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Yu-xi Liua, Ş. K. Özdemira,b,A. Miranowicza,b,c, Masato Koashia,b, and Nobuyuki Imotoa,b

(a)The Graduate University for Advanced Studies (SOKEN), Hayama,Kanagawa, 240-0193,Japan
(b) CREST Research Team for Interacting Carrier Electronic

(c)Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland

We discuss the entanglement of the excitonic states in the system of the coupled quantum dots
(or artificial molecule) with fixed total exciton number by the entropy of entanglement. When the
total exciton number is more than three, we cannot find maximally entangled state, but we find
that the maximal values of the entropy of the entanglement for fixed exciton number is larger than
that of beam splitting model with the same fixed number of photons when the initially prepared
number of exciton is no more than ten.

I. INTRODUCTION

Recent developments in quantum computation and
quantum information have created a large enthusiasm for
theoretical and experimental physicists. Various theo-
retical and experimental researches have been conducted
for preparation and measurement of the entangled states
which have been considered to be a key ingredient in the
realization of the quantum computer.

By quantum teleportation which was first realized by
discrete variables [1] and then realized by continuous vari-
ables [2], we can quantitatively understand how quantum
entanglement can be used as a resource for communica-
tion. The quantum teleportation with fixed total photon
number as an entangled source has been theoretically in-
vestigated [3] and it has been understood that it is diffi-
cult to generate states with fixed photon number with to-
day’s technology. So the exploration of new entanglement
sources with fixed particle number is very interesting and
important both from experimental and theoretical points
of views.

Motivated by these considerations, we study a system
of two strong coupled quantum dots, which is also called
artificial molecule [4,5]. In fact, several schemes which
use coupled quantum dots have been proposed for fabri-
cating quantum gate [6,7]. The quantum entanglement
of the exciton states in a single quantum dot or in a quan-
tum dot molecule is demonstrated experimentally [8,9].
The references [10,11] theoretically investigate the en-
tanglement of excitonic states in the system of the opti-
cally driven coupled quantum dots and propose a method
to prepare maximally entangled Bell and Greenberger-
Horne-Zeilinger states.

In this paper we investigate the entanglement of the ex-
citonic states in the artificial molecule with fixed exciton
number in a closed quantum system. The paper is orga-
nized as follows: In Sec. II, we give a theoretical descrip-
tion of the artificial molecule. The analytical solution of
the system is obtained by virtue of the Schwinger repre-
sentation of the angular momentum. In Sec. III, the en-
tanglement of the two subsystems is discussed using the
von Neumann entropy under certain initial conditions.
Finally, we give our conclusions and some comments.

II. THEORETICAL MODEL AND ANALYTICAL
SOLUTION OF SYSTEM

We consider two completely symmetric semiconductor
quantum dots which are coupled by Coulomb interac-
tion. Then we apply two-band approximation to model
these two coupled quantum dots. Within the two-band
approximation, we have the Hamiltonian

H = h̄

2∑

i,j=1

χija
†
iaj +

2∑

i,j,k,l=1

χijkla
†
ia
†
jakal, (1)

where a†i (ai) are creation (annihilation) operators of exci-
tons, which are electron-hole pairs bound by the Coulomb
interaction. We assume that the density of the excitons is
so low and the external confinement potential to quantum
dot is so weak that exciton operators a†i (ai) can be ap-
proximated by bosonic operators, that is, they satisfy the
commutation relations of the ideal bosons, [ai, a

†
j ] = δij

, which is somewhat different from reference [12]. The
label i = 1(2) denotes the quantum dot A(B). In the
Hamiltonian (1), the deviation of the exciton operators
from the ideal bosonic model are corrected by introduc-
ing an effective nonlinear interaction between the hypo-
thetical ideal bosons. In general, the parameters χij are
different from each other, however in this study we con-
sider two completely equivalent dots which have nearly
the same Bohr radius of the excitons and transitional
dipole moment. For the sake of simplicity, we assume
the parameters χij = ω for i = j, which means the two
quantum dots have the same transition frequency, and
assume the positive real numbers χij = g for i 6= j which
corresponds to the linear coupling constant of the two
quantum dots. The parameters χijkl of the non-linear
terms are taken as positive constant, which means that
no stable bi-exciton can be found in this system of the
artificial molecule, and set to be χijkl = χ. Under these
assumptions, the Hamiltonian (1) can be simplified as
following

H = h̄ΩN + h̄χN2 + h̄G(a†1a2 + a†2a1)

