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1.1 INTRODUCTION

In the 1950s, Hanbury-Brown and Twiss [1] carried out the fundamental measure-
ments of photon-number correlations demonstrating that photons of classical light
exhibit a tendency to distribute themselves preferentially in bunches rather than at
random. This effect was coined thephoton bunching(PB). The Hanbury-Brown
and Twiss experiments have triggered theoretical and experimental search for light
exhibiting effect opposite to PB, i.e., the so-calledphoton antibunching(PAB). It was
first observed in the process of resonance fluorescence from an atom by Kimble et
al. [2] only twenty years after the first demonstration of PB [1]. Subsequent gener-
ations of PAB in resonance fluorescence were reported in Refs. [3]. Antibunched
light was also generated in other processes, including parametric down-conversion
[4], degenerate [5] and nondegenerate [6] parametric amplification, or destructive
two-photon interference [7]. Analysis of PB and PAB effects in nonlinear optical
systems has been one of the hot topics of quantum optics for several decades [8]–[11].

†Published inModern Nonlinear Optics, ed. M. Evans,Advances in Chemical Physics, vol. 119(I), 2nd
edition (Wiley, New York, 2001) pp. 515–527. This is a part of the chapter onNonlinear phenomena in
quantum opticsby J. Bajer, M. Dǔsek, J. Fiuŕasek, Z. Hradil, A. Luǩs, V. Pěrinová, J. Reh́acek, J. Pěrina,
O. Haderka, M. Hendrych, J. Peřina, Jr., N. Imoto, M. Koashi, and A. Miranowicz.
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It is a well known fact, that the PAB of stationary fields is one of the manifestations
of nonclassical properties of light. PAB cannot be understood within the classical
field theory describing light as a wave. But, on the other hand, it has a simple
interpretation in particle (photon) models by the rise of the joint probability of two
detected particles upon the increase of their time separationτ close to zero.

In this paper we would like to address the following question: How to describe
PB and PAB in non-stationary fields in a way closest to the original photodetection
interpretation of the effect in stationary-field regime, having a guarantee that the
PAB cannot occur for classical light. PAB of non-stationary fields has already been
analyzed theoretically in various nonlinear optical models (see, e.g., Refs. [12]–[17]).
Here, we show that the approaches developed for stationary fields, when applied
directly to analyze the non-stationary fields, are by no means unique and might lead
to self-contradictory predictions [18]. And what is more counterintuitive, we will
show that, in some cases, the standard definitions do not exclude the possibility of
observation of the PAB artifacts in classical non-stationary fields [19].

Theclassical lightis usually defined (see, e.g., Refs. [8, 9]) to be one for which
the Glauber-SudarshanP -function, i.e., the weight factor in the coherent-state repre-
sentation of the density matrix

ρ̂ =
∫

d2{αj}P ({αj})|{αj}〉〈{αj}|, (1.1)

is a probability distribution, i.e., is nonnegative and cannot be more singular than
the Diracδ-function. Otherwise, the state is nonclassical. In Eq. (1.1), the com-
pact notation for the multimode field is used, where the argument{αj} stands for
(α1, α2, ...).

To test various definitions of photon antibunching, we analyze a parametric fre-
quency conversion – a process of exchanging photons between signal and idler optical
modes of different frequencies. It is one of the most fundamental models in quantum
optics both from theoretical and experimental viewpoints. The model has been suc-
cessfully applied to describe various optical phenomena. In particular, wave mixing
and beam splitting (see, e.g., Refs. [20, 9]), Raman scattering [9, 21], a two-level
atom driven by a single mode electromagnetic field (e.g., Ref. [22]) or, by straight-
forward generalization, coherent or incoherent spontaneous emission from a system
of N two-level atoms [23]. There have been great advances in the construction of
frequency converters for over 40 years. The frequency conversion devices are based
on the coupling of light waves in, e.g., nonlinear dielectric crystals such as KDP,
LiNbO3 or LiIO3[24]. A simple quantum description of the parametric frequency
conversion was given by Louisell [25]. The remarkable property of the Louisell
model is the classical-like evolution or, explicitly, the conservation of quasidistribu-
tions along classical trajectories as was predicted by Glauber [26] and experimentally
observed by Huang and Kumar [27] for initial quantum states. Our interest in the fre-
quency conversion comes from this conservation of the initial (classical or quantum)
character of the fields during the process.
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This paper is organized as follows. In Sect. 1.2, we give a short account of
the most popular definitions of PAB and we propose a generalized definition. In
Sect. 1.3, we briefly review the parametric frequency converter model and Glauber’s
theorem useful for our analysis of PAB. In Sect. 1.4, we show discrepancies between
three definitions of PAB for quantum non-stationary fields. In Sect. 1.5, we show
that there are classical non-stationary fields exhibiting apparently PAB according to
the standard definitions.

