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Quantum projection synthesis can be used for phase-probability-distribution measurement and optical-state
truncation and preparation. The method relies on interfering optical light beams, which is a major challenge in
experiments performed by pulsed light sources. In the pulsed regime, the time frequency overlap of the
interfering light beams has a major impact on the efficiency of the method. In this paper, the pulse-mode
projection-synthesis approach is developed, the mode structures of interfering light beams are characterized,
and the effect of this overlap on the fidelity of optical-state truncation and preparation is investigated. By
introducing the positive-operator-valued measure for the detection events in the scheme, the effect of mode
mismatch between the photon-counting detectors and the incident light beams is also presented.
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[. INTRODUCTION among many others according to the number of photons
counted at the detectors. In the special case of one-photon
The accurate preparation of quantum states is a crucigletection by one of the detectors and none by the other, the
task for reliable quantum-computation and quantum-output is projected onto a superposition of vacuum and one-
information processing. Several schemes have been proposgfioton state which carries the relative phase and amplitude
for the generation of arbitrary states and their superpositiondnformation of the vacuum and one-photon components of
One of the most developed systems of state preparation reliéd€ input coherent state. _
on conditional measuremenwhich brings one of the sub- As is the case for any scheme, where the interference of
systems of an entangled system to a predetermined state by/iiferently processed light pulses takes place, the character-
measurement on the other subsystem. In these systems, & ation of the optical modes of these light beams and their

tanglement of the two subsystems is achieved through Iinea}% necetsf:rnﬂt]I;e ?Jl;tr?&rr?fscc’{stshoerseég\e/irgge{gz Iil?hgjajﬂrifnzg
or nonlinear interactiongl—4]. 9 4 ' : 9

The proiection-svnthesisnoroach. which has been oridi- been shown that the scheme is realizable with the current
pro] y PP ’ ONg evel of quantum optics technolody], the studies so far

ibution by B 4P loits the mixi ¢ Shave not considered the problem of mode matching. In this
tribution by Barnett and Ped§, exploits the mixing of two o0 \we investigate projection synthesis for quantum-

states(one to be measured and the other a reference) sthte scissors device using the pulse-mode formalism and study

a beam splitter and a measurement at the output states of thes effect of mode-mismatch problem on state truncation and
beam splitter6,7]. This approach, despite its simplicity, is preparation.

very flexible to be used for different applications such as the Eor the evaluation of the quality of the process, fidelity of
optical-state truncatiofi2,8—11], preparation of superposi-

tion and phase stat¢$2—14], and the teleportation of super- ay by C3
position state$15]. The scheme, which is shown in Fig. 1, |1:5) jth,f”
exploits projection synt_hesis and_ is often refgrre_d to as the BS1 BS2 romete
guantum-scissors devicéQSD) in the applications of “click”
optical-state truncation and preparation. It relies on linear |0} b b P D2
optical element$two beam splitters, BS1 and BS2 single- a2 1 3 €2
photon state, a coherent state, and two photon-counting de- R .

tectors. In the first beam splittdBS1), the single-photon Pout |58)

state is mixed with vacuum and an entangled state of one- g5 1. schematic configuration of the quantum-scissors device
photon state and vacuum is formed at the output ports ofgsp). BS1,BS2 represent beam splitters; D2,D3 represent photon-
BS1. The state at one of the output ports of BS1 is sent to thgounting detectorsie), |0), and|1) represent coherent, vacuum,
second beam splitt¢BS2), where it is mixed with the input  and single-photon states, respectivelyand ¢ denote the mode
coherent light to be truncated. The photon-counting detectorgnctions of the corresponding input fields; amg, is the truncated

placed at the output ports of BS2 count the number of phogytput state. The desired output state is obtained by one-photon
tons |nC|dent on them after the action Of BS2. The state at thaetecnon at D2 which is denoted as “click” and no photon detec-

other output port of BS1 is projected on a specific stat&jon (“no click” ) at D3.
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the generated state to the desired one is used. Fidelity is @arameters within the pulse bandwidths can be neglected. In
commonly used measure of how close the two states are aridis case, these parameters become independent of pulse
is given by shape and solely reflect the effect of beam splitters; beam
splitting will not affect the mode structure of the input light
F=Tr{ poul ddesired{ Pesired] (1)  pulses. Following Refd16-19, we define creation and an-
nihilation operators of light pulses in terms of the operators

Whefef)out and| ¢gesred are the prepared and desired states,Of_the monochromatic modes that form them._ Then the cre-
respectively. When the prepared state is exactly the desiredfion operator for a pulse whose mode profile is described by
state thenF=1, when these two states are orthogoRal ¢ can be written as
=0. In practice, the value of fidelity will lie between 0 and
1, and its value will be a sign of the quality of the process. In TP ~t
general, the quality of the prepared state strongly depends on al(e)= f do &(w)al(w), )
the details of the mixindinterferencé process and the con-
ditional measurement. When these two main phenomena amhere é(w) is normalized as
prone to errors, the generated state may considerably differ
from the desired one.

The paper is organized as follows. In Sec. Il, pulse-mode ||§||ZEJ do|é(w)*=1. ()]
formalism is introduced and the calculation of mode mis-
match is exp!icitly s_howr_L The effects of mode mismatchUSing the continuous-mode bosonic commutators
between the interfering light beams and the photodetectors
are studied in detail in Sec. Ill, and analytical expressions,
which show the mismatch dependence of fidelity of state
truncation by projection synthesis are given. Then in Sec. IV, ) )
the results of the findings are discussed for preparation o€ can obtain the following commutator:
arbitrary superposition of vacuum and one-photon states. A
discussion of some practical issues and the characterization [a(9),al(&)]=1. (5)
of mode structures of fields in a practical scheme are ad-

dressed in Sec. V. And finally, Sec. VI includes a brief sum-  |n order to analyze the effects of mode mismatch, we have

