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Quantum information properties of the uniformly-interacting two-level quantum dots are compared
for the two spin van der Waals (SVW) models with or without antiresonant excitation and deex-
citation processes. Complete quantum solutions and their Schmidt decompositions are found for
both models. To compare intrinsically quantum-information properties of quantum dots we study,
in particular, bipartite entanglement via the von Neumann entropy. Generation of the maximally
or almost maximally entangled states is analyzed in detail.

I. INTRODUCTION

Over the past few years, there has been a consid-
erable interest, both theoretical (see [1–3] and refer-
ences therein) and experimental [4,5], in the analysis
of entanglement for bipartite and multipartite systems.
One of the central problems is the generation of max-
imally entangled quantum states (MES), when the en-
tanglement is equally shared among all (sub)systems.
These states are a uniquely valuable resource for vari-
ous quantum information-processing tasks. In the search
of MES, the problem of a good entanglement measure
becomes crucial. Arguably, the most important mea-
sure of entanglement for bipartite systems is the entan-
glement of formation [1]. For a bipartite pure state,
say ρ̂AB = (|ψ〉〈ψ|)AB , the entanglement of formation
is given by the von Neumann entropy defined to be
E[ρ̂AB ] = −Tr{ρ̂A log2 ρ̂A} = −Tr{ρ̂B log2 ρ̂B} for the
marginal density operators ρ̂A = TrB{ρ̂AB} and ρ̂B =
TrA{ρ̂AB} of systems A and B, respectively. For a bi-
partite mixed state, the former definition of the entan-
glement of formation generalizes to the minimum aver-
age marginal entropy of ensemble decompositions of ρ̂AB .
The so-called concurrence, proposed by Hill and Woot-
ters [6] and generalized by Rungta et al. [7], is related to
a pairwise entanglement of formation. Although it is “a
kind of measure of entanglement in its own right” [6], the
concurrence has been widely applied in analyses of vari-
ous models (see, e.g., [8]– [17]). It is worth noting that a
few measures have recently been proposed to describe a
multipartite entanglement, but none of them satisfies all
the criteria for a good entanglement measure.

The entanglement in the condensed matter systems has
been studied in greater detail only very recently. Maxi-
mal nearest-neighbor (bipartite) entanglement measured
in the concurrence for spin-1/2 particles was studied for
their different configurations and interactions: (i) an en-
tangled line with open ends by Wootters [8], (ii) an entan-
gled ring by O’Connor and Wootters [9] or (iii) entangled
webs by Koashi et al. [10]. Concurrence in various 1D

Heisenberg models (including those of XXX [11–13], XY
[14], XXZ [15,13] models) and 1D Ising model [16] were
studied under the nearest-neighbor interaction approxi-
mation. Whereas Koashi et al. [10] and Wang [17] stud-
ied concurrence in the 1D Heisenberg models under the
approximation of the equivalent neighbor interactions.

In this paper we investigate the bipartite entanglement
in N -dot systems described by the spin van der Waals
model. We address the following question: How is the
initially excited subsystem (say A) composed of M dots
entangled with the remaining initially unexcited N −M
dots (referred to as the subsystem B)?

II. MODELS AND THEIR SOLUTIONS

We study a system of N identical two-level quantum
dots constituting an insulating solid or molecular crys-
tal. The interaction Hamiltonian is assumed to be of the
Frenkel form [18]

Ĥint = h̄
∑

n 6=m

Tnm

[
σ̂+

n σ̂−m + σ̂−n σ̂+
m

+γ(σ̂+
n σ̂+

m + σ̂−n σ̂−m)
]

(1)

for the dipole-dipole interactions among N dots; σ̂+
n and

σ̂−n are, respectively, the Pauli spin creation and annihi-
lation operators for the nth dot. Terms h̄Tnm can de-
scribe, e.g., the transition (dynamic) dipole-dipole inter-
actions between the nth and mth dots. Then we can put
h̄Tnm = |rnm|−3pn · pm − [3pn · rnmpm · rnm)|rnm|−2],
where pn is the electric dipole moment at nth site, rn is
its position vector, and rnm = rn − rm. The model,
given in general form (1), has no analytical solution.
Thus some approximations are required in order to ob-
tain analytical formulas. For example, we can assume
the equivalent-neighbor interactions among all the dots.
Then the Hamiltonian (1) simplifies to

