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I. INTRODUCTION

As it was mentioned in the first part of this study [1], the finite-dimensional (FD)
quantum-optical states have been a subject of numerous papers. For instance, various
kinds of FD coherent states [2]–[6], FD Schrödinger cats [5, 6, 7], FD displaced
number states [5], FD phase states [8], FD squeezed states [9, 10] were studied by
many authors. In this chapter we concentrate on some schemes of generation of the
FD quantum-optical states. These states can be produced as a finite superposition of
n-photon Fock states. As a consequence, the problem of generation of FD states can
be reduced to the choice of the mechanism of n-photon Fock state generation. For
instance, Fock states can be achieved in the systems with externally driven cavity filled
with the Kerr media [11]–[13]. Moreover, they can be produced in the cavities using
micromaser trapped states [14]. Another way to obtain Fock states is that proposed
by D’Ariano et. al. [15] based on the optical Fock-state synthesizer, in which the
conditional measurements have been performed for the interferometer containing
Kerr medium. The cavities with moving mirror [16] can also be utilized for the FD
state generation. Recently, several schemes for the optical-state truncation (quantum

1Published in: Modern Nonlinear Optics, Part 1, Second Edition, Advances in Chemical Physics, Vol.
119, Edited by Myron W. Evans, Series Editors I. Prigogine and Stuart A. Rice, 2001, John Wiley & Sons,
New York, pp. 195–213.

1



2

scissors), by which FD quantum-optical states can be produced via teleportation,
have been analyzed [17, 18]. Various other methods for preparation of Fock states
[19] and their arbitrary superpositions [20] have been developed (see also Ref. [21]).

However, we shall concentrate here on the generation methods in which we are able
to get directly the FD quantum state desired. Namely, we shall describe the models
involving quantum nonlinear oscillator driven by an external field [11, 12, 13, 22].
For this class of systems we are able to get the quantum states that are very close for
instance, to the FD coherent states [2, 3] or to the FD squeezed vacuum [10].

II. FD COHERENT STATES GENERATED BY NONLINEAR
OSCILLATOR SYSTEMS

This section is devoted to the method of generation of the FD coherent states making a
class of states defined in FD Hilbert space. We shall concentrate on the states proposed
by Bužek et al. [2] and further discussed by Miranowicz et al. [3, 23], where both the
Glauber displacement operator and the states are defined in the FD Hilbert space [1].
The method of generation discussed here is based on the quantum systems containing
a Kerr medium represented by nonlinear oscillator. It was introduced in Ref. [12]
as a way of generating one-photon Fock states and was further adapted for the FD
coherent-state generation [24]. The model discussed here represents a quantum
nonlinear oscillator that interacts with an external field. Systems of this kind can
be a source of various quantum states. For example, quantum nonlinear evolution
can lead to generation of squeezed states [25], minimum uncertainty states [26],
n-photon Fock states [11, 12, 13, 22], displaced Kerr states [27], macroscopically
distinguishable superpositions of two states (Schrödinger cats) [28, 29] or higher
number of states (Schrödinger kittens) [30]. Of course, the problem of practical
realization of the system arises. At this point one should emphasize that the most
commonly proposed practical realization is that in which a nonlinear medium is
located inside one arm of the Mach–Zehnder interferometer [26]. However, models
comprising a quantum nonlinear oscillator can be achieved in various ways. For
instance, systems comprising trapped ions [31], trapped atoms [32] or cavities with
moving mirror [16] can be utilized to generate states of our interest.

A. Two-dimensional coherent states

Let us start the discussion of practical possibilitiesof the FD coherent-state generation
from the simplest case, where only superpositions of vacuum and single-photon state
are involved (the Hilbert space discussed is reduced to two dimensions). We consider
the system governed by the following Hamiltonian defined in the interaction picture
(in units of h̄ = 1) to be

Ĥ(t) =
χ

2
(â†)2â2 + ε(â† + â)f(t) (1.1)
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where χ denotes the nonlinearity constant, which can be related to the third-order
susceptibility of the Kerr medium; ε is the strength of the interaction with the external
field, and â† and â are bosonic creation and annihilation operators, respectively.
Moreover, using function f(t) we are able to define the shape of the envelope of
external field. For simplicity, we shall assume that the excitation is of the constant
amplitude and hence, we put f(t) = 1. Obviously, one should keep in mind that
models discussed here concern a real physical situation (although they naturally
involve certain limitation) and all operators, appearing in Eq. (1.1), are defined in
the infinite-dimensional Hilbert space.