1.2 CRITERIA FOR PHOTON ANTIBUNCHING

The central role in definitions of PAB in a single-mode radiation field plays the
intensity correlation function [28]

G(2)(t, t + τ) = 〈T : n̂(t)n̂(t + τ) :〉 = (αcS)−2P2(t, t + τ), (1.2)

wherên(t) denotes the photon-number density operator, and products of the operators
are written in normal order (: :) and in time order (T ). As was proved by Glauber [28],
G(2)(t, t + τ) is directly related to the joint detection probability,P2(t, t + τ), of
detecting two photons, one at timet and another at time(t + τ), by photodetector
of quantum efficiencyα with photocathode of areaS. In Eq. (1.2),c denotes the
light velocity; the space coordinates are suppressed and only one photodetector is
assumed.

Different normalizations ofG(2)(t, t+τ) can be applied in the analysis of photon-
number correlations. Here, we analyze the normalized two-time second-order inten-
sity correlation functions defined as

g
(2)
I (t, t + τ) =

G(2)(t, t + τ)[
G(1)(t)

]2

g
(2)
II (t, t + τ) =

G(2)(t, t + τ)
G(1)(t)G(1)(t + τ)

g
(2)
III (t, t + τ) =

G(2)(t, t + τ)√
G(2)(t, t)G(2)(t + τ, t + τ)

, (1.3)

whereG(1)(t) = 〈n(t)〉 = 〈â†(t)â(t)〉 is the light intensity. Thephoton antibunch-
ing according to thejth (j=I, II, III) definition occurs if the normalized intensity
correlation functiong(2)

j (t, t + τ) increases from its initial value atτ = 0, i.e.,

∆gj(t, t + τ) ≡ g
(2)
j (t, t + τ)− g

(2)
j (t, t) > 0. (1.4)

Thephoton bunchingoccurs for decreasing correlation functiong
(2)
j (t, t+τ), whereas

photon unbunchingtakes place ifg(2)
j (t, t + τ) is locally constant. Alternatively, on

assumption thatgj(t, t + τ) is a well-behaved function ofτ , the PAB according
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to thejth definition occurs if the lowest-order (sayn0) non-vanishing derivative of
g
(2)
j (t, t + τ) [or ∆gj(t, t + τ)] is positive atτ = 0, i.e., exists suchn0 ≥ 1 that

γj(t) ≡ γ
(n0)
j (t) =

∂n0

∂τn0
g
(2)
j (t, t + τ)

∣∣∣∣
τ=0

> 0 (1.5)

if the derivatives(∂/∂τ)ng
(2)
j (t, t + τ) vanish atτ = 0 for n = 1, ..., n0 − 1. The

field exhibits PB if the lowest-order non-vanishing derivative,γj(t), is negative. If
the derivatives of all orders vanish,γj(t) = 0, the field is said to be unbunched. In
the Sects. 1.4 and 1.5, we will use both parametersγj(t) and correlation functions
∆gj(t, t + τ) to analyze PB and PAB effects in a model of frequency conversion.

Both Def. I (see [9] and references therein) and Def. II (see, e.g., [10]) have been
applied to analyze PAB of non-stationary light generated in various non-linear optical
processes. In particular, analysis of PAB innon-stationarylight has been studied by,
e.g., Singh [16] and Feng et al. [17] with the help of Def. I, and by, e.g., Kryszewski
and Chrostowski [12], Srinivasan and Udayabaskaran [13], Dung et al. [14], and
Aliskenderov et al. [15] by applying Def. II.

