Limits of noise squeezing in Kerr effect
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It is well known that the optical Kerr effect can serve as a source of highly squeezed
light, however, the analytical limit of the noise suppression has not been found yet. The
process is reconsidered and an analytical estimation of the optimal quadrature noise level
is found. The validity of the new scaling law is checked numerically and analytically.
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I Introduction

The cubic non-linearity of isotropic media, like liquid or fiber, can be responsible
for the self-phase modulation, self-induced rotation of polarization, self-modulation
of intensity profile or self-focusing of strong optical beam. These phenomena can
simply be explained by linear dependence of the refraction index on the intensity
of the propagating light, which is usually referred to as the optical Kerr effect. This
effect plays also an important role in, e.g., the non-diffracting beam techniques,
soliton propagation or non-demolition measurements. From the viewpoint of quan-
tum optics, the Kerr effect can serve as a source of the squeezed light [1-11] (for
a review see Ref. [12]), also referred to as the self-squeezed light. Unfortunately,
the Kerr non-linearity is usually very small, thus the effective application of the
Kerr effect requires long-interaction times (or lengths) and high-intensity lasers.
The simplest strategy for the effective Kerr process is to use a long optical fiber
and strong laser pulses. In recent experiments with the Kerr fibers, the quantum
noise was successfully reduced by 0.7 dB [13] or even by 3.5 dB [14] (for a discussion
of some experimental results see [3, 15]).

Quantum description of the Kerr-type evolution is among a few non-trivial
quantum dynamical models, which are fully solvable. This is one of the reasons of
its long-term popularity and fundamental importance. Mathematically, the Kerr
process can simply be described by the well-known interaction Hamiltonian

H = Lhgat?a® = Ihgn(n — 1), (1)

where @ and a' are, respectively, the annihilation and creation operators satisfying
the boson commutation relation; h is the Planck constant and g is the Kerr non-
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linearity. Since the photon-number operator 7 = a'a commutes with the Hamilto-
nian, the photocount statistics of the field propagating through the Kerr medium
is conserved. Nevertheless, the photon number fluctuations can be reduced via the
Kerr effect, e.g., using the nonlinear Mach—Zehnder interferometer with the Kerr
medium in one of the arms [2].

Assuming the input state to be in coherent state |a), the solution of the Schro-
dinger equation is the Kerr state [12]

— J PPN _70422000/“ 1:
lk) = exp [~3irA(A — 1)] la) = e lal”/ Z:O T exp [—4irn(n—1)] |n), (2)
where 7 = gL/vs is the dimensionless rescaled interaction length of the Kerr

medium or the interaction time; v, is the group velocity of light in the medium.
The only and trivial difference between the spatial and temporal evolution is the
opposite sign in front of 7. Thus, we use the terms interaction time or length inter-
changeably.

IT Noise squeezing analysis

The Kerr dynamics has been thoroughly studied from different points of view.
Many results predicted by these theoretical studies are well known. For example, it
can be proved that the time evolution is exactly periodic with the period 27. At the
time moments 7y = 27 M /N, being rational fractions of the period, the input coher-
ent state is transformed into a superposition of two [16] or more [17] well-localized
coherent states, referred to as the Schrodinger cats and kittens, respectively. The
most important result for the present study is the fact that the Kerr states evolve
periodically into the quadrature noise squeezed states [1,4-10]. By defining the gen-
eral quadrature component as Xy = a exp (i0)+af exp (—if), where 6 represents the
controlled phase of a homodyne detector, the principal squeezing can be defined as
the minimum of all the quadrature variances with respect to all the possible phases
6 and it holds [6, 18]

S = meinVarXe =1+2((a'a) —(a)]*) — 2

(@) —(@?]. 3)

Geometrically, the principal squeezing represents the smaller half-axis of Booth’s
elliptical lemniscate [19]. For vacuum and coherent fields the quadrature noise is
totally independent of the choice of phase 6 and it holds S = 1. This level of vacuum
noise represents the quantum noise limit. Squeezing of the quadrature noise below
the vacuum noise level occurs if S < 1. The formula for the principal squeezing in
the Kerr effect follows from solution (2) and reads as

S =1+2la]* {1 —exp[2la]*(cosT —1)]}
- 2|a|2’ exp [Jaf? (€77 — 1) —ir] —exp [2[af? (e7'7 — 1)] ’ (4)

The time dependence of S for some amplitudes is presented in Fig. 1. As for the
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Fig. 1. Time dependence of the principal squeezing S for several values of the input

amplitudes |a|. Dotted line represents the vacuum noise level of S = 1. We are particularly

interested in the region of the suppressed quadrature noise, which is marked in the circle
in part a and presented enlarged in part b.