[a(w),a'(0)]=8w—w'), (4)

mary and conclusion of this study. to look at the relation between the mode descriptions of cre-
ation operators. The commutator between two operators with
Il. THEORY OF MODE MISMATCH USING different mode descriptions @f( @) and{(w) can be calcu-
PULSE-MODE FORMALISM lated as followd 18]:

In the QSD scheme shown in Fig. 1, interference of
vacuum and single-photon states at BS@:50 and that of [é(g),é*(g)]=“ do §*(w)5.(w),f do’ {(o")aT(e')
the entangled state of motde mode and the coherent state at
BS2 (50:50 are the fundamental optical processes. The . en “t
scheme is usually analyzed in the single-mode description in :J' d‘"J do’ & (w){(0')[a(w),a'(0")]
which a pair of annihilation and creation operators for each
beam splitter is used. In that picture, the spatiotemporal char-
acteristics of the states input to the beam splitters are as-
sumed to be matched perfectly at the beam splitters and de-
tectors. However, in practice, these interfering light beamsvhich means that the commutator between operators of any
are prepared independently and thus may have differentvo modes corresponds to the overlap of these two modes.
modes. Moreover, mode definitions of the states at the output The operators defined above can be used to construct
of BS2 and that of the measuring appardfisoton counting number and coherent states with a given mode description
detectors may be different. In these cases, the detection oimply by replacing the usual discrete bosonic operators with
the correct photon numbers does not mean the correct corthe pulse-mode operators of the given mode description. In
ditioning (projection of the desired output state. In practical the following, |LI; &) represents a Fock state whenis a
experiments, high level of attention must be given to matclumber or a Roman alphabet, and a coherent state whsn
the modes of the input states and the detectors as much asGreek alphabet denotes the mode profile of the corre-

possible for a successful state preparation. A good modgponding state. Then a number state of médmn be writ-
matching shows itself as high visibility and can be a majorten as
challenge in experiments.

=fdw§*(w)§(w)=(§,§). (6

In this section, we will introduce the pulse-mode formal- 1
ism and present general expressions to calculate the overlap In; &)= _[é‘r(g)]nm), (7)
of two number states with different modes. It is assumed that Jnt

the bandwidths of the light pulses are sufficiently small and
the variation of the beam-splitter transmission and reflectiorand a coherent state as
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|a; &) =exd aa’(é)— a*a(§)]|0), €)

which satisfiesa(w)|a;&)=aé(w)|a;£). Here, we define
the mode-profile function as

g(w,0") =T pa(w)a(w")], 9)

which givesg(w,0’)={(w,0")={(w){*(w') for a one-
photon state p=|1;{)(1;¢|, and g(w,0')=¢&w,0’)
=|a|?¢(w)* (') for a single-mode coherent state
:|a;2§><a;§| with [dw {(w,0)=1 and [dw é(w,w)
=|a|.

The overlap(n;¢|n;¢) of two pure number state®); )
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(a;€lprlas€)=2 p; expl—|al*1X|(¢;,6)al?
J

) [ [ dwa|aPewnenw)
Hw,0')

X; Pjgj(w)gj*(w’)

{(w.0")

jfdwdw'f(w,w'){(w,w’)
= . (13

fdw S(w,mf do {(0,0)

with A=[dw é(»,0)fdw {(0,0)=|al?. Here we define

and [n; &) can be found by successive applications of EqsEq. (13) as the mode-match parametey,|? that satisfies

(2)—(6),

(m;¢gn; 0y =11 fdwkf*wk)awk)zﬂ (£,0=(&0",
k=1 k=1
(10

| vol?+ | v1)2=1 with | y,|? representing the mode-mismatch
parameter.

In the following sections, we will use the formalism de-
veloped in this section to study the QSD scheme where the
input fields are a mixed single-photon state and a pure co-
herent state.

IIl. ANALYSIS OF MODE MISMATCH IN THE QSD
SCHEME FOR STATE TRUNCATION

from which the overlap of two pure single-photon states can

be found ag1;£|1;¢)=(&,9).
The overlap of a pure one-photon stte¢) and a mixed

onep;, which is defined as

;’1:; pil 1:i)(1;¢)] (11

with 3;p;=1, is found using Tip,|1;£)(1;£|] as

(L:élpal 1:6)
- fdwdw'Ej piCE (0 E(0) ()€ (0)

:f f do do’ {(w,0")&(o0,0")

=2 pil (&)1, 12

where  {(0,0")=Zpi{{(0){f (o), and &w,0')
=¢(w') & (w) are found using Eq9).
The overlap between a mixed number sfateas given in

Eg. (12) and a pure coherent stafte; &) can be found first

writing the coherent state in the photon number basis and

then applying the above procedure. This will result in

In an optical-state truncation experiment using the QSD
scheme, an input coherent light with an unknown quantum
state(intensity and phages truncated up to its one-photon
state generating, at a remote port, a superposition of its
vacuum and one-photon state preserving the relative phase
and intensity between these components of the input coher-
ent light.

In this section, we study the state truncation in the pulsed
regime and investigate the effect of mode mismatch between
the interfering light beams on the fidelity of the truncation
process. We also consider the case where the mode structures
of the photon-counting detectors are different from the mode
structures of the light pulses incident on them. We assume
that the input coherent light, with unknown quantum state, is

at 63 input of BS2 and has a mode profile describedéby

The a, input port of BS1 is fed with a single-photon state
whose mode profile is given b First, we consider the case
where the one-photon input to the device is prepared in a
mixed state and find the general expressions for the output
density operator and fidelity of the process. After the presen-
tation of the general formulas, we will analyze the process, in
detail, for a single photon prepared in pure state and present
the results of this study. In the evaluation of the efficiency of
the truncation process in this section, we will impose the
condition that the output state should be a superposition of
vacuum and one-photon statdg|0)+ «|1)) in the same
mode of the input coherent light).