For stationary fields, i.e., fields satisfying the propertyG(2)(t, t + τ) = G(2)(τ),
Defs. I–III are equivalent up to aτ -independent factor. In Sect. 1.4, we will show that
the predictions of PAB according to Defs. I–III can be essentially different for non-
stationary fields, even though they coincide in stationary fields. Differences between
various approaches to PAB result from the normalization functions ofG(2)(t, t + τ),
which for Def. I is independent ofτ , whereas in cases of Defs. II and III, the
normalizations areτ -dependent but in two not equivalent ways for non-stationary
fields.

The Cauchy-Schwarz inequality,

[
G(2)(t, t + τ)

]2 ≤ G(2)(t, t)G(2)(t + τ, t + τ), (1.6)

must be fulfilled for any classical field. Thus the violation of inequality (1.6) can
reflect the corpuscular nature of light and can serve as a criterion of PAB. All
definitions of the PAB effect for stationary fields are based on the Cauchy-Schwarz
inequality. However, for non-stationary fields, PAB according to Defs. I and II does
not imply violation of the Cauchy-Schwarz inequality (1.6). In Sect. 1.5, we will
give examples of classical non-stationary fields exhibiting apparently PAB according
to Defs. I and II. By contrast, PAB according to Def. III occurs for nonclassical
fields only, independent of the stationary-field condition. This conclusion is readily
obtained by comparing the form of the correlation functionsg

(2)
III (t, t + τ) with the

Cauchy-Schwarz inequality, given by (1.6).
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1.3 MODEL FOR TESTING PHOTON ANTIBUNCHING

We will test different approaches to PB and PAB in a process of parametric frequency
conversion. The model can be described by the interaction Hamiltonian [25]:

Ĥint = h̄κâaâ
†
b exp(i∆ωt) + h.c., (1.7)

where∆ω = ωL + ωb − ωa, andâa,b are the annihilation operators for the signal
(with subscripta) and idler (subscriptb) modes;κ is the real coupling constant. For
simplicity, we analyze only the resonance case for∆ω = 0. One can interpret the
process described by Eq. (1.7) as the conversion of frequencyωa to ωb assisted by
intensive classical light of frequencyωL. Thus, instead of exact quantum Hamilto-
nian describing the three-photon interaction,Ĥint = h̄κ′âLâaâ

†
b + h.c., we use its

approximation given by (1.7), where the amplitude of classical light is included in
the coupling constantκ = κ′〈âL〉 = κ′αL. Model given by Eq. (1.7) can be realized
by a beam splitter.

The solutions of the Heisenberg equation of motion for the signal and idler modes
are [25]

âj(t) = cos(κt) âj − i sin(κt) âk , (1.8)

where âj ≡ âj(0), j = a, b andk = b, a, respectively. According to Glauber’s
theorem [26], the two-mode Glauber-SudarshanP -function can be given by

P (αa, αb, t) = P {αa(−t), αb(−t), 0} , (1.9)

where
αj(t) = cos(κt)αj − i sin(κt)αk (1.10)

are the solutions of classical equations of motion for the frequency converter [25].
The two-modeP -function remains constant along classical trajectoriesαj(t). In
other words, if both the signal and idler modes are initially quantum (classical), then
they will preserve their original quantum (classical) character for the whole evolution.
This property was experimentally verified by Huang and Kumar [27].

In the next sections, we will analyze PAB in quantum and, then, classical non-
stationary fields generated by this model.

1.4 PHOTON CORRELATIONS IN QUANTUM FIELDS

Let us analyze the parametric frequency conversion of the signal and idler modes
initially in Fock states with photon numbersNa andNb, respectively. By applying Eq.
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(1.9), we readily find the evolution of the two-mode Glauber-SudarshanP -function

P (αa, αb, t) =
1
π2

∏

j=a,b

Nj !
(2Nj)!

exp(r2
j )

rj

(
∂

∂rj

)2Nj

δ(rj)

∣∣∣∣∣
rj=|αj(−t)|

(1.11)

via derivatives of the Diracδ-function of the classical solutions, given by Eq. (1.10).
It is seen that theP -function remains singular evolving along classical trajectories.
Thus, the field is nonclassical for arbitrary evolution times.