Kerr state, the evolution of the principal squeezing is periodic with the period of
2m. Moreover, S is an even function, therefore it is sufficient to study the evolution
of 7 in the interval of (0,7) representing a half of the whole period. From Fig.
1 we can see that the principal squeezing (4) starts from the vacuum noise level
S (0) = 1 and then evolves into the squeezed states with S < 1 for some limited
time interval. At the moment 7,;, the quantum noise is maximally squeezed up to
the value Siin = S(Tmin ). The phase portrait of the state has a crescent shape. The
noise level can be very highly squeezed, especially for the large input amplitude |a],
but it never reaches the absolute zero. In the following, we shall give an analytical
estimation of that maximum possible noise squeezing. For larger interaction times,
the quantum noise of the Kerr state goes over from the vacuum noise level with
S =1 up to the value of S ~ 1 + 2|a|?. That maximum is very flat (see Fig. 1a)
and not particularly interesting for our purpose. The corresponding phase portrait
rapidly changes from the crescent shape to the ring or to a discrete superposition
of coherent states. At the time 7 = 7/2, the Kerr state is an equally-weighted
superposition of four coherent states. At last, close to 7 ~ m, the quantum noise
drops down to the vacuum noise level S ~ 1. The phase portrait at this moment
corresponds to an equally-weighted superposition of two coherent states.

The Kerr non-linearity is usually very small and, practically, the interaction
times of the order of 7 &~ 1075 [20, 12] can be reached in optical domain. Fortunately,
as follows from the above analysis and presented in Figs. 1b and 2, the highest noise
suppression can be expected for short interaction times. It is worth noting that much
higher Kerr-type non-linearities are observed in atom optics in, e.g., schemes based
on Raman laser excitations of a trapped atom [21].

The noise power (4) depends on the interaction time 7 and the input coherent
amplitude |a|. Instead of amplitude, the Kerr parameter r = |a|?7 is often used as
a good measure of the Kerr interaction. For intense laser pulses, the Kerr parameter
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Fig. 2. Comparison of the principal squeezing minima as a function of r = |a|*r for several

values of 7. The minima apparently lie on the straight line on the log—log scale. The circles

represent S,;, calculated from the scaling law formula (8). Note a good accuracy of our
estimation of the minimum noise by S’,;, for 7 < 1073.

can reach the values of the order of unity [15]. In real experiments, the interaction
time is fixed by the optical fiber length, but the optical power, and thus the Kerr
parameter, can simply be controlled. In the following, we shall study the principal
squeezing S (r) in its dependence on the Kerr parameter for the fixed interaction
times.

From the point of view of potential applications, it is interesting to know the
level of minimum noise, which can be suppressed in the Kerr process. It is tricky to
find the minimum of quantum noise level analytically from the equation (4). In the
former studies, it was solved only numerically and analyzed graphically. We have
plotted the minima of the noise level for some values of the scaled interaction times
in Fig. 2. The regular dependence of the noise minimum on the interaction time
is evident. From the linear dependence of the minimum points on the logarithmic
scale we can guess the scaling law of the form Sy, ~ rgﬂn, which will be derived
in the next section.

It is even hard to analyze numerically Eq. (4). The trouble comes from com-
putations that require extra computer precision. For example, the curves in Fig. 2
for parameters 7 < 1075 cannot be computed directly from (4) using the standard
16-digit arithmetics. The correct computation requires a special computing sys-
tem, like MAPLE or MATHEMATICA, that enables at least 100-digit arithmetics.
On the other hand, the same numerical problems can sometimes be overcome by
applying the saddle-point technique [8].

IIT Noise squeezing approximation
Here, as the main result of this paper, we shall derive an approximation of (4)

for large amplitudes and short interaction times. This approximation can be used
for simple calculation of the noise power bypassing the computer rounding error
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and will be used further for finding an analytic estimation of the quadrature noise
minimum.