+ h̄χ(a†1a2 + a†2a1)2, (2)
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where Ω = ω − 2χ, and G = g − 2χ + 2χN. It is obvi-
ous that N = a†1a1 + a†2a2 is a constant of motion, which
means [N,H] = 0 and the total exciton number of the
coupled quantum dots is conservation quantity. In such
a situation, we find that it is more convenient to give the
solution of the Schrödinger equation governed by Hamil-
tonian (2) by virtue of Schwinger representation of the
angular momentum [13]. That is, we can introduce the
angular momentum operators

Jx =
1
2
(a†1a2 + a†2a1), (3a)

Jy =
1
2i

(a†1a2 − a†2a1), (3b)

Jz =
1
2
(a†1a1 − a†2a2) (3c)

from the bosonic annihilation and creation operators of
the two exciton modes. The operators of (3a-3c) satisfy
the commutation relations for the Lie algebra of SU(2):

[Ji, Jj ] = iεijkJk, i, j, k = x, y, z, (4)

where the Levi-Cività tensor εijk is equal to +1 and −1
for even and odd permutation of its indices, respectively,
and zero otherwise. From (3a-3c), the total angular mo-
mentum operator can be expressed as followings

J2 =
N
2

(
N
2

+ 1). (5)

In fact, N itself commutes with all the operators of Eqs.
(3a-3c) and Eq.(5). For a fixed total excitonic numberN ,
The common eigenstates of J2 and Jz are the two-mode
Fock states

|jm〉 = |m1,m2〉 =
(a†1)

j+m(a†2)
j−m

√
(j + m)!(j −m)!

|0〉 (6)

with eigenvalues j = N/2 and m = −N/2, · · · ,N/2,
where |m1,m2〉 is Fock state with m1 = j + m excitons
and m2 = j − m excitons in dot A and dot B respec-
tively. Although j ±m (m1,m2) must be integers, j and
m can both be integers or both be half-odd integers. For
consistency, all j are replaced by N/2 in the following
expressions

In terms of an SO(3) rotation eiπ/2Jy of h̄2GJx +
h̄4χJ2

x , the Eq. (2) can be simplified into :

H = h̄ΩN + h̄χN2 + h̄2GJx + h̄4χJ2
x

= h̄ΩN + h̄χN2 + h̄2Ge−i(π/2)JyJze
i(π/2)Jy

+ h̄4χe−i(π/2)JyJ2
z ei(π/2)Jy . (7)

The eigenfunctions ΨN/2,m and the eigenvalues EN/2,m

of Hamiltonian (7) can be obtained very easily as

|ΨN
2 ,m〉 =

N
2∑

m′=−N2

D
N
2

m′m(π
2 )|N

2
, m′〉, (8a)

EN/2,m = h̄ΩN + h̄χN 2 + h̄2Gm + h̄4χm2, (8b)

where N denotes the total excitonic number of two dots
and G = g − 2χ + 2χN . We can obtain the Wigner’s
formula for D

N
2

m′m(π
2 ) as

D
N
2

m′m(
π

2
) =

∑

k

(−1)k−m−m′
(1
2 )

N
2

×

√
(N2 + m)!(N2 −m)!(N2 + m′)!(N2 −m′)!

(N2 + m− k)!k!(N2 − k −m′)!(k −m + m′)!
, (9)

where we take the sum over k such that none of the argu-
ments of factorials in the denominator is negative. Then
the evolution operators of the total system is written as

U(t) = e−itH/h̄ =
∞∑

N=0

N
2∑

m=−N2

e
−itEN

2 ,m
/h̄|ΨN

2 ,m〉〈ΨN
2 ,m|.

(10)

The wave function of the system |Ψ(t)〉 associated with
the initial condition |Ψ(t = 0)〉 can be expressed as
|Ψ(t)〉 = U(t)|Ψ(t = 0)〉, that is

|Ψ(t)〉 =
∞∑

N=0

m=N/2∑

m=−N/2

exp
(

EN
2 ,m

ih̄
t

)

× |ΨN
2 m〉〈ΨN

2 m|Ψ(t = 0)〉. (11)

These coefficients 〈ΨN
2 m|Ψ(t = 0)〉 are rotating matrix

elements which can be determined by Wigner’s formula.
Eq. (11) is a basic equation which will be used in our fur-
ther discussions. In the following sections, we will discuss
the entanglement of two exciton modes.