Let us express the wavefunction for our system in the Fock basis as

|ψ(t)〉 =

∞∑

n=0

Cn(t) |n〉 (1.2)

where the complex probability amplitude Cn(t) corresponds to the nth Fock state
|j〉 and determines its time evolution. This wavefunction obeys the following
Schrödinger equation

i
d

dt
|ψ(t)〉 =

(χ
2

(â†)2â2 + ε(â† + â)
)
|ψ(t)〉 (1.3)

for the Hamiltonian (1.1). Applying the standard procedure to our wavefunction (1.2)
and Hamiltonian (1.1), we obtain a set of equations for the probability amplitudes
Cn(t). They are of the form

i
d

dt
Cn(t) =

χ

2
n(n− 1)Cn(t) + ε

[√
nCn−1(t) +

√
n+ 1Cn+1(t)

]
(1.4)

where n corresponds to the n-photon Fock state. Obviously, one should keep in
mind that we deal with the infinite-dimensional Hilbert space and so the set of
equations for Cn(t), given by (1.4), is infinite too. However, our aim here is to show
that under special conditions our system behaves as one defined in the FD Hilbert
space. The first step is to assume that the external excitation is weak (ε � χ).
As a consequence, we assume a perturbative approach. Moreover, and this is the
main point of our considerations, the part of Hamiltonian (1.1) corresponding to the
nonlinear evolution of the system

ĤNL =
χ

2
(â†)2â2 (1.5)

produces degenerate states corresponding to n = 0 and n = 1. As we take into
account not only the first part of Hamiltonian (1.1) but also the second part, we
see that a resonance arises between the interaction described by the latter and the
degenerate states generated by ĤNL. This resonance and the weak interaction lead
to a situation when the system dynamics becomes of the closed form and cuts some
subspace of states out of all the n-photon Fock states. As a consequence, assuming
that the dynamics of the physical process starts from vacuum |0〉, the evolution of
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the system is restricted to the states |0〉 and |1〉 solely. This situation resembles in
some sense the problem of two degenerate atomic levels coupled by a zero-frequency
field, where this resonant coupling selects, from the whole set of atomic levels,
only those of them that lead to a closed system dynamics. For the case discussed
here our system evolution corresponds to the two-level atom problem, where the
interaction with remaining atomic states can be treated as a negligible perturbation
[34]. Obviously, one should note that the character of the resonances commonly
discussed in various papers, where the cavity field and the difference between the
energies of the atomic levels (or cavity frequencies) have identical values, is different
than that of those discussed here.

Thus, we write following equations of motion

i
d

dt
C0(t) = εC1(t)

i
d

dt
C1(t) = ε

[
C0(t) +

√
2C2(t)

]
(1.6)

i
d

dt
C2(t) = χC2(t) + ε

[√
2C1(t) +

√
3C3(t)

]

...

for the probability amplitudes corresponding to the system discussed here. Since
we have assumed ε � χ, the Eqs. (1.6) indicate that the amplitude Cn(t) rapidly
oscillates in comparison with the amplitudes CN (t) if n > N . Hence, analogously
to the description of driven atomic systems within the rotating wave approximation
(RWA) [34], we neglect the influence of the probability amplitudes Cn(t) for n ≥ 2.
Therefore, the dynamics of our system can be described by the following set of two
equations

i
d

dt
C0(t) = εC1(t)

i
d

dt
C1(t) = εC0(t) (1.7)

and their solution

C0(t) = i cos(εt)

C1(t) = sin(εt) (1.8)

where we have assumed that the system starts its evolution from vacuum |0〉. Clearly,
this result resembles that for a two-level atom in an external field [34] and the
dynamics of the system exhibits well-known oscillatory behavior. This result is
identical to that derived for the simplest case (i.e., for N = s + 1 = 2) of the FD
generalized coherent states discussed by us in the first part of this work [1]. Of
course, one should keep in mind that the set of Eqs. (1.7) gives zero-order solutions
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in perturbative treatment. As a consequence, the FD coherent states can be produced
by the system discussed within the error following from this approximation.

