent terms

Qk(α) = 1

π
exp

{ − ∣∣α − eiφkα0

∣∣2 }
(22)

and the interference part,Qint(α), is given in terms of

Qkl(α) =
√
QkQl cos

[
γk − γl + 2|α| |α0| cos(φ(+)kl + θ0 − θ) sin φ(−)kl

]
. (23)

The phases in (23) are defined as γk = Arg ck , θ = Argα, θ0 = Argα0 and φ(±)kl = 1
2 (φk±φl),

where φk appears in (20). The HusimiQ-function, given by (21), is a generalization of (12) for
arbitrary number of components in the superposition state. The compact-form exact analytical
expressions exist neither for the phase distributions nor the Wehrl entropy. However, for well
separated (i.e. if |α0| 
 N ) states, the Wehrl PD for the Schrödinger cat-like state, given
by (20), is approximately equal to

Sθ ≈
N∑
k=1

|ck|2Scs
θ (e

iφkα0)−
N∑
k=1

|ck|2 ln(|ck|2)P cs
θ (e

iφkα0). (24)

The Wehrl PDs for the equientropic high-intensity states, given by (4), were calculated
from (24) and presented in figures 1(d)–(f ) in comparison to their Husimi Q-representations
given in figures 1(a)–(c), respectively. The Wehrl PDs clearly show the number, amplitude
and phase-space configuration of the Schrödinger cat and cat-like states. We emphasize that
the curves in figures 1(d)–(f ) cover approximately the same area, equal to Sw ≈ 1 + ln 2π .
Equation (24) for the equal-amplitude superposition goes over into

Sθ ≈ 1

N

N∑
k=1

{
Scs
θ (e

iφkα0) + P cs
θ (e

iφkα0) lnN
}

(25)

where Scs
θ (exp{iφk}α0, 0) are the coherent-field Wehrl PDs given by (16) and

P cs
θ (exp{iφk}α0, 0) are the coherent-field Husimi PDs described by (17). In (25), we have

assumed that the superposition coefficients are the same for all components of the cat-like
state, i.e. ck = const = 1/

√
N . Equation (24) leads, after integration over θ , to the Wehrl

entropy

Sw ≈ 1 + ln π −
N∑
k=1

|ck|2 ln |ck|2 . (26)

In the special case of equally weighted superposition states, (26) simplifies to Sw ≈ 1+ln(Nπ)
in agreement with the result of Jex and Orłowski [16]. Estimations of the maximum number,
Nmax, of well separated states in the superposition (20) as a function of amplitude |α0| can be
given, for example, by [24]

Nmax(α0) = Int(2−1/2π |α0|) (27)

where Int(x) is the integer part of x. Approximations (24)–(26) are valid for N � Nmax(α0).
Several methods have been proposed to generate Schrödinger’s cat or cat-like states

(see [2, 3], and [19] for a review). In particular it has been predicted that a coherent light
propagating in a Kerr-like medium, described by the Hamiltonian

Ĥ = − 1
2 h̄gâ

†2â2 (28)

where g is the coupling constant, can be transformed into the Schrödinger cat (Yurke–Stoler co-
herent state) [20] and kittens [24,25] at some evolution times. Explicitly, for gt = 2π M

N
, where
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Figure 4. HusimiQ-function for Schrödinger cat-like states generated in Kerr medium at different
evolution times gt = 2π/N (N = 3, 4, 5) for initial coherent states with amplitudes α0 = 3 (first
row) and α0 = √

2 (second row).

M and N are mutually prime numbers, the generated state is a superposition of N coherent
states, given by (20), with the phases φk = (2k +N − 3) π

N
and superposition coefficients

ck = 1

N

N∑
n=1

exp

{
in

[
M

N
π(n− 1)− φk

]}
. (29)

Jex and Orłowski [16] and Vaccaro and Orłowski [11] have shown, by analysing the model
described by (28), that the Wehrl entropy gives a clear signature of the formation of the
Schrödinger cat-like states. The Wehrl PD, in comparison to the Wehrl entropy, offers more
detailed description of superposition states, showing explicitly the phase configuration and
amplitudes of the components. The HusimiQ-function in figure 4, and the Wehrl and Husimi
PDs in figure 5, are presented for the Schrödinger cat-like states generated by Hamiltonian (28)
for different evolution times gt in two regimes determined by the initial amplitudes: N <
Nmax(3) = 6 and N � Nmax(

√
2) = 3, where N = 3, 4, 5. The number N of well separated

peaks in Sθ and Pθ clearly corresponds to the number of states in the superposition. The
analysis of the Wehrl PD shows how the amplitude of the incident coherent beam determines the
maximum number of readily distinguishable states. For example, both the Husimi and Wehrl
PDs depicted by thin curves in figure 5 have regular and readily distinguishable structures
even for five-component superposition of the initial amplitude |α0| = 3. However, the four-
and five-component superpositions for the initial condition |α0| = √

2 are highly deformed, as
plotted by the thick curves in figure 5. Thus, the Wehrl and Husimi PDs describe the influence
of the interference terms (23) on formation of the Schrödinger cat-like states. Distributions Pθ
and Sθ are similar. However, a closer analysis reveals their differences. In particular, as seen
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Figure 5. Polar plots of Wehrl and Husimi phase distributions for the same Schrödinger cat-like
states as those in figure 4: thin curves correspond to α0 = 3 and thick curves to α0 = √

2.

in figure 5 for well separated states, the rosette leaves are broader for Sθ than for Pθ . For states
not separated distinctly, Sθ exhibits slightly more regular behaviour than Pθ . The influence of
interference terms is more pronounced for Sθ , as can be concluded by analysing the thin curves
in the range close to zero for gt = 2π/5 or gt = 2π/4. Nevertheless, the main advantage of
our description in terms of Sθ over that of Pθ resides in the area covered by Sθ , which is equal
to the Wehrl entropy. Thus a simple phase-space operational interpretation can be applied [7].

4. Conclusions

The purpose of the paper was to find a good information-theoretic measure of the superposition
principle. We have shown that the conventional Wehrl entropy is, in general, not a good measure
for discriminating two-component (Schrödinger cats) from multi-component (Schrödinger
kittens) macroscopically distinct superposition states. We have applied a new information
measure—the Wehrl phase distribution, which is a phase density of the Wehrl entropy [17].
Compact form estimations of both Wehrl measures were found for the superpositions of well
separated states. It was demonstrated that the Wehrl phase distribution, in contrast to the Wehrl
entropy, properly distinguishes the number and phase-space configuration of the Schrödinger
cat and cat-like states even with unequally weighted components.
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