III. ENTANGLEMENT OF THE EXCITONIC
STATES

Quantum entanglement plays the key role in the quan-
tum information and quantum computation. In general,
for any pure composite state |ψ(A,B)〉 of a bipartite sys-
tem whose state space is HA⊗HB , the entanglement can
be measured by von Neumann’s entropy of any one re-
duced density operator ρA = TrB(|ψ(A, B)〉〈ψ(A,B)|) or
ρB = TrA(|ψ(A,B)〉〈ψ(A,B)|), where the reduced den-
sity operator of system A is obtained by tracing out sys-
tem B and that of system B by tracing out system A.
The entropy of the entanglement E(ρ) for the bipartite
pure state |ψ(A,B)〉 is defined as [14]

E(ρ) = −Tr(ρA ln ρA) = −Tr(ρB ln ρB)

= −
∑

i

(λi ln λi). (12)
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Where λi are the eigenvalues of either ρA or ρB , they
form the (square of the) coefficients of the Schmidt de-
composition of the bipartite pure state. That is the bi-
partite pure state |ψ(A,B)〉 can be expressed by a set of
the bi-orthogonal vectors using the Schmidt decomposi-
tion as

|ψ(A,B)〉 =
∑

i

√
λi|αi〉A|βi〉B , (13)

where we have chosen the phases of our basis states so
that no phases appear in the coefficients λi in the sum
of Eq. (13), and {|αi〉, i = 0 · · ·} and {|βi〉, i = 0 · · ·}
are orthonormal states of the two subsystems A and B
respectively.

In our system, we assume, without loss of generality,
that the total number of excitons in the whole system is
fixed by the initially given condition, such as L. In such
condition, the maximally entangled state of this artificial
molecular system is

|M〉 =
1√

L + 1

L∑

l=0

|L− l, l〉, (14)

where |L − l, l〉 represents that there are L − l excitons
in the quantum dot A and l excitons in the quantum dot
B. According to Eq. (12), the entangled entropy of the
maximally entangled state (14) is ln(1 + L).

In our paper we assume that quantum dot A is initially
excited and there are L excitons in dot A, and no exci-
tons in quantum dot B. So the modes of the two quantum
dots are disentangled at initial time t = 0. That is, the
state of the whole system is a tensor product of the states
of two subsystems A and B, i.e. |Ψ(t = 0)〉 = |L〉A⊗|0〉B
with the Schwinger realization of this initial state as
|Ψ(t = 0)〉 = |L2 , L

2 〉. The system and each mode of
the artificial molecule are in pure states respectively and
each entropy is zero.

It is well known that any pure state still keeps pu-
rity with the unitary time evolution, but it is not true
for each subsystem. With the evolution of the time, the
initial pure state of each subsystem can be transformed
into mixed states respectively. The Von Neumann en-
tropy E(ρ) in the Eq. (12) is increased, and two subsys-
tems entangle each other. The degree of entanglement
between two subsystems in the artificial molecule at any
time can be described using Eq. (12).

For the initial state |L2 , L
2 〉 of the system, we can obtain

the total wave function of the system from Eq. (11) as

|Ψ(t)〉 =
l′=L/2∑

l′=−L/2

exp
(EL

2 ,l′

ih̄
t
)
|ΨL

2 ,l′〉〈ΨL
2 ,l′ |

L

2
,
L

2
〉, (15)

where the normalized coefficients 〈ΨL
2 ,l′ |L2 , L

2 〉 are deter-
mined by Eq. (9) and Eq. (11). We will use Eq.(15)
to discuss the degree of the entanglement of the two
subsystems with the following several concrete examples.

Firstly, we consider that there is initially one exciton in
the quantum dot A i.e. L = 1. In this case we can ob-
tain the wave function of the whole system from Eq. (15)
with initial state | 12 , 1

2 〉 as

|Ψ(t)(1)〉 = [cos(gt)| 12 , 1
2 〉 − i sin(gt)| 12 ,− 1

2 〉]
= [cos(gt)|1〉A0〉B − i sin(gt)|0〉A1〉B ], (16)

where we have omitted the global phase factor of time de-
pendence e−i(Ω+2χ)t. The entropy of entanglement can
be calculated as

E(1)(t) = −cos2(gt) ln[cos2(gt)]− sin2(gt) ln[sin2(gt)].

(17)

We find in this case the entropy of the entanglement peri-
odically evolves with zero values at times gt = k π

2 where
k is an integer. The entropy of the entanglement reaches
its maximum ln 2 at times gt = (2k + 1)π

4 with integer
k, and the maximally entangled states of the artificial
molecule system is

|Ψ(t)(1)〉 =
| 12 , 1

2 〉+ e−i2gt| 12 ,− 1
2 〉√

2

=
|1〉A|0〉B + e−i2gt|0〉A|1〉B√

2
. (18)

If there are initially two excitons in quantum dot A,
then the wave function of the whole system with initial
condition |Ψ(t = 0)〉 = |1, 1〉 becomes

|Ψ(t)(2)〉 = α1|1,−1〉+ α2|1, 0〉+ α3|1, 1〉
= α1|0〉A|2〉B + α2|1〉A|1〉B + α3|2〉A|0〉B (19a)

and

α1 =
1
4
[ei2gt + e−i2(g+4χ)t − 2], (19b)