The preceding result concerns the situation where the external excitation is char-
acterized by a constant envelope: f(t) = 1. For the general case, the solution can
be obtained easily, applying the same procedure as for a resonantly driven two-level
atom [34]. Then, the general solution can be expressed as

C0(t) = i cos Θ(t)

C1(t) = sin Θ(t) (1.9)

where the symbol Θ(t) denotes the pulse area and is defined to be

Θ(t) = ε

∫ t

0

f(t′)dt′ (1.10)

B. N -Dimensional coherent states

It is possible to extend our considerations to the case of the FD Hilbert space with ar-
bitrary dimension. Similarly as in [24] we introduce a system comprising a nonlinear
oscillator with theN th-order nonlinearityand governed by the followingHamiltonian

Ĥ(t) =
χ

N
(â†)N âN + ε(â† + â)f(t) (1.11)

The first term in (1.11) is the N -photon Kerr Hamiltonian [35], giving rise to optical
bistability, and χ is related to the (2N − 1)-order susceptibility of the medium. The
second term in (1.11) represents coherent pumping modulated by classical function
f(t). Similarly, as in the previous section, we assume that the excitation has a
constant envelope: f(t) = 1. Applying the procedure analogous to that described in
the previous section we get the following equations

i
d

dt
C0(t) = εC1(t)

i
d

dt
C1(t) = ε

[
C0(t) +

√
2C2(t)

]

...

i
d

dt
CN−1(t) = ε

[√
N − 1CN−2(t) +

√
NCN (t)

]
(1.12)

i
d

dt
CN (t) = χ(N − 1)!CN (t) + ε

[√
NCN−1(t) +

√
N + 1CN+1(t)

]

...

for the probability amplitudes Cn(t). As it is assumed that ε � χ, we can exclude
all probability amplitudes Cn(t) for n > N − 1. Hence, we get the set of equations
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in the closed form and the dynamics of the system is practically restricted within a
space spanned over N Fock states. For instance, forN = 3 Eqs. (1.12) reduce to

i
d

dt
C0(t) = εC1(t)

i
d

dt
C1(t) = ε

[
C0(t) +

√
2C2(t)

]
(1.13)

i
d

dt
C2(t) = ε

√
2C1(t)

and have the solutions

C0(t) =
1

3

[
2 + cos

(√
3εt
)]

C1(t) =
−i√

3
sin
(√

3εt
)

(1.14)

C2(t) =

√
2

3

[
cos
(√

3εt
)
− 1
]

Again, these solutions are identical to those derived by Miranowicz et al. [3] (compare
Eq. (25) in Ref. [1]). Of course, we can write the equations for arbitrary value of
the parameter N and hence, get the formulas for the probability amplitudes for the
n-photon state expansion of the FD coherent state defined in the N -dimensional
Hilbert space. In general, for any dimension N and arbitrary real periodic function
f(t) with the period T , we find that the system evolves at t = kT into the state [33]

|φ(kT )〉 =

N−1∑

n=0

Cn|n〉+ εCN |N 〉+O(ε2) (1.15)

where the superposition coefficients Cn = 〈n|φ(kT )〉 for n = 0, . . . , N − 1 are
given by

Cn =
(N − 1)!

N

(−1)n√
n!

N−1∑

m=0

exp (ikxmεc0)
Hen(xm)

[HeN−1(xm)]2
(1.16)

and for n = N are

CN =
√
NBCN−1 = (−1)N−1B

√
(N − 1)!

N

N−1∑

m=0

exp(ikxmc0ε)

HeN−1(xm)
(1.17)

Here, xm ≡ x(N)
m are the roots of the Hermite polynomial of orderN , HeN (xm) = 0.