With the single photon prepared in a mixed state,

pay=20 PilLifase, (14 (14)
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with 2;p;=1, and the coherent state |as§>b , the overall

A ~ ~oa

input to the QSD scheme becomes d8£=ﬁez<x;élﬂizl>\;§>c2 o S ETICY(L))] 8 €)e,

~ 117 . : ) i ~ oL ~

Pin= 2 pJ|:I"§l>f"1a‘1<]"§1|® |0>a2a2<0| ®|a’§>b3b3<a'§|' + ?Ec2<7\;§|ﬂi205(§j)|>\;§)c2 c3<5;§|HSS| S, §>c3'
Then the state just before the photon counting can be written 1 R .
asp(v, ¢, cp=U301pin010, where the actions of the beam d(fl)Izcz(?\;§|Hi2|?\;§>c2 e S ETGE8:8),
sphtters BS1 and BS2 are represented by unitary operators
U, andU,, respectively[9,13,2(. andd{)=d{)*, wheres=a/\2 and\ =ia/\2 are obtained

_The probability of detecting a “click” at D2 and “no  through the action of the BS2 du;&),,. The creation op-
click” at D3 is given by the trace over the three modes,  ga10rs associated with the outgoing modes of BS2 are rep-
resented by, wherek=2,3.
P1o=Tr, c,, C3)[p(b1 s 03)H HC3] (15 Then the fidelity of this output statg,, to the desired
truncated state

with Hiz and 1'[33 being the elements of positive-operator-

valued measure@®OVMs). In general, for a detector with a | bosrod = |O>b1+ “|1;§>b1 (20)
quantum efficiency ofy, the POVM can be written as desire 1+]a?
~ ” . e which has the same mode profife of the input coherent
Hn=m22n 7"(1— 7)™ "CHlm)(m], (16)  Jight, can be calculated, using E(), as
wheren andm are the number of detected and incident pho- > pi{d+2 Rd aY;dJ)1+d¥)|a?Y;3
tons, respectivel\j21]. C|" represent the binomial coeffi- (= ! (21)
cients, and®,11,,=1. For the sake of simplicity, we assume (1+|a|2)2 pj(d(1)+d ) D)

zero mean dark count&0) in this study.
Then the output state &t, which is conditioned on this
detection is fourF\)d by a parltial trace, where, (1;¢j[1;€)s, = ({j,€) =Y represents the overlap of
the mode of the output single-photon state and that of the
. 1 . . desired output state. The effect of the overlap of the photon-
PoutzP—Tr(cz,c3)[P(b1,cz,cs)H?H(cf’]- (17)  counting detectors and the fields incident on them is con-
10 tained in the expressions of the elements of the output den-
) o sity matrix, which will be clear in the following subsections.
Then the density operator is written as State truncation using the QSD scheme is based on con-
ditional measurement. Therefore, the correct application and
~ 1 : : ] interpretation of photodetection process is essential to evalu-
pout:p_lo > p,—[d&%IO)bl b,(O0| +d81)|0>b1 b, (L3¢j] ate this scheme. In the following subsections, we will present
a comparative study of different photon-counting detectors.
d{y|1; by b, <O|+d(')|1;§j)b1bl(1;§j|], (18 First, we will use ideal counters that can resolve the photon
number incident on them and then proceed with a realistic
with the following elements: description of photodetection with conventional photon
counters.

1 “ ~ A
dfy :Zc2<?\i Elea(¢)TIEeN() N e, cy(0; g s, e, A. Photon-number-resolving detectors

. This type of detector can resolve the number of incident
L ATy elA P NTIC3AT, £ ] s photons. In the following, we will first analyze the scheme
4C2<)\ €N E)e, ex{ gles(gg’es(¢y)l o E)e, for detectors that are matched only to a specific mode and
i then present the elements of POVM for a more realistic case
S SColy . ¢ T7C3nt . where the mode of the incident light beam cannot be re-
+ZCZ<A,§|c2<§j>H 8o, e O ENIFEY 86, O J

<)\ §|H°2C2(§J)|)\ §>c2 C3<5 §|c3(§])1'[°3|5 §>c3 1. Mode-resolving detectors
For mode-resolving detectors, the elements of the POVMs
(199  can be written as

4C2
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. . . 1
Hff:mE:O (1—7)mP%(p), (VTP €)= 5 ol ax]® exil — plax| 2],

8

2= mny(1—n" P%(e), (22 (&SI 5:6)= \/—a(Y X )exd =yl ax|?2],

m=

where P¥(¢) with k=2,3 is the projection onto the eigen- (>\;§|62(§j)Hizl)\;§>
space ofcl(g)ck(g) with eigenvaluem satisfying the com-

mutators[ P ¥(e),c/(£)]=0 and[P;¥(0),c(£)]=0 if the e 2kxt + || 20Y |~ piex)]
overlap ¢,0)=0. Herep represents the light mode that can 2\/—
be resolved by the detectors apd represents the unre- X exp — 5| ax|?/2],

solved light mode with ¢,01)=0. Then the light modes in
Eqg. (19) can be decomposed into two orthogonal modes as e
= XJQ+,_JQg and é=xo+uo; where we definey; (& §|03(§1)H ci(¢p5:é)

=(o, g]) *—41 (Qg g]) with |X |2+|*~]|2 , and « 1 5 12
=(0.8), n=(0;, g) with |k|?+|u|?=1 to represent the 25[2(1_’7|Xi| )+ la(Yj=nrxi)]
overlap(mode matchof two modes characterized ki and
&, with the modep that can be resolved by the detectors. X exd — n|ax|?/2],

Consequently, the annihilation and creation operators for a
glven mode can be decomposed in the same way resulting i ; §|c2(§J)HC202(§,)|)\ £)

c3(§) K C3(Q)+,u C3(Q§) A similar expression can be

obtained forcz(g"J) by usmg the given relations above. The — 377[2|X'|2 2—|aY,|>—37|ak|?)
4 j i Y
overlap of the modeeg and Qg can be found by using the
commutators given in Eq$5) and(6) as + 22 k+ x; Y|P+ (Y- 7IKXJ-*)|2)]
~ ~ —_ — 2
[Ea(07). )00 1= (05, 06)=(Y ;= k] (RE). X exl = nlax|%/2].
(23)

Equation(25) together with Eq(19) clearly shows that the

. A output state is dependent on how well the modes of the input
Glauber's displacement operator of the fohis;é) can  |ight heams(single photon and coherent statese matched

be decomposed d3(5;£)=D(8k;0)D(Su;0;), enabling  to the modes of each other and to the modes of the photon-

us to write a coherent state of the forfw;¢) as|6;é) counting detectors.