Ĥint = κ
∑

n6=m

[σ̂+
n σ̂−m + σ̂−n σ̂+

m + γ(σ̂+
n σ̂+

m + σ̂−n σ̂−m)], (2)
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where κ = h̄Tnm = const. The model given by (2) is
often referred to as the spin van der Waals model (see,
e.g., [19]) or Lipkin model. It was first studied by Kittel
and Shore [20] from a solid-state viewpoint and in the
context of nuclear physics by Lipkin, Meshkov and Glick
[21]. The equivalent-neighbor assumption can be fulfilled
by choosing the symmetrical spatial configurations of N
atoms. However, more realistic realization of the model
for any number N of dots is based on the assumption that
all the dots are coupled uniformly to an external classical
field and through this field interact isotropically with one
another. Various equivalent-neighbor models have been
analyzed in the context of quantum-information proper-
ties in, e.g., Refs. [10,17,22,23].

The term proportional to γ corresponds to the antires-
onant excitation and deexcitation processes and can also
result from the higher-order Born approximation.for the
atom-field interaction. This term can describe nonlin-
ear optical phenomena including the generation of higher
harmonics. Hamiltonian (2) with γ = 0 describes a
quantum-dot system conserving energy (and will be re-
ferred to as the CE model), while (2) with γ 6= 0 corre-
sponds to a non-conserving energy model (NCE model).
In the following we assume γ = 1 for NCE model.

Let the initial state be described by a system of
M (M = 0, · · · , N) dots excited and N − M dots
in the ground state is given as |ψ(γ = 0, 0)〉 =
{|1〉M}A{|0〉(N−M)}B . Then, we find the solution of the
Schrödinger equation of motion for the CE SVW model
is given by:

|ψ(γ = 0, t)〉 =
M ′∑

m=0

CNM
m (0, t){|1〉M−m|0〉m}A

×{|1〉m|0〉N−M−m}B , (3)

where M ′ = min(M, N − M). The states in curly
brackets, {|1〉(M−m)|0〉m}, denote a sum of all possible
[i.e.,

(
M−m

m

)
] M -dot states with the excitation number

(M−m). The time-dependent superposition coefficients,
CNM

m (γ = 0, t), are given by

CNM
m (γ = 0, t) =

M ′∑
n=0

bNM
mn

× exp
{

i[n(N + 1− n)−M(N −M)]κt
}

(4)

with

bNM
mn =

m∑

k=0

(−1)k
(
m
k

)(
N−2k
M−k

)−1

×
{(

N+1−2k
n−k

)− 2
(

N−2k
n−k−1

)}
, (5)

where
(
x
y

)
are binomial coefficients. We also find that

the solution of the Schrödinger equation for the NCE

model under the initial condition of |ψ(γ = 1, t = 0)〉 =
|1〉M |0〉N−M is given by

|ψ(γ = 1, t)〉 =
ν∑

p=0

C(N)
p (1, t)

ν∑
q=0

[
θ(M − 2p)

×{|1〉M−2p+q|0〉2p−q}{|1〉q|0〉N−M−q}+ θ(2p−M − 1)

×{|1〉q|0〉M−q}{|1〉2p+q−M |0〉N−2p−q}
]
, (6)

where ν ≡ Int(N/2) is the integer part of N/2; by defi-
nition |0〉x = |1〉x ≡ 0 if x < 0; the step function θ(x) is
1 for x ≥ 0 and 0 otherwise; the time-dependent super-
position coefficients C

(N)
p (γ = 1, t) are given by

C(N)
p (γ = 1, t) =

ν∑
r=0

b(N)
pr exp

{
i[2r(N − r)

−N(N − 1)/2]κt
}

(7)

with

b(N)
pr =

p∑

k=0

(−1)k
(p

k

) (
N − 2k

r − k

)
22k+1−N−δ(N,2r) (8)

for p = 0, 1, · · · , ν; δ(N, 2r) is the Kronecker delta. The
upper limit p of the sum in Eq. (8) can equivalently be
replaced by r or min(p, r). Similarly tight upper limits
for q in Eq. (6) are equal to min(2p,N −M,M − 2p) for
the first term in the sum and min(2p − M, N − 2p,M)
for the second term.