α2 =
√

2
4

[e−i2(g+4χ)t − ei2gt], (19c)

α3 =
1
4
[ei2gt + e−i2(g+4χ)t + 2], (19d)

where global phase factor of time dependence e−i2(Ω+2χ)t

also has been neglected. We can obtain the entropy of
the entanglement as

E(2)(t) = −
3∑

i=1

|αi|2 ln |αi|2, (20)

where |αi〉 determined by Eqs. (19b-19d). The time in-
stants t when the system becomes maximally entangled
can be obtained by setting E(2)(t) = ln 3. Fig. 1 plots
the entropy of the entanglement as the function of gt with
two sets different parameters ratio in which we can find
the maximally entangled state between two dots with the
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time evolution, the maximally entangled state of the sys-
tem presents a periodical behavior. But when the sec-
ond order coupling constant between excitons is weak,
the period becomes longer. It is worth noting that when
the second order coupling constant equal to zero, our
model becomes similar to that of a beam splitter model.
In such a case, we cannot obtain maximally entangled
states. The above discussion clearly shows that the en-
tanglement between two dots depends on both the time
evolution and the parameters χ/g.

(a) (b)

0 20 40 60 80
0

0.3

0.6

0.9

1.2

gt

E
(2

)

0 100 200 300 400

gt

FIG. 1. E(2) is plotted as a function of gt for (a) χ/g = 0.34
(b), χ/g = 0.01.

For an arbitrary number of excitons L, the wave func-
tion of the whole system is described by Eq. (15). The
entropy of the entanglement can be calculated as

E(L)(t) = −
L
2∑

m′=−L
2

|βm′ |2 ln |βm′ |2 (21a)

with

βm′ =

L
2∑

m= L
2

D
L
2
L
2 ,m

(
π

2
)e−

i
h̄ EjmtD

L
2
m′,m(

π

2
), (21b)

where Dj
m′,m(π

2 ) is determined by Eq. (9).

(a) (b)
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2
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E
(5
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0 100 200 300 400
gt

FIG. 2. E(5) is plotted as a function of gt for (a) χ/g = 0.34
(b), χ/g = 0.01.

In Fig. 2, the entropy of the entanglement is depicted
as a function of gt when there are five excitons in the
system of the coupled quantum dots. Numerical results

show that when L = 5, we cannot find any time t that
will generate maximally entangled states for any χ/g.

FIG. 3. Up to exciton number N ≤ 10, the maximal values
of the von Neumann entropy Emax are plotted as a function
of exciton number N for χ/g = 0(dots in the solid curve ),
χ/g = 0.01, χ/g = 0.34, χ/0.8 (circles in solid curve). The
values of the von Neumann entropy of the maximally entan-
gled states are marked by squares in the dashing curve for
different exciton number N .

We can use Eq. (21a-21b) to discuss the entanglement
of the excitons between two subsystems A and B for any
initially given exciton number in this artificial molecule.
Here the entropy of the entanglement of two subsystem is
discussed up to ten excitons. The numerical results show
that we cannot obtain maximally entangled states when
the total exciton number of the system is more than three
for any parameters ratio χ/g and any time gt. But we
can calculate maximal values Emax of the entropy of the
entanglement for the two subsystems using eq.(21a-21b).
Fig. 3 shows a comparison of the maximal values Emax

of the entropy of the entanglement with the values of the
entropy of the entanglement for the maximally entangled
states up to the number of ten excitons for some param-
eter ratios χ/g = 0, 0.01, 0.34, 0.08. From Fig.3, we
know that the entropies of the entanglement for param-
eter ratio χ/g = 0 for all exciton number is smaller than
those for parameter ratios χ/g = 0.01, 0.34, 0.08, which
means our system can reach a larger entanglement than
that of beam splitting model. At this point, the artificial
molecule can be considered as a good entangled source
with fixed exciton number than that of beam splitting
model with the same photon number. For fixed exciton
number, we find that the difference of the maximal val-
ues for the entropies of the entanglement between any two
different parameter ratios among χ/g = 0.01, 0.34, 0.08
is very small. Every circle in solid curve of Fig.3 actually
denotes three maximal values of the entropies of the en-
tanglement which cannot be resolved in that resolution
of the figure.

IV. CONCLUSIONS

We discuss the entanglement of the excitonic states
in the system of the coupled quantum dots (or artificial
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molecule) with fixed total exciton number by the entropy
of the entanglement. We find that when the total number
of excitons for artificial molecule is more than three, we
can not find the maximally entangled states, but numer-
ical results show that the maximal values of the entropy
of the entanglement for some parameter ratios is bigger
than those of the beam splitting model from four to ten
excitons. So this artificial molecule can be considered as
a good entangled source.
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