The coefficient B is defined to be

B =
1

2π

∞∑

n=−∞

cn
n + a

(1.18)



III. NUMERICAL CALCULATIONS 7

where

cn =

T∫

0

f(t) exp

(
−i2πn t

T

)
dt (1.19)

is the Fourier transform and a = Tχ(N − 1)!/(2π). In the first part of this work
(see Eq. (20) in Ref. [1]), we have defined the N -dimensional generalized coherent
states to be (N ≡ s + 1)

|α〉(s) = exp
[
αâ†s − α∗âs

]
|0〉 (1.20)

in terms of the FD annihilation and creation operators,

âs =

s∑

n=1

√
n|n− 1〉〈n|, â†s =

s∑

n=1

√
n|n〉〈n− 1| (1.21)

respectively. On omitting terms proportional to ε, we explicitly show that

|α = −ikc0ε〉(s) = |φ(kT )〉+ O(ε) (1.22)

Thus, the state created in the process governed by the Hamiltonian (1.11) is the
finite-dimensional coherent state.

III. NUMERICAL CALCULATIONS

It is possible to verify our considerations performing appropriate numerical calcula-
tions. As, we have excluded here all damping processes, the dynamics of our system
can be described by the unitary evolution. Therefore, we define the unitary evolution
operator

Û = exp
{
−i
[ χ
N

(â†)N âN + ε(â† + â)
]
t
}

(1.23)

on the basis of Hamiltonian (1.1). In (1.23) all operators are defined in the N -
dimensional Hilbert space. For example, for N = 4 the wavefunction |ψ(t)〉 can be
expressed as

|ψ(t)〉 =




C0(t)
C1(t)
C2(t)
C3(t)


 (1.24)
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whereas the annihilation and creation operators (â and â† respectively) can be repre-
sented by the following matrices

â =




0 1 0 0

0 0
√

2 0

0 0 0
√

3
0 0 0 0


 , â† =




0 0 0 0
1 0 0 0

0
√

2 0 0

0 0
√

3 0


 (1.25)

which are special cases of (1.21) for s = 3. As a consequence, the Hamiltonian
(1.11) can be constructed using the Eq. (1.25) matrix representations. Next we
should construct the evolution operator Û . Since this operator is in the form of the
matrix exponential it could be necessary to solve eigensystem with the Hamiltonian
Ĥ . This step can be easily done by applying standard numerical procedures [36].
Obviously, other methods of calculating matrix exponentials can be utilized as well.
For instance, the Taylor-series expansion of the operator Û can be helpful in this
case. Using the evolution operator derived, we are in a position to generate the
wavefunction for arbitrary time t.

Thus, assuming that the system starts its evolution from vacuum |0〉 we act (nu-
merically) Û on the wave function of the system represented by the N -element
vector

|ψ(0)〉 =




1
0
0
...
0




(1.26)

and obtain the vector representation of the desired wavefunction |ψ(t)〉 corresponding
to the state of our system for the time t:

|ψ(t)〉 = Û |ψ(0)〉 (1.27)

It would be interesting to compare Eqs. (1.26) and (1.27) with the Glauber definition
of the coherent state [37]

|α〉(∞) = D̂(α, α∗) |0〉 (1.28)

where the Glauber displacement operator D̂(α, α∗) is defined as

D̂(α, α∗) = exp
(
αâ† − α∗â

)
(1.29)

It is seen that the operator Û defined in Eq. (1.23) plays the same role as the Glauber
displacement operator D̂(α, α∗). Obviously, it should be kept in mind that Û is
defined in the FD Hilbert space, contrary to the definition of D̂ in which the space
has been assumed to be infinite dimensional. Therefore, we conclude that within the
assumptions introduced here we deal with the following correspondence:
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Fig. 1.1 Time-evolution of the probabilities (analytical results) for vacuum |0〉 (solid curve)
and one-photon state |1〉 (dotted curve) for the system with Kerr medium described by the
Hamiltonian 1

2χ(â†)2â2. The circle marks denote numerical results. The pulse strength is
ε = π/50.
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Fig. 1.2 The same as in Fig. 1.1 but for the system with the Kerr medium described by
1
3χ(â†)3â3. Analytical results for: vacuum |0〉 (solid curve), one-photon state |1〉 (dashed
curve), and two-photon state |2〉 (dotted curve). The numerical results are marked by circles.