First, we exclude the amplitude from (4) by substituting |o|? = r/7. Assum-
ing that the interaction time 7 is very short, we can expand the terms cos7 — 1,
exp(—2ir) — 1 and exp(—ir) — 1 in Taylor series. To derive a useful approximation,
we assume the Kerr parameter r to be finite and we sort all the terms in pow-
ers of 7. The Taylor expansion of all exponential functions in (4) leads, after final
arrangement, to the approximation

(3r2 +5) r?r
W

which is linear in 7. The accuracy of the approximation (5) in comparison with the
exact values of squeezing for two different values of 7 can be seen in Fig. 3. In the
less accurate approximation, the linear correction in (5) can be ignored. In that
case we get the well-known approximation [8, 15]

So=1+42r2 — 2r/1 412, (6)

which is indeed not sufficient to determine the minimum noise level. Equation (6)
only depends on the Kerr parameter r and thus gives physical grounds for the
introduction of r. As shown in Fig. 3, the Sy approximation is monotonic in r and
has the only minimum of Sy = 0 in the limit of » — oo. For sufficiently large r, So
can be estimated as Sy & 1/(472). On the other hand, for the relatively small Kerr
parameters, (6) can be approximated linearly as Sy = 1 — 2r. The vast majority
of the up-to-date measurements have been performed in the domain where the
approximation (6) is valid.

51:14‘27"2—27”\/1—1——7‘2—7‘374- (5)
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Fig. 3. Comparison of the approximations So and Si, and the exact values S of the

principal squeezing as a function of the Kerr parameter r for a) 7 = 10~ and b) 7 = 1072,

The figure shows that, for 7 < 1072, the approximation S; can be used to estimate the
minimum quadrature noise with a good precision.
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Table 1. Several numerical values of the principal squeezing minimum, Smin, and the
corresponding Kerr parameter rmin obtained at the scaled interaction times 7. Their esti-
mations S,;, and 7,,;, are based on the scaling law approximation given by (8). It can be
concluded from the table that (i) the level of the minimal quadrature noise regularly drops
down with the shorter interaction time 7, which, however, requires higher intensity such
that the Kerr parameter r = |a|?T increases, and (ii) the estimation is valid for 7 < 1072.

T Smin Sénin Tmin T;ﬂin
107! 0.476 0. 448 0.627 | 0.964
1072 0.196 0.178 1.312 | 1.528
1072 | 7.503 x 1072 | 7.103 x 1072 | 2.288 | 2.421
1074 | 2.899 x 1072 | 2.828 x 1072 | 3.755 | 3.839
1076 | 4.501 x 1072 | 4.482 x 1073 | 9.609 | 9.642
1072 | 2.829 x 107% | 2.828 x 10™* | 38.38 | 38.38
10712 | 1.784 x107° | 1.784 x 107° | 152.8 | 152.8

By assuming that the Kerr parameter of the minimum searched is large (see the
values in Table 1), we can simplify (5) even more. We expand (5) in the asymptotic
series for large r and keep the largest two terms only. Thus, we obtain

1
~ Q- 3
SlNS_47”2+2T T. (7)
From this elementary approximation we directly obtain a formula for the minimum
of the principal squeezing

fin = 2 (12007 at g, = (12077 (8)

min 12 min

leading to S.;, = 5/(12r/2.). This estimation of the minimum noise level is an

analytical confirmation of the scaling law as observed in Fig. 2. We have shown
that the minimum level of quadrature noise is proportional to the 2/5th power of
the interaction time or the fiber length. The shorter interaction time 7 (mod 27)
results in the deeper reduction of noise. But this requires the higher optical power
to reach the minimum since it holds |a|? = 7min /7 ~ 7-%/%. For example, to obtain
Smin ~ 4.5 x 1072 at the interaction time 7 ~ 1075, the optimum values of the
Kerr parameter and the intensity are rpi, =~ 9.6 and |a|2 ~ 107, respectively. A
comparison of the exact values S and 7, calculated from (4), with their estimations
S’ and 7', given by the scaling law (8), is presented in Table 1 and Fig. 2, where
the estimations are marked by small circles.

IV Conclusion

We have analyzed ordinary coherent light interacting with a non-absorbing non-
linear Kerr medium, modelled as an anharmonic oscillator. Former numerical stud-
ies have shown that the model leads to almost complete quadrature squeezing. We
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have found, as we believe for the first time, an approximate analytical formula for
the optimal noise level for high intensity coherent light, assuming realistic values
(see, e.g., [20]) of the Kerr nonlinearity.
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