=D (8k;0)D(Su; Q§)|O> Moreover, from the definition of Using Eq.(25) in Egs. (17)—(19), and defining the nor-
the P°%(0) operator, we can easily show that Malization parameter as

[Pr3(0).D(sui0¢)]=0, and [P3(e).D'(suief)]=0. , , ,

The same commutation relation is valid for the displacement No=2 pillxil 2+l axl2(2= nlx; 1?1, (26)
operator of mode; . '

Using the elements of POVMs given in E@2) and the  he output density operat@,; and the probability of correct
transformations detection evenP,, can be, respectively, written as

DY(Su;0%)Ca(0f)D(Su;0¢)=Ca(0f) + S, . _
A f ‘ pout=Nol$ pi{llax2(1=7]x;|?) +[x;1?110)p,b(O]

DY(Su;0¢)Ch(0F)D(Su;0%)=Cl(o) +u* 6%,
esEe £ TR + &% a* xi|0)p b, (1) + arx] [15)b,6,(0

D'(su;0¢)D(Sui0)=D"(sx;0)D(\k;0) =1, o +lal?|1:¢)b,0,(1:¢)[} (27)
24
R and
whereZ is the identity operator, together with similar expres-
) - n : ; : 1
smns_forcz, \, and 0y, we can obtain the following ex Pyo=— 7Ny exil — mlax|?]. 28)
pression:

~ s ) Then the fidelity of the truncation process can be found using
<5, glno |5, E)ZGXF[_ 7]|aK| /2]1 (25) Eqs(Z]_)_(27) as
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(1- 77|aK|2)FX+|a|2|aK|2FY+2|a|2Fm+|aK|2 diagonal and o_ff-diagonal terms of 'Fhe density matrix as well
F= > 5 > , as the probability of proper detectid?,g. From Eqgs.(27)
(1+]a|))[(1— nax|*)T +2|ak|?] and (35), it is clearly seen that whep is set toZ, the am-

(29) plitude of the input coherent state;¢) is rescaled with the
amount of overlap betweefiand{ modes. This corresponds
to the case where an input of the fotmy,;¢) is used as the
input coherent state.

FX=2 pj|Xj|21 T\FZ pj|Yj|21 If the detectors cannot resolve the mogeof the one-
: : photon state, that isgj:gz hencey;=0, the output state
becomes independent of the photon counting process which
szz P ReL * Y jx;]. (30) results in a classical mixture of vacuum and one-photon
: states. However, whefi= Qé with k=0, the quantum state
For the photon-counting detectors that are matched to at the output will be vacuum because the detected photon
mode, that isg = ¢ implying k=1 ande:YJ* , fidelity of ~ will always originate from the input single-photon state.
the truncation process is found as

where we have used

2. Mode-unresolving detectors

B lal® (1+2]a|®) = [yl [1+]al?(1+7)] Since the detectors cannot resolve the mode, photons of
1+|al? 2|al?+ |yl 1— 7]a|?] ' any mode are registered by the detectors. In a one-photon
(31)  detection event, the registered photon could have been in

either of the modes. A no-photon detection event would im-

where we have defined the mode-match parameter, with thely that detector has not registered any photon of either of
help of Egs.(12) and(13), as the modes. Then the elements of the POVM can be written as

in Eq. (22) with P ¥(0) replaced byP ¥, resulting in

m?

vol*=2 pl(LELE)P=2 pilYi% (32 i}
%=, (1-7)"P%,
The density operator can be calculated by substituting Eqgs. 0 mz=o (1=
(32 in Egs.(27) and(26). For a pure one-photon state input
at thea, port of BS1, the density matrix simplifies into -~ .
' M= my(1-y" 1P, (36

m=0

[

- [lelP+a=glaPvl® ety
Pout=/V 1 2 | (33 R
*Yo | where P ¥ is the projection operator to the subspace with
whereN; =2| |2+ (1— 7|a|?)| y0|? and yo= (¢, £). photons in tota!.' Consequently, the' output density operator
If the detectors can resolve only the mode of the one@nd the probability of correct detection evéty; become
photon statep = {j, the expression for fidelity can be ob-
tained from Eq.(29) by substitutingx;=1 and x=Y. ;)wt:/\/glz pj{[1+|a|2(1—7])]|0)b 5. (O]
When the mode-mismatch parameteh/l(2=l—|yo|§) i v
equals one, the fidelity of truncation becomes #(&|?) * . .
independent of the detection efficiency, solely dependent on @Y7 |0)p, b, (1ij[+ @Y |1:¢)b,b,(0)
the intensity of the input coherent light to be truncated. With +a2L15¢)p. (14} (37)
increasing|«|?, fidelity of truncation decreases. However, 21701 bgA %3]
P will take the valuey/4 independent ofal|?. For the
) ! e and
special case ofh=1, the expression for fidelity simplifies to

2 1 2
|ay| PlOZZ 7Nz exp( — 5lal?), (38)

F=1- , (34)
1+]|al?

. . . ith N3=1+|a|?(2— 7). Then the fidelity of t ti
where the linear dependence of fidelity on mode—mlsmatcr\évé cé\lfgulateclc;r'o%n Egs){21) ;?d (3e7)|(;esl y offruncation can
parameter is clearly seen.