Û
∣∣∣
∞
↔ D̂ (1.30)

To check our analytical formulas derived in the previous sections,we shall concentrate
on the two cases where the parameter N = 2, 3. First, for N = 2 we apply the
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evolution operator

Û = exp
{
−i
[χ

2

(
â†
)2
â2 + ε

(
â† + â

)]
t
}

(1.31)

and the results are shown in Fig. 1.1, which also shows the analytical results for
the probabilities of finding the system in vacuum |0〉 and one-photon |1〉 states
together with those of the numerical method. The analytical and numerical results
agree almost perfectly and for these two cases we obtain the well-known oscillatory
behavior. Obviously, one should keep in mind that the interaction with the external
field is weak (ε� χ) and we assume that ε = π/50 contrary to χ = 1.

Analogously, forN = 3 three states are involved in the system evolution. For this
case the evolution operator should be of the form

Û = exp
(
−i
[χ

3

(
â†
)3
â3 + ε

(
â† + â

)]
t
)

(1.32)

whereas the parameters ε and χ are the same as for the case of N = 2. Similarly as
for N = 2 the agreement of the analytical results with their numerical counterparts
is very good. Thus, Fig. 1.2 depicts oscillations of the probabilities for the states |0〉,
|1〉 and |2〉. The amplitude of the oscillations for one-photon state |1〉 is considerably
smaller than that for other two states involved in the evolution. This fact agrees with
the properties of the Fock expansion of the FD coherent state [3].

Applying the numerical method described here, we can also estimate the error of
the perturbative treatment introduced in the previous sections. In Fig. 1.3 we show
the probability corresponding to the three-photon state |3〉 as a function of time. It
is seen that the probability oscillates in a similar way as those corresponding to the
states |0〉, |1〉, and |2〉. However, the amplitudes of the oscillationsdiffer significantly.
Thus, the probability for the state |3〉 oscillates between 0 and∼ 1.2×10−3 whereas
that corresponding to the state |1〉 changes its value from 0 to ∼ 0.3 (Fig. 1.2). We
see that the dynamics of the system described by the Hamiltonian (1.1) is restricted
in practice to the closed set of the Fock states. This fact and the behavior of the
probabilities shown in Figs. 1.1 and 1.2 proves that the quantum states generated by
the system described by Hamiltonian (1.1) are very close to the FD coherent states
described in Ref. [3].

IV. STATE GENERATION IN DISSIPATIVE SYSTEMS

It is obvious that in the real physical situations we are not able to avoid dissipation
processes. For dissipative systems, we cannot take an external excitation too weak
(the parameter ε cannot be too small) since the field interacting with the nonlinear os-
cillator could be completely damped and hence, our model could become completely
unrealistic. Moreover, the dissipation in the system leads to a mixture of the quantum
states instead of their coherent superpositions.Therefore, we should determine the
influence of the damping processes on the systems discussed here. To investigate
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Fig. 1.3 The probability for the three-photon state |3〉 obtained from the numerical calcula-
tions. All parameters are the same as for Fig. 1.2.

such processes we can utilize various methods. For instance, the quantum jumps
simulations [38] and quantum state diffusion method [39] can be used. Description
of these two methods can be found in Ref. [40] where they were discussed and com-
pared. Another way to investigate the damping processes is to apply the approach
based on the density matrix formalism. Here, we shall concentrate on this method
[41, 42, 12].