Table 1.1 All possible predictions of photon bunching and antibunching ofquantum
fields according to Defs. I, II and III. Signal and idler modes are initially in Fock states
with: (i) Na = 2, Nb = 1 (marked by prime) and (ii) Na = 3, Nb = 1 (double prime).
Here, f{x} ≡ 1

2 arccos(x).

case Def. I Def. II Def. III examples

1. bunching bunching bunching κt ∈
(
π − f{ 3

5
}, π

)′
2. antibunching bunching bunching κt ∈

(
π − f{ 1

3
}, π

)′′
3. bunching antibunching bunching κt ∈

(
0, f{ 1

3
}
)′′

4. antibunching antibunching bunching κt ∈
(
0, f{ 3

5
}
)′

5. bunching bunching antibunching κt ∈
(
f{− 1

5
}, π

2

)′
κt ∈

(
π − f{ 1

3
}, π − f{ 3

5
}
)′

κt ∈
(
f{− 1

3
}, π

2

)′′
6. antibunching bunching antibunching κt ∈

(
π − f{− 1

5
}, π − f{ 1

3
}
)′

κt ∈
(
π − f{− 1

3
}, π − f{ 1

3
}
)′′

7. bunching antibunching antibunching κt ∈
(
f{ 1

3
}, f{− 1

5
}
)′

κt ∈
(
f{ 1

3
}, f{− 1

3
}
)′′

8. antibunching antibunching antibunching κt ∈
(
f{ 3

5
}, f{ 1

3
}
)′

κt ∈
(

π
2
, π − f{− 1

5
}
)′

κt ∈
(

π
2
, π − f{− 1

3
}
)′′

Here, we analyze all cases for which the three definitions of PAB might not be
equivalent for some evolution times. These cases are listed in table 1.1 with examples
of the nonclassical signal fields presented graphically in Fig. 1.1 for the parameters
γj and in Fig. 1.2 for the correlations∆gj . We refer to these ordinal numbers of
the cases throughout the paper. In particular, they are given in the upper part of the
figures. We present correlation functions for the signal mode only. Thus, we can
consequently omit subscripta in correlation functions:G(2)(t1, t2) ≡ G

(2)
a (t1, t2),

g
(2)
j ≡ g

(2)
j,a , and∆gj ≡ ∆gj,a for j=I, II, III. Due to the symmetry of the solutions

(1.8) forj = a, b, one can deduce the explicit expressions for the idler mode simply by
interchanging the subscripts. Exact analytical solutions for the normalized correlation
functionsg

(2)
j (t, t + τ) (j=I, II, III) were obtained in Ref. [18] for arbitrary initial
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Fig. 1.1 Quantum-field evolution of the parametersγI(t) (dashed lines),γII(t) (dot-dash)
andγIII(t) (solid). Initially, both signal and idler modes are in Fock states with:(a) Na = 2,
Nb = 1 and(b) Na = 3, Nb = 1.

Fig. 1.2 Illustration of eight different predictions of photon antibunching of quantum fields,
corresponding to the cases analyzed in Table 1.1 and Fig. 1.1. The two-time signal-mode corre-
lation functions∆gI(t, t+τ) (dashed curves),∆gII(t, t+τ) (dot-dashed) and∆gIII(t, t+τ)
(solid) are plotted in their dependence on the re-scaled time separationκτ for fixed values
of the evolution time: (case 1)κt = 2.8, (2) κt = 2.6, (3) κt = 0.1, (4) κt = 0.1, (5)
κt = 1.0, (6)κt = 2.3, (7)κt = 0.7, and (8)κt = 1.8. Signal and idler modes are initially
in Fock states withNa = 3 andNb = 1 in cases 2 and 3, or withNa = 2 andNb = 1 in
all other cases.

Fock states. However, for the purpose of our presentation, it is enough to analyze
only two special cases.