The density matrix of the truncated output state, when the 2 9 2 2
input one-photon state is a pure one, becomes _lal2+]al* (2= 7) [ yo"(2+]al)]

(1+|al®)[1+|al*(2-7)]

, (39
. (1 A=playl®  a*yg

Pout™/V 2 2| (39
ayo |yl

where we have usedy,|*==;p;|Y;|* from which the
amount of mode mismatch is calculated &g,|?=1
with No=1+(2—7)|ayel?>. The density matrix given in —|y,|2. For this type of detectors, one observes the follow-
Eq. (35 shows that mode-match parameter affects both théng.
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(i) The diagonal elements of the output density operator _ 1 ———m———e ] |

pout @re independent of the mode maft€h. This is because 08 . . 08, ar 0
the detectors are sensitive only to the total number of inci- g A

.65
. . . . 506 o T 1 06 /ok/”""//’o
dent photons, irrespective of their modes, while the correla@ ™| . .o ———

tion among the total photon numbers in paths cs, andb; ~ §04 T /@f’/o_&/
is not affected by the mode structures. e e 1
. - - . 302 g—ve——] 0.2 —
(i) The fidelity of the truncation process decreases lin-s _o.t%’/ow /ﬁ/“
early with increasing mode-mismat¢h,|2. This can be ex- % oz o4 06 08 1 % 02 04 06 08 1
plained as follows. When the mode of the single photon and@) Detector Efficiency (b) Detector Efficiency
that of the coherent light is not completely matched, we can, _
9 pietely FIG. 2. Effect of mode-mismatch parametes|? and the detec-

in principle, partlaAIIy tell whether the photon observecat tor efficiency » on the fidelity of state truncation using conven-
was coming fromb, or bs. This distinguishability destroys tional photon detectors. The intensities of input coherent light to be
the coherence betwedf) and|1) in the output statg,,,  truncated aréa) |«|*=0.4 and(b) |«|*=2.5.
and reduces the fidelity.

(i) The rate of decrease in the fidelity with respect to
| 1|2 is higher for higher values of at a constanta|?.

(iv) For |y1|?2<(1+|a|?/(2+]|a|?), increasingzn can
partially compensate the mode-mismatch effect on the fidelwhere N;=Z=;p;{2[4(1—x)+ n(2x—1)]+ | 77an|2} andx
ity and increase the value of fidelity, however, for higher =exp(—7a/%2). Then the fidelity of the truncation process
|v1]? values, increasingy causes slight decrease in fidelity. can be calculated using E(1) as

(i) and (iv) can be explained by the effect of detector
efficiency 7 on the|0)(0] component ofp,, given in Eq. Fe1_ 1 {4(1—x) +| a|2{2(4— 5)— 4x(2— 7)
(37). A lower value of 7 increases the weight of tH8)(0| (1+]|alP)N, K 7
component which is mode independent, and reduces the ef-
fect of the mode mismatch on the fidelity of the process. +|yol [ al?n*—4(1—x+ 7)1} (43

rameter

m

N
Pio= g-/\/ 4 (42)

If the intensity of the coherent light to be truncated dg?
=1, fidelity of the process for,=1 drops from 0.94 to 0.28
Conventional photodetectofCP9 that are available in  when|y;|? increases from zer¢perfect match between the
the market cannot perform the ideal measurement of photolight beams to one(complete mismatgh In the same way,
number counting. The avalanche process taking place in therobability of correct detection events drops fren0.35 to
photodetectors makes it difficult to discriminate between the~0.27. When the density matrix is analyzed for this condi-
presence of a single photon and many photons. The oution, it is seen that for the complete mismatch case, the off-
comes of such a detector can be either “yes,” when anydiagonal elements become zero and the output state is a clas-
number of photons are incident on the photodetector andical mixture of vacuum and one-photon states, |[@5®
cause a “click” or “no” when no photons are detected. +0.441)(1|.
Moreover, CPs cannot resolve the mode of the incoming In Fig. 2, we have depicted constant-fidelity contours as a
photon and thus show a “click” for photons belonging to any function of | ;|2 and » for state truncation using conven-
mode. Then for the QSD scheme, where there are lightional photon counters. It is seen that for low-intensity input
beams with different mode profiles incident on the detectorsgoherent light, the effect of the mismatch on the fidelity of
the measurement can be describedA]:g?, which is the same  the truncgt_ion process is more profound than t.hat.of the de-
_ _ - _ tector efficiencys. Effect of » on the value of fidelity and
as given in Eq(36), and byIl ? that can be written as the allowable range of mode mismatch is more significant for
higher values ofa|? than the smaller values. The amount of
mode mismatch that can be tolerated to achieve a predeter-
mined constant fidelityr is much higher for low-intensity
input coherent light than that of the high-intensity coherent
Consequently, the elements of the density operator for théght. This can be explained by the following argument. The
generated output state, afg, are found as mode mismatch has two effects: One is its effect on the
off-diagonal element of,,,, which drives the output state
- away from the desired one, E(O), by reducing the off-
pout:; pi{[2(2 = m) +[naY >~ 4x(1=1)]|0)p, b (O] diagonal part betweej®) and|1). This can also be viewed
as the mixing of the phase-flipped state|0)
+2776Y*Yr|0>b1b1<1;§j|+2ﬂan|1;§j>blbl<o| —a|1>)/\/l+|a|2. When |«|? is small, the phase-flipped
. state is close to the original one, so the mixing has only a
+4(1-%)|1;¢b, 0, (LGNS, (4)  small effect on the fidelity. However, wher|? is close to
unity, the flipped state is almost orthogonal to the original
and state, and the mixing reduces the fidelity significantly.