As we have discussed earlier, the time dependence of the envelope of external
excitation does not influence the final analytical result discussed here. The parameter
f(t) appears only inside the integral determining the external pulse area θ(t) [Eq.
1.10]. Therefore, we can assume without losing generality of our considerations that
the excitation is in the form of a series of ultrashort pulses. Then the function f(t)
can be modeled by the Dirac-delta functions as

f(t) =

∞∑

k=0

δ(t − kT ) (1.33)

where T is a time between two subsequent pulses. For such situation the time-
evolution of the system can be divided into two different stages. When the damping
processes are absent, the first stage is a “free” evolution of the nonlinear oscillator
determined by the unitary evolution operator

ÛNL = exp

[
−iχT

2

(
â†
)2
â2

]
(1.34)
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We assume the simplest case, where the time-evolution is restricted to two quantum
states |0〉 and |1〉. The second stage of the time-evolution of the system is caused
by its interaction with an infinitely short external pulse. This part of the evolution is
described by the second term of the Hamiltonian (1.1) and can be described by the
following evolution operator

ÛK = exp
[
−iε

(
â† + â

)]
(1.35)

The overall evolution of the system can be described as a subsequent action of
the operators ÛNL and ÛK on the initial state. When we take into account losses
during the time-evolution between two pulses we should solve the appropriate master
equation. It can be written as

dρ

dt
= −iχ

2

(
â†
)2
â2 +

γ

2

(
2âρâ† − â†âρ − ρâ†â

)
(1.36)

The solution of this master equation in the Fock number states basis is given by
[41, 42]

〈p| ρ(t + T ) |q〉 = exp

[
i
ϑ

2
(p − q)

]
[g(T )](p+q)/2√

p!q!

∞∑

n=p

〈n| ρ(t) |n− (p − q)〉

×
√
n![n− (p− q)]!

(n− p)! (1 + iδ)−(n−p) [1− g(T )]
(n−p) (1.37)

where

δ =
p− q
κ

g(T ) = exp [−κϑ− iϑ(p− q)]
κ =

γ

χ

ϑ = χT (1.38)

The symbol γ appearing above is a damping constant responsible for the cavity loss.
Thus solving the master equation (1.36) we can determine the probabilities of finding
the system in an arbitrary n-photon state. Of course, the evolution during single
ultrashort, external pulse is determined by the operator ÛK as before.

Thus Fig. 1.4 shows probabilities for vacuum |0〉 and one-photon |1〉 state for
weak external excitation once more. We have chosen two values of the damping
parameter: γ = 0.1 (Fig. 1.4(a)) and γ = 0.01 (Fig. 1.4(b)). It is seen that for weak
damping we observe slow oscillations of the probabilities, similarly as for the case
of the quantum nonlinear oscillator without dissipation. Moreover, for (γ = 0.01)
the amplitude of the oscillations reaches over 75% of its value for the case of γ = 0.
As a consequence, we are able to get the field very close to the desired quantum
state. However, as the damping increases the situation changes considerably. For
γ = 0.1 the oscillations of the probabilities vanish, and the resulting state is far from
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Fig. 1.4 The probabilities for vacuum |0〉 (solid curve) and one-photon state |1〉 (dashed
curve) for the Kerr medium described by 1

2χ(â†)2â2. The damping constants are: (a)
γ = 0.01 and (b) γ = 0.1. The pulse strength is ε = π/50 and the time T = π.

the FD coherent state defined in the two-dimensional Hilbert space. We see that the
dissipation in the system can drastically lower the effectiveness of producing the FD
coherent states. Nevertheless, one should keep in mind one of the crucial points of
our considerations: the assumption of weak external excitation. Hence, we hope that
for sufficiently weak damping, our system can evolve to a state that is very close the
quantum state of our interest.

V. GENERALIZED METHOD FOR FD SQUEEZED VACUUM
GENERATION

The method described in the previous sections can be easily generalized to be useful
for generation of various FD quantum-optical states different from the FD coherent
state. Thus, we shall show an example of how to adapt our method to generate the
FD squeezed vacuum [10]. In the first part of this work [see Eq. (78) in Ref. [1]],
we have defined the (s + 1)-dimensional generalized squeezed vacuum to be

|ξ〉(s) = exp

[
ξ

2
(â†s)

2 − ξ∗

2
â2
s

]
|0〉 (1.39)

where ξ = |ξ| exp(iφ) is the complex squeeze parameter, whereas âs and â†s are,
respectively, the FD annihilation and creation operators defined by (1.21). Since the
properties of the FD squeezed vacuum have already been discussed [1], here we shall
concentrate on the method of its generation.