The main purpose is now to apply these solutions in
the analysis of the entanglement properties of the CE and
NCE spin van der Waals models.

III. QUANTUM-DOT ENTANGLEMENT

The bipartite entanglement ENM (γ, t) between M
dots initially excited and the remaining (N−M) dots be-
ing in the ground state initially can be calculated via the
Shannon entropy of the Schmidt coefficients PNM

m (γ, t)
as

ENM (γ, t) ≡ E[|ψ(γ, t)〉〈ψ(γ, t)|]
= −

∑
m

PNM
m (γ, t) log2 PNM

m (γ, t). (9)

Thus the main problem resides in the calculation of
PNM

m (γ, t) from the solutions (3) and (6). We find that
the Schmidt coefficients for the CE system of N dots with
M dots excited initially are given in the general form as
(m = 0, ...,M)

PNM
m (γ = 0, t) =

(
M

m

)(
N −M

m

)
|CNM

m (0, t)|2, (10)
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FIG. 1. Evolution of entanglement between a single dot
initially excited (M = 1) and the remaining N − 1 = 1, · · · , 6
dots initially in the ground state in the NCE (solid curves)
versus CE (dashed curves) models.

while for the NCE system the Schmidt coefficients are
expressed in a more complex form as

PNM
m (γ = 1, t) =

(
M

m

) Nm∑
n=0

(
N −M

2n + m−M

)
|CNM

n (1, t)|2, (11)

where m = 0, ..., M ; the upper limits of summation
are Nm =Int

[
N−m

2

]
, but can simply be replaced by

ν ≡Int[N/2] recalling that
(
x
y

)
vanishes for x < y or

y < 0.
Let us analyze the simplest nontrivial system of two

spins when one of them is initially excited. Under inter-
actions given by (3) and (6) the initial state |ψ(γ, 0)〉 =
|10〉 = |1〉A|0〉B evolves as (γ = 0, 1)

|ψ2,1(γ, t)〉 = C2,1
0 (γ, t)|1〉A|0〉B + C2,1

1 (γ, t)|0〉A|1〉B
= cos(κt)|1〉A|0〉B − i sin(κt)|0〉A|1〉B . (12)

This is the only case when the models for γ = 0 and
γ = 1 have the same solutions and thus the same en-
tanglement evolution between subsystems A and B. The
von Neumann entropy of the total system described by
ρ̂2,1 = |ψ2,1(γ, t)〉〈ψ2,1(γ, t)| is zero during the whole evo-
lution. However, the reduced densities ρ̂2,1

A and ρ̂2,1
B give

nonvanishing reduced entropies SA = SB = E2,1(γ, t) for
κt 6= kπ/2 ( k = 0, 1, · · ·). The bipartite entanglement
evolves simply as

E2,1(0, t) = E2,1(1, t) = − cos2(κt) log2 cos2(κt)
− sin2(κt) log2 sin2(κt), (13)

which is zero for κt′ = k π
2 (k = 0, 1, · · ·) and periodically

reaches its maximum of 1 ebit, i.e., maxt E2,1(γ, t) =
1. One concludes that the initial state |10〉 periodically
evolves into the maximally entangled states

|ψ2,1(γ, t′)〉 =
|1〉A|0〉B + e−2iκt′ |0〉A|1〉B√

2
(14)

for the evolution times κt′ = (1+2k)π
4 , where k = 0, 1, · · ·

(see Fig. 1).
In order to show explicitly the differences between

the entanglement for the NCE and CE models, we an-
alyze another simple example of a system composed of 3
dots with single initial excitation described by the state
|ψ(γ, 0)〉 = |100〉 = |1〉A|00〉B . The general solution (3)
for the CE model reduces to

|ψ3,1(0, t)〉 = C3,1
0 (0, t)|1〉A|00〉B

+C3,1
1 (0, t)|0〉A{|01〉}B , (15)

where the superposition coefficients, given by Eq. (4),
can explicitly be written as