B. Conventional photodetectors

o

NP=1-M2=1- EO (1—m)™P%, (40)
m=
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The other effect of the mode mismatch is the tein|? o 1
of the coefficient of 0)(0| for po. This term has a signifi- £
cant effect whea|?>1. In such a region, the event of no 5 08
photon in mode, is a very rare event deviated far from the L 0.6
average, and hence its probability increases when the fluc- 3
tuation around the average increases. The mixing of a single N4t
photon to the coherent state at BS2 enhance the fluctuations, E
if the modes are well matched. As a result, under the condi- @® 0.2}
. ~ =
tion that no photon was found a$, we have a larger chance 0
of having no photon b,. Since the desired state approaches 0 1 2 3 4
|1) when|a|?>1, this effect reduces the fidelity. B

FIG. 3. Effect of the mode-mismatch parameter on the maxi-
mum fidelity of state preparation with detectors £ 0.5 and
=1.0 when| y,|? equals: a, Qperfectly matched modgsh, 0.50; c,

The quantum-scissors device that exploits projection syn2-7>; and d, 1.0complete mismatch The fidelity obtained fory
=1.0 is higher than the fidelity fop=0.5.

thesis can be used not only for state truncation but prepara-
tion of arbitrary superposition of vacuum and one pho-

ton states, NfxolO)+ L)), as well, where Ny | 8|, increasings does not cause a significant improvement
— 1\[ko|?>+ k1|2 This can be achieved with high fidelity '#!: Ncreasing, does use a signiticant improv

and n|0n|zer0| pr|obability by properly choosing the intensity 01‘0f the value of fidelity. The effect oy and |yy|? is more .

the input coherent light. State preparation using QSD sche rofc_;und yvhen the we|ght_ of one-photon component is
differs from the state truncation with the condition that in 90minant in the superposition, that is, whgs|>1.0. To

state truncation quantum state of the input coherent light iﬂ;ustrate this we consider that the preparation of states with

1Ay — 2_
not known, however, in state preparation the quantum stat | equals 0.2 and 5. Witlp=0.5 and|y,|*=0.5, the cor-
of the input coherent light is optimized to prepare a knownrespondlng maximized fidelities are found as 0.97 and 0.35.

desired state. When 7 is increased to 1.0, the fidelities will be 0.9@o

For photon-number-resolving detectors for which the elehangé and 0.50, respectively. Hc2>wever, foy=0.5, in-
ments of POVM are given in E436), the highest fidelity to  creéasing the mismatch pgramet%| from 0.5 to 0.8 will
the desired state may not necessarily be obtainedr at Cause adecrgase in the fidelities which will become 0.96 and
= i,/ ko due to both the nonunit detector efficiency and theQ-19, respectively. _
mode mismatch between the input states. So, we do nat fix  FOr the case of conventional photon counters as the de-
to be k; /1, but leave it as a parameter to be optimized fort€ctors, the expression of the optimizge| and F are too

the highest fidelity. Then the fidelity of this state preparation€ndthy and complicated to give here. To have an idea of the
state preparation with such detectors, here we give some nu-

IV. MODE-MISMATCH EFFECTS ON STATE
PREPARATION BY THE QSD

is found as . :
merical values. To prepare a state wijiB|=0.4, the opti-
1+ 2| aB|| yo|>+ | aByol2+ (1— 7)| a|? mum value for a| and the corresponding maximized fidelity
= 5 5 . (49 are 0.39 and 0.99 when modes are completely matched and
(1+[B1)[1+ (2= n)]al] 7=0.7. However, with increasing mode mismatch amount to

|v1/2=0.25 and 0.5, the optimizga| values decrease to 0.3

where we have assumed that arjfarg(s) with p and 0.21 with the corresponding fidelity values of 0.94 and

= K1/ ko. Optimum value of | that maximizes the fidelity
of state preparation for an arbitrafis found as

1.5m
la|= (|Bvol*—1)? 1 |Byol?—1 o,

CLABA vt 22— 2 (2= ] 218]yl22—n)

(49)

-
o

Optimized o)

It is seen that the increase #shifts the optimized value of
|a| to higher values. As the mode mismatch increases, the
optimized value ofla| decreases, and in the limiting case

[70l?=0 (|y1/?=1), it becomes zero independent pfand % 02 o0z o8 o8 4
| B]. Figures 3 and 4 show the results of this study for which ‘Mode Mismatch |;Y |2

it is understood that the relative weight of vacuum and one- !
photon state in the superposition is crucial for the amount of F|G. 4. Effect of the mode mismatch parameter on the opti-
mode mismatch that can be tolerated for state preparatiomized intensity of the input coherent light|? at which the fidelity
with high fidelity. If |3/<0.4, fidelity values ofF=0.9 for  of state preparation is maximized f8| equal to: a, 0.2; b, 0.5; c,
any amount of mode mismatch witl=0.5. In this range of 1.0; d, 2. A detection efficiency of=0.5 is assumed.
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0.90, respectively. Further increase in the amount of mode )

mismatch forces the optimizée| to become much closer to |©)= |O>i|0>s_|XJ d%ks d%k; dws dwi| 13k;,@;)i| 13K, 06)s

zero and the fidelity to the minimum value of 0.862. kpr -

=0.5, the desired state can still be prepared with a fidelity =~ x j d°k, dw,, Eé*’(kp,wp)J’ dt é(-eptoitogt

=0.90 if the mode mismatch is kept below 0.5 for which the to

optimized|a/| will lie in the range 0.2%|a|<0.38. Then it _

can be said that superposition states, for which the vacuum X f d3r K (r)e'kpkskir, (46)

component of the superposition is dominant, can be prepared

with high fidelity even with mode mismatch as much as

50%. However, when the one-photon component of the Statghere E(*)(k,,,w,) is the positive-frequency electric field

becomes dominant, the mode mismatch show a much highgfserator of the pumpy is proportional to the second-order

deteriorating effgct on the fidelity of state preparation. When,niinear susceptibility, an# (r) describes the volume of

| B|=2.5 (the weights of vacuum and one-photon states argne nonlinear crystal with a value of 1 inside the crystal and

interchangey an increase of mode mismatch from 0 t0 0.25( oside. The last integral corresponds to the Fourier trans-

causes the optimized value ¢k| to change from 1.68 t0  t5,m of K(r), which can be written a&(Ak) with Ak

1.97. This, in turn, causes the maximized fidelity to decr_ease__ ko—ks—k; and has the form of a sinc function. To sim-

from 0.71 to 0.58, which is a 18.3% decrease, much highepjity the calculations the following assumptions are made.

than the decrease of 4.26% for the cg8p=0.4. (i) Limit of the time integration in Eq(46) can be taken
from —oo to + because we are interested in the fields far

from the crystal, thus integral becomes an impulse function
V. MODE STRUCTURES OF FIELDS AND PRACTICAL 5(wp—ws— w;) expressing the energy conservation in the

CONSIDERATIONS process.