If the initial signal mode is in Fock state withNa = 2, and idler mode in Fock
state withNb = 1, the Taylor expansions of the correlation functions∆gj(t, t + τ)
are

∆gI(t, t + τ) =
−1 + 3 cos(2κt)

〈na(t)〉2 sin(2κt)(κτ) +O(τ2)
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∆gII(t, t + τ) =
1 + 5 cos(2κt)
〈na(t)〉3 sin(2κt)(κτ) +O(τ2)

∆gIII(t, t + τ) = 2 sec2(κt)
3− 5 cos(2κt)

[5− 3 cos(2κt)]2
(κτ)2 +O(τ3), (1.12)

where the mean photon number is〈na(t)〉 = 1
2 [3 + cos(2κt)]; and O(τk) ≡

O({κτ}k) denotes the order of magnitude. The discrepancies between Defs. I,
II, and III are well pronounced both analytically and graphically in Fig. 1.1(a) with
the help of the parametersγj and in Fig. 1.2 directly in terms of the correlation
functions∆gj(t, t + τ) (j=1, 2, 3). During the evolution of initial Fock states
|Na, Nb〉 = |2, 1〉 almost all (except cases 2 and 3) are observed. The remaining
two cases can be found, e.g., in the signal-field evolution of the initial Fock states
|Na, Nb〉 = |3, 1〉. Here, we obtain

∆gI(t, t + τ) = −6 sin2(κt)
〈na(t)〉2 sin(2κt)(κτ) +O(τ2)

∆gII(t, t + τ) = 3
1 + 3 cos(2κt)
〈na(t)〉3 sin(2κt)(κτ) +O(τ2)

∆gIII(t, t + τ) =
1− 3 cos(2κt)
[3− cos(2κt)]2

sec2(κt) (κτ)2 +O(τ3), (1.13)

where〈na(t)〉 = 2 + cos(2κt). The evolution of the parametersγj , given by the
expansion coefficients in (1.13) are presented in Fig. 1.1(b). We find six out of
eight different predictions, including cases 2 and 3 not observed in the evolution of
|Na, Nb〉 = |2, 1〉. The latter two cases are also presented in Fig. 1.2 in a standard
way for the correlation functions evolving with the time separationτ for fixed values
of time t. The values of evolution timest given in table 1.1 are calculated from
(1.12)–(1.13).

In conclusion, during the evolution of the nonclassical signal field in the parametric
frequency converter, one observes that both PB and PAB effects from Defs. I–III can
be accompanied, for some evolution times, with the same or different correlations
of photons derived from other two definitions. We have given examples of all these
cases in Figs. 1.1 and 1.2, and table 1.1.

1.5 PHOTON CORRELATIONS IN CLASSICAL FIELDS

If the initial modes are in a superposition of coherent states (with amplitudesαj0,
wherej =a,b) and chaotic fields (with intensities〈nch,j〉), then the evolution of the
frequency converter is described by the following Glauber-SudarshanP -function

P (αa, αb, t) =
1
π2

∏

j=a,b

1
〈nch,j〉 exp

(
−|αj(−t)− αj0|2

〈nch,j〉
)

(1.14)
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evolving along the classical solutions, given by Eq. (1.10). TheP -function (1.14)
is a product of regular and positive Gaussian functions, thus describing explicitly the
classical behavior of the idler and signal fields during the whole process of frequency
conversion. Here, we analyze two special cases of these classical fields.

Table 1.2 Same as Table 1.1, but examples are given forclassicalfields. Signal and
idler modes are initially described by Eq. (1.16) (marked by prime) or Eq. (1.18) (double
prime).

case ∆gI (Def. I) ∆gII (Def. II) ∆gIII (Def. III) examples

1. negative (bunching) negative (bunching) negative (bunching)κt ∈
(

π
2
, π

)′′
2. positive negative (bunching) negative (bunching)κt ∈

(
π
2
, π

)′
3. negative (bunching) positive negative (bunching)κt ∈

(
0, π

2

)′
4. positive positive negative (bunching) κt ∈

(
0, π

2

)′′

5. negative (bunching) negative (bunching) positive forbidden
6. positive negative (bunching) positive forbidden
7. negative (bunching) positive positive forbidden
8. positive positive positive forbidden