C3,1
0 (0, t) =

1
3
[exp(−2iκt) + 2 exp(iκt)],

C3,1
1 (0, t) =

1
3
[exp(−2iκt)− exp(iκt))]. (16)

Thus, one observes that the entanglement is given by
E3,1(0, t) = −P log2 P − (1− P ) log2(1− P ) in terms of
only one Schmidt coefficient, e.g.,

P = P 3,1
1 (0, t) =

8
9

sin2
(3

2
κt

)
. (17)

On the other hand the solution (6) for the NCE model
simplifies to

|ψ3,1(1, t)〉 = C3,1
0 (1, t)|1〉A|00〉B

+C3,1
1 (1, t) [|0〉A{|01〉}B + |1〉A|11〉B ] (18)

with the coefficients given by

C3,1
0 (1, t) =

1
4
[exp(−3iκt) + 3 exp(iκt)],

C3,1
1 (1, t) =

1
4
[exp(−3iκt)− exp(iκt))]. (19)

Now, the entanglement E3,1(1, t) is given via

P = P 3,1
1 (1, t) =

1
2

sin2(2κt) (20)
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FIG. 2. As in Fig. 1 but describing the entanglement be-
tween the two dots initially excited (M = 2) and all the others
initially unexcited. Dotted lines correspond to the MES.
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FIG. 3. Evolution of entanglement in the system of N = 8
dots with different excitation number M . Dotted lines corre-
spond to the MES with log2(M + 1) ebits of entanglement.

as also comes from (11). The Schmidt coefficients (17)
and (20) differ in detail but lead to the same maximum
entanglement of 1 ebit, namely

max
t

EN,1(0, t) = max
t

EN,1(1, t) = 1 (21)

for N = 3. The same conclusion can be drawn for N =
2, · · · , 6 and M = 1 as seen in Fig. 1. For N = 7 the
entanglement for the CE model is slightly less than 1
ebit, viz. maxt E7,1(0, t) =0.9997. But the entanglement
of 1 ebit for the NCE model can still be achieved. On
the scale of Fig. 1, no differences in the maximum of
entanglement even for N = 7 are observed.

Our solutions for the Schmidt coefficients, given by
(10) and (11), enable calculation of entanglement for
arbitrary N and M , although the formulas are usually
(for M 6= 1 and M 6= N − 1) complicated. In Fig. 2,
we compare the entanglement for systems with the ini-
tial two excitations (M = 2) for the NCE (solid curves)
and CE (dashed curves) models. The dotted lines show
the upper limit of bipartite entanglement which is ob-
served for the maximally entangled state (MES). One can
show that MES of two subsystems has d equally weighted
terms in its Schmidt decomposition, giving entanglement
of log2(d) ebits, where d is the Hilbert space dimension
of the smaller subsystem:

ENM
MES = log2[min(M,N −M) + 1]. (22)

It is seen in Fig. 2 that the maxima of entanglement for
the CE systems with M = 2 and N = 4, · · · , 7 almost
reach the limit of EN,2

MES. However, the maxima of entan-
glement for the NCE systems are much lower. In Fig.
3, we compare the dependence of entanglement on the
excitation number M for a fixed number N of dots. It
is seen, by increasing the excitation number M from 1
up to Int(N/2), that both NCE and CE systems evolve
into more and more entangled states. Nevertheless for
M > 1, the maxima maxt EN,M (1, t) for the NCE model
are smaller than maxt EN,M (0, t) for the CE model.

IV. CONCLUSION

We have studied evolution of quantum dots in two
different spin van der Waals models by assuming (i)
only resonant interactions (CE model) and by includ-
ing also (ii) antiresonant excitation and deexcitation pro-
cesses (NCE model). We have found solutions and their
Schmidt decompositions in order to study the entangle-
ment of the quantum dot ensembles. We have analyzed
the problem how the initially excited subsystem com-
posed of M dots can be entangled with the remaining
initially unexcited N −M dots. We have shown that the
same maximum entanglement in the CE and NCE mod-
els can be achieved for N = 2, ..., 6 dots with an initial
single excitation. However for systems initially having
more excitations, the maximum amount of entanglement
generated in the CE model is higher that for NCE model.
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