(i) Crystal volume is much larger than the spatial extent
of the pump pulse inside the crystal, thus sinc functions can
lge approximated by impulse function expressing perfect

At the input of the BS2, one of the interfering fields is the
input coherent light and the other field is either a single-
photon wave packet or vacuum. In case of vacuum, the mod h ichi
match is not a problem. However, when the field is singlep ase maiching. . .
photon then its mode must be matched as much as possible (|||).We _confme ourselves to a_smgle spatial mode, thus
to the mode of the input coherent light. It is seen in Eqslrepl'au_r;_%k mtegra!s by frequtency mtt;grals.t liaht
(41)—(43) that the fidelity of truncation process using con- (I¥t) € purr]nfp IS agt:)re ? ron% co Iereln lgnt. q
ventional photodetectors is a function of detector efficiency .A er straightforward but engt. y calculations, we end up
7, intensity| @|? of the coherent light to be truncated, and theWIth the following biphoton state:
overlap of the modes of one photon state and the coherent
state which is defined ds|*==;p;|Y;|> when one-photon |0)=|0);0)e—i
is in a mixed state of the form given in EfL1). Then in a ¢ s IX
practical scheme, whergis Iimited with the CPs being used % j E()(wet w)dwsdoi|1;0)|1;04)s. (47)
and|a|? can be set freely, an information on the value of P
|v0l? will enable the calculation of fidelity to evaluate the
efficiency and the quality of the truncation process. Once the , ) ) )
mode profiles of the input light beams are characterized cor- 1N detection of a photon in the idler channel projects the
rectly, their overlap can be found easily using Efg), and quantum state in th_e signal chanr_1e| into a one-photo_n state.
consequently, fidelity of the process can be calculated usin§"€ Photon in the idler channel is selected by spatial and
Eq. (43). Therefore, to have an idea of the bounds of modd'€duency filters _thqt determ[ne the mode structure of de-
matching and the physical phenomena affecting the procesEe,Cted photo_n, this, in turn, will affect tr_]e modglstructure of
the characterization of the mode structures of the cohererifl® Photon in the signal channel that is conditioned on the
state|a; £) and the single-photon staf#:¢) is crucial. c_ietectlon in the |(_1Ier channel. Here, since only a single spa-

In practice, the single-photon state input to the QSDt'aI_ m_ode is conmdergd we focus on the effegt of the charac-
scheme is prepared by a conditional measurement on a btlf_anstlcs of temporal filters on the process. Filtering operator
photon state generated by pulsed spontaneous parametsc Which selects the photon in the idler channel is written as
down-conversioiSPDQ. In this process, a pump beam con-
verts spontaneously, with a small probabil®{10 %), into
two photons with lower energy due to an interaction in a F_ , NERZ I
nonlinear crystal. The two photons, which are created almost 7 f doi F(w)]Lwii(Liai, 49
simultaneously within a time window that is given by the
inverse of the emitted bandwidth, constitute a highly en- o ] ]
tangled quantum state and are separated into two emissig¥ereF(w;) denotes the transmission function of the filter.
channels that are namedielfer andsignal Starting from the Thep the unnormalized state in the signal channel becomes
interaction Hamiltonian of SPDC, the biphoton state generTr;(F|¢){¢|), where trace is taken over idler states. Conse-
ated by a pulsed light can be written [@2-25 guently, the field in the signal channel can be found as
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IAJs:Tri(j:i“D)((PD dedw' w0 (0,0")
| vol?= (54)
fdw f(w,w)J dw {(w,w)

=|x|2f dosdo! do; F(0)ES ) (05t o))

(+) ’ . N
XEp"(wg+ i) 10 s 1w (49 as in Eq.(13).

If we assume that for each run of the experiment the mode
In a practical QSD application, this one-photon state is inpuprofile of the photon in the signal channel is the same and
to BS1 after which it interferes with the coherent state ateproducible, the mode-match parameter can be expressed by
BS2. We assume that a collimated pump field with a Gaussthe following simple expression:
ian spectral distribution

Py ! (55)
y = .
E(”(w):E ex _% (50) ° (a'g—l—ag) \/1+(0-i2)/(0§+0_§)

p 0 20—5

This expression gives the lower theoretical bound for the
temporal mode match for a QSD realization.

and a Gaussian spectral filter in the idler channel with an In practice, the data related with the filters are given as
intensity transmission function full-width-half-maximum(FWHM) of the intensity transmis-
sion function(intensity versus wavelengtland we measure
the FWHM of the intensity spectrum of the light field. There-
fore, we have to calculate the mode-match parameter using
these experimentally accessible data. Applying the narrow-
bandwidth limit o ,<w?, and o.<w, the relation be-

) ] tweeno, of the functions in Eqs(50)—(53) and the experi-
where /20, and 2o; are the 1¢ widths of the pump field mentally accessible bandwidths (gyv) With €=c,i,p is

and the intensity transmission function of the interferencegiven as o, = 1/In 2mc(AN, FWHM/)\E) with \, being the
filter n theoldler channel with the central frequenciesef  central wavelength of the spectrum. As a preliminary experi-
and wi'=w/2. Then using Eqsi49)—(51), the state in the  ment, for example, we have measured FWHM bandwidths as
signal channel is found 425] A\ pwhm=7 nm for a pulsed laser with central wavelength
Ac=790 nm andA\, rwymu=4 nm after it is frequency