First, for simplicity, we assume that the mean photon numbers of chaotic photons
in both modes are the same〈nch,a〉 = 〈nch,b〉 ≡ 〈nch〉 and the initial coherent
amplitudesαj0 are real. We find

∆gI(t, t + τ) = −2〈na(t)〉−2
{〈nch〉+ 〈na(t)〉}N− sin(2κt) (κτ) +O(τ2)

∆gII(t, t + τ) = 2〈na(t)〉−3〈nch〉〈ncoh,a(t)〉N− sin(2κt)(κτ) +O(τ2)

∆gIII(t, t + τ) = −
{

G(2)(t, t)(〈nch〉+ 2N+)− 4N2
−〈nch〉 sin2(2κt)

}

×〈nch〉[G(2)(t, t)]−2(κτ)2 +O(τ3) ≤ 0, (1.15)

whereN± = 1
2 (α2

a0 ± α2
b0). The time-dependent mean intensity of the signal mode

is given by〈na(t)〉 = 〈nch〉 + 〈ncoh,a(t)〉, where〈ncoh,a(t)〉 = α2
a0 cos2(κt) +

α2
b0 sin2(κt) is the time-dependent intensity of input coherent fields, and〈nch〉

is the initial intensity of chaotic field. Moreover,G(2)(t, t) = 〈ncoh,a(t)〉2 +
4〈nch〉〈ncoh,a(t)〉 + 2〈nch〉2 is the single-time correlation function. In expansion

(1.15), similarly to Eq. (1.13), the firstτ -derivative ofg(2)
III (t, t + τ) vanishes at

τ = 0. Expansions (1.15) have simple interpretation. The correlation function
∆gIII(t, t + τ) is never positive, thus PAB according to Def. III cannot be observed.
On the contrary, both∆gI(t, t + τ) and∆gII(t, t + τ) oscillate between negative and
positive values, therefore PAB according to Defs. I and II is apparently not prohibited.
Surprisingly, predictions of Defs. I and II are opposite. As comes from Eq. (1.15),
∆gI(t, t + τ) and∆gII(t, t + τ) have opposite signs and the same time-dependent
function. Our conclusion is supported by graphical representations of the parameters
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Fig. 1.3 Classical-field evolution of the parametersγj(t) for initial superpositions of coherent
state with thermal field:(a)ρ1(0) and(b) ρ2(0) given by Eqs. (1.16) and (1.18), respectively.
Labels are the same as in Fig. 1.1.

Fig. 1.4 Illustration of all four possible different predictions of PB and the PAB artifacts for
classical fields as listed in Table 1.1. Initial conditions are given by Eqs. (1.16) and (1.18):
(case 1)ρ2(0) atκt = 2; (case 2)ρ1(0) atκt = 2; (case 3)ρ1(0) atκt = 0.6, and (case
4) ρ2(0) at κt = 0.4. Evolution timesκt are chosen with the help of Fig. 1.3. Labels and
notation are the same as in Fig. 1.2.

γj in Fig. 1.3(a) and∆gj(t, t+ τ) in Fig. 1.4 (cases 2 and 3) for the initial condition

ρ1(0) = ρ
{
α2

a = 〈nch,a〉 = 〈nch,b〉 = 1, αb = 0, t = 0
}
. (1.16)

Whenever PB is predicted according to one of Defs. I–II, it must be accompanied by
the classical-field PAB artifact according to the other.

As the second example, we analyze another special case of the field (1.14), evolving
in a way opposite the field evolution under initial condition (1.16). Let the signal
mode is initially coherent (with real amplitudeαa0), whereas the idler mode is chaotic
(with the mean photon number〈nch,b〉). We obtain the following power expansions
of the normalized correlations∆gj(t, t + τ) are

∆gI(t, t + τ) = 2
{
[2y cot(κt)− x tan(κt)]〈na(t)〉 − xy tan(κt)

}

× 〈na(t)〉−2 (κτ) +O(τ2)
∆gII(t, t + τ) = 4x2y csc(2κt)〈na(t)〉−3 (κτ) +O(τ2)

∆gIII(t, t + τ) = −2α2
a0〈nch,b〉(x2 + 2y2)