We assume that our system consists of a Kerr medium of the (s + 1)th-order
nonlinearity and a parametric amplifier driven by a series of ultrashort external
classical-light pulses. Thus, the Hamiltonian describing our system can be written in
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the interaction picture as

Ĥ =
χ

(s + 1)

(
â†
)s+1

âs+1 + ε
(
â†2 + â2

)
f(t) (1.40)

where the first term describes the (s+ 1)-photon nonlinear oscillator (Kerr medium)
as in (1.11), and the second term represents a pulsed parametric oscillator modulated
by f(t), given by (1.33). This situation differs from those discussed in the previous
sections in one important point, namely, in the character of external excitation. For
this case we assume that the oscillator is driven by a second-order parametric process
instead of linear excitation involved in the FD coherent-state generation. The model,
described by (1.40) with the two-photon Kerr Hamiltonian, was studied by Milburn
and Holmes [42] in their analysis of quantum coherence and classical chaos. The
system for s = 1 and f(t) = 1 is referred to as the Cassinian oscillator and has been
analyzed in the context of squeezing by, for instance, Gerry et al. [43] and DiFilippo
et al. [44]. The time evolution of the system leads to the generation of the quantum
states that differ significantly from the FD coherent states. In a similar way as for the
generation of the latter, we assume that the excitation is weak (ε � χ), and we can
apply the perturbative treatment again. As a consequence, we get the formula for the
n-photon state expansion

|φ(t)〉 =

σ∑

n=0

C2n(t) |2n〉+ εC2σ+2(t) |2σ + 2〉+ O(ε2) (1.41)

where the expansion coefficients C2n = 〈2n| φ(t)〉 for n = 0, . . . , σ are

C2n(t) = (−1)n
(2σ)!√
(2n)!

σ∑

k=0

exp(ixkεt)
Gn(xk)

Gσ(xk)G′σ+1(xk)
(1.42)

and

C2σ+2(t) = 2−σ−1
√

(2σ + 1)(2σ + 2)C2σ(t) (1.43)

The functions Gn(x) appearing above are the Meixner–Sheffer orthogonal polyno-
mials; the prime sign in Eq. (1.42) denotes their x-derivative, and σ = Int(s/2) is
the integer part of s/2. If we omit the terms proportional to ε and higher, we get the
expansion for the FD squeezed vacuum as

|ξ = −2εt〉(s) = |φ(t)〉 +O(ε) (1.44)

So, our system evolves to a state close to the FD squeezed vacuum discussed in Ref.
[10].
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VI. SUMMARY

We have discussed one of the possible methods of generation of the FD quantum-
optical states. Although, it is possible to generate n-photon Fock states and then to
construct a desired state from these states, we have concentrated on the generation
schemes that can lead directly to the FD coherent states and FD squeezed vacuum.
The method described here is based on the quantum nonlinear oscillator evolution.
We have assumed that this oscillator is driven by an external excitation. We have
shown that within the weak excitation regime we are able to generate with high
accuracy the appropriate FD quantum state. Thus, depending on the character of the
excitation we can produce various FD states. For instance, for the linear excitation
case we generate the FD coherent state, whereas for the parametric excitation of the
FD squeezed vacuum can be achieved. Moreover, we have shown that the mechanism
of the generation does not depend on the shape of the excitation envelope. Hence,
various forms of the latter can be assumed depending of the feasibility of our model
from the experimental or mathematical point of view.

For the situations discussed here appropriate analytical formulas for the generated
states have been derived. These results have been obtained within the perturbation
theory, and they agree with those of the n-photon expansion of the appropriate FD
states. Moreover, we have proposed methods for checking our results numerically,
and we have shown that numerical results agree very well with the analytical ones.
Since, we are not able to avoid dissipation processes from real physical situations, we
have discussed damping processes two. It has been shown that although dissipation
can play crucial role in the whole system dynamics and is able to destroy the effect
of the FD state generation completely, under special assumptions these states can be
achieved.
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12. W. Leoński and R. Tanaś, Phys. Rev. A 49, R20 (1994).
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