(51)

g

— )02
F(wi)=Foex;{ - wl

AXCHAXE 2w w!)? doubled. With these values, the lower bound for mode match
;)s:FoJ dwsdw, ex;{— 12 22— — 52 = is found as|y,|25=0.64, 0.72, and 0.73, respectively, for
2(optof)  4op(optof) interference filters ok; rwpm=10 nm, 4 nm, and 1 nm used

in the idler channel. It is clearly seen that narrow-band fil-
tering in the idler channel is crucial for high values of mode
overlap. The overlap of the spectrum of the modes can be
wherel’ is a constant factor\ X;= wg— a)g-i- wio andAX,  further increased by using interference filter between BS2
is the same ad X; with wg replaced byw.. A comparison and the photon-counting detectors as in the scheme in Ref.
of Eq. (52) with Eq. (9) will reveal that the ternT’, multi-  [9]. In that case, the problem reduces to first filtering the
plied by the exponential corresponds to the mode profilésignal and the coherent light spectrum with the same narrow-
{(w,0') of the state in the signal channel. band filter and then calculate their overlap. Then for a filter
The light beam to be truncated in the QSD scheme is in &f the form(51) with a 1k width of 2o+, theoretical upper

coherent state and it is taken from the same pulsed lasé&ound for overlap is calculated as

before it is frequency doubled to obtain the pump pulse of
wg for SPDC. Then the coherent state to be truncated has a

®|1Lws) s 104, (52)

2V popp( L+ 2p10) VI+ 2t i)

2:
spectrum with a central frequency,= »%/2. Mode profile |7l 2u(1+4
. P . il e)
of the coherent light can be found by taking its correlation (pet pptdpmemp) \/ 1+
: : T +u,+4 )
function, which will yield (et pptdpepp

(56)
(w_wc)2+(w,_wc)2
po? (53 where py= (o /0¢)? with k=i,c,p. In the limiting cases:
Te (@ of—oo, this expression becomes equal to Eg8p), (b)
at—0, |yo|? approaches one. Using the numerical values
Assuming that the beam splitters and the propagation of thgiven above, ifo; = o, =10 nm is chosery,yo|?=0.83 is ob-
fields until they mix at BS2 do not change the mode profiletained. Foro;=o;=4 nm, | yo|?> becomes~0.86. With fil-
of the fields, the overlap of the one-photon state and théers with much narrower bandwidths,|? approaches unity.
coherent state can be found using Substituting | yo|?=0.86 in Eq.(43) with |«|?=1 and 7

f(w,w")=T exr{ -
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=0.5 gives a fidelity value oF =0.82. When|«|?=0.5 is its effect on the quality of the process we have developed the
used, a value oF =0.89 is obtained. pulse-mode projection-synthesis approach, characterized the
Although in the above discussion, we have analyzed onlynode of the interfering light beams, and derived the analyti-
the temporal mode matching, the expressions for the spatiglal expressions for the output density matrix and fidelity. The
mode matching can be derived using the same procedure. dtudy includes not only the mode mismatch between the in-
must also be noted that using very narrow frequency anderfering light beams but that between them and the photo-
spatial filters will result in attenuation of the fields incident detectors, as well. POVMs for the analysis are derived and
on the detectors causing a decrease in the rate of havingdiscussed. It has been understood that mode mismatch de-
correct detection. In a realistic experiment scheme, like thatroys the off-diagonal elements of the output density matrix
one we have proposed in R¢B], very good spatial mode strongly and in the limiting case of complete mismatch, off-
matching can be achieved by using single-spatial-mode fidiagonal elements become zero resulting in a classical mix-
bers after BS2 when the output modes are input to theure at the output. When the intensity of the input coherent
photon-counting detecto{26—28. A spatiotemporal mode light is much lower than one, mode mismatch and detector
matching value of~0.66 has been reported in a quantumefficiency do not have significant effect on the output of the
tomography of single-photon-state experim¢®b]. Rarity  process. When the intensity becomes higher, fidelity of the
et al. [28] have reported an experimentally obtained visibil- truncation process degrades rapidly with increasing mis-
ity of ~0.63 in an experimental scheme similar to our pro-match. The same behavior is shown to be valid for the prepa-
posal[9]. In another experiment performed to test Bell-typeration of arbitrary superpositions of vacuum and one-photon
inequality for Einstein-Podolsky-Rosen state in a homodynestates. It has been depicted that the intensity of the input
measurement, Kuzmickt al. [26] have reported visibility —coherent light can always be optimized to maximize the fi-
values greater than 0.8 by using narrow-band filters withdelity of the preparation of a desired superposition state.
bandwidths 3.5 nm and 6 nm. Within the range of reportedVVhen desired state has vacuum component dominant, then
experimental values fofyo|?, we can predict a fidelity of effect of mismatch is not significant, however, when one-
F=0.7 for state truncation and preparation using the QSIphoton state becomes dominant, fidelity is strongly affected
scheme whena|?<1.0, i.e., with|y,|?=0.66, »=0.5, and by mismatch. In low mode-mismatch cases, increasing detec-
|a|?=0.5, a fidelity value of~0.8 is calculated. Higher val- tion efficiency increases the fidelity of truncation, however,
ues of| |2 will reduce the attainable fidelity. when the mode mismatch becomes larger, the effect of de-
tector efficiency on the fidelity of the process decreases.

VI. CONCLUSION

A major obstacle for the practical realization of state trun-
cation and preparation using projection synthesis and
quantum-scissors device is the mode mismatch of the input We thank Takashi Yamamoto and Yu-xi Liu for stimulat-
light beams to the device. In order to study this problem andng discussions.
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