(x2 + 4xy + 2y2)2
(κτ)2 +O(τ3) ≤ 0 (1.17)
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in terms of the mean signal-mode intensity,〈na(t)〉 = x+y, wherex = α2
a0 cos2(κt)

andy = 〈na(t)〉 − x. The short-time solution (1.17) reveals non-positive character
of ∆gIII(t, t + τ), thus excluding the possibility of PAB according to Def. III. By
contrast, both∆gI(t, t+τ) and∆gII(t, t+τ) change their signs during evolution. On
further assumption of equal initial intensities of the signal and idler modes, namely

ρ2(0) = ρ
{
α2

a = 〈nch,b〉 > 0, αb = 〈nch,a〉 = 0, t = 0
}
, (1.18)

we find that the normalized correlation functionsg
(2)
I (t1, t2) = g

(2)
II (t1, t2), and

g
(2)
III (t1, t2) are independent of the initial intensities. Eqs. (1.17) reduce to

∆gI(t, t + τ) = ∆gII(t, t + τ) = cos2(κt) sin(2κt) (κτ) +O(τ2) (1.19)

∆gIII(t, t + τ) = −1 + 4 sin2(κt) + 3 cos2(2κt)
2[2− cos4(κt)]2

(κτ)2 +O(τ3) ≤ 0. (1.20)

Evidently, the solution (1.19) takes positive values at some evolution times. We
conclude that the classical-field PAB artifact according to Def. I occurs whenever it
exists according to Def. II for the signal under the initial condition (1.18). These
results are graphically represented in Fig. 1.3(b) and Fig. 1.4 (cases 1 and 4). It is
worth comparing solution (1.19) with Eqs. (1.15) for∆gI(t, t+τ) and∆gII(t, t+τ),
describing their opposite (out-of-phase) behavior (see Fig. 1.3(a)).

Table 1.2 summarizes our investigations of PB effects in classical fields. By
virtue of the Cauchy-Schwarz inequality, PAB according to Def. III cannot occur for
classical fields, thus the cases 5–7 in table 1.2 are excluded. However, the remaining
cases 1–4 are observed in the evolution of classical fields as presented in Figs. 1.3
and 1.4. The classical PAB apparently exists according to both Defs. I and II.

PAB of classical fields can only be an artifact. So, it seems necessary to modify
the conventional definitions in non-stationary regime. For instance, one can add an
extra condition, which guarantees the nonclassical character of the field but keep-
ing the original inequalities unchanged. Nevertheless, the problem of the unique
description of PAB in non-stationary case would remain in the conventional defini-
tions. On the contrary, these problems do not arise in the generalized approach to
PAB (Def. III), where the Cauchy-Schwarz inequality is applied directly without any
further assumptions.

1.6 CONCLUSION

We have generalized the concept of PB and PAB to describe non-stationary fields.
The definition is based on the two-time second-order intensity correlation function
G(2)(t1, t2) normalized by the square root of single-time second-order intensity
correlations at two momentst1 andt2. This is contrary to the standard approaches to
PAB, where the two-time correlationG(2)(t1, t2) is normalized either (i) by the single-
time first-order intensity correlations at two moments, or (ii) by functions independent
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of the time separationτ = t2 − t1. In a special case, when a field is stationary the
generalized definition is equivalent to the standard definitions. However, as we have
shown, the predictions of PAB according to these three approaches might be different
for non-stationary fields. As an example, we have analyzed evolution of the signal
mode during the parametric frequency conversion of initial Fock states and have found
all (i.e., eight) possible different cases, when PAB (and also PB) effect according to
one definition can be accompanied by arbitrary photon-correlation effects according
to other two definitions. One may conclude, that the three definitions describe distinct
quantum non-stationary phenomena.

The generalized definition of PAB was proposed on the basis of the Cauchy-
Schwarz inequality without any assumptions concerning properties of the fields.
Whereas the standard definitions come from the Cauchy-Schwarz inequality under
stationary-field condition. Thus, PAB according to the generalized definition cannot
occur for classical fields. However, as we have shown in the parametric frequency
converter with classical initial conditions, the classical non-stationary fields possibly
exhibit PAB artifacts according to the standard definitions without violating any
classical inequalities.
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