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Quantum projection synthesis can be used for phase-probability-distribution measurement and optical-state
truncation and preparation. The method relies on interfering optical light beams, which is a major challenge in
experiments performed by pulsed light sources. In the pulsed regime, the time frequency overlap of the
interfering light beams has a major impact on the efficiency of the method. In this paper, the pulse-mode
projection-synthesis approach is developed, the mode structures of interfering light beams are characterized,
and the effect of this overlap on the fidelity of optical-state truncation and preparation is investigated. By
introducing the positive-operator-valued measure for the detection events in the scheme, the effect of mode
mismatch between the photon-counting detectors and the incident light beams is also presented.
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I. INTRODUCTION

The accurate preparation of quantum states is a cru
task for reliable quantum-computation and quantu
information processing. Several schemes have been prop
for the generation of arbitrary states and their superpositio
One of the most developed systems of state preparation r
on conditional measurement, which brings one of the sub
systems of an entangled system to a predetermined state
measurement on the other subsystem. In these systems
tanglement of the two subsystems is achieved through lin
or nonlinear interactions@1–4#.

The projection-synthesisapproach, which has been orig
nally proposed to measure the optical phase probability
tribution by Barnett and Pegg@5#, exploits the mixing of two
states~one to be measured and the other a reference stat! at
a beam splitter and a measurement at the output states o
beam splitter@6,7#. This approach, despite its simplicity,
very flexible to be used for different applications such as
optical-state truncation@2,8–11#, preparation of superposi
tion and phase states@12–14#, and the teleportation of supe
position states@15#. The scheme, which is shown in Fig.
exploits projection synthesis and is often referred to as
quantum-scissors device~QSD! in the applications of
optical-state truncation and preparation. It relies on lin
optical elements~two beam splitters, BS1 and BS2!, a single-
photon state, a coherent state, and two photon-counting
tectors. In the first beam splitter~BS1!, the single-photon
state is mixed with vacuum and an entangled state of o
photon state and vacuum is formed at the output ports
BS1. The state at one of the output ports of BS1 is sent to
second beam splitter~BS2!, where it is mixed with the input
coherent light to be truncated. The photon-counting detec
placed at the output ports of BS2 count the number of p
tons incident on them after the action of BS2. The state at
other output port of BS1 is projected on a specific st
1050-2947/2002/66~5!/053809~12!/$20.00 66 0538
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among many others according to the number of phot
counted at the detectors. In the special case of one-ph
detection by one of the detectors and none by the other,
output is projected onto a superposition of vacuum and o
photon state which carries the relative phase and amplit
information of the vacuum and one-photon components
the input coherent state.

As is the case for any scheme, where the interferenc
differently processed light pulses takes place, the charac
ization of the optical modes of these light beams and th
effects on the outcome of the experiments is a major ch
lenge for the quantum-scissors device, too. Although it
been shown that the scheme is realizable with the cur
level of quantum optics technology@9#, the studies so far
have not considered the problem of mode matching. In
paper, we investigate projection synthesis for quantu
scissors device using the pulse-mode formalism and st
the effect of mode-mismatch problem on state truncation
preparation.

For the evaluation of the quality of the process, fidelity

FIG. 1. Schematic configuration of the quantum-scissors de
~QSD!. BS1,BS2 represent beam splitters; D2,D3 represent pho
counting detectors;ua&, u0&, and u1& represent coherent, vacuum
and single-photon states, respectively;z and j denote the mode

functions of the corresponding input fields; andr̂out is the truncated
output state. The desired output state is obtained by one-ph
detection at D2 which is denoted as ‘‘click’’ and no photon dete
tion ~‘‘no click’’ ! at D3.
©2002 The American Physical Society09-1
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ÖZDEMİR et al. PHYSICAL REVIEW A 66, 053809 ~2002!
the generated state to the desired one is used. Fidelity
commonly used measure of how close the two states are
is given by

F5Tr@ r̂outufdesired&^fdesiredu#, ~1!

wherer̂out and ufdesired& are the prepared and desired stat
respectively. When the prepared state is exactly the des
state thenF51, when these two states are orthogonalF
50. In practice, the value of fidelity will lie between 0 an
1, and its value will be a sign of the quality of the process.
general, the quality of the prepared state strongly depend
the details of the mixing~interference! process and the con
ditional measurement. When these two main phenomena
prone to errors, the generated state may considerably d
from the desired one.

The paper is organized as follows. In Sec. II, pulse-mo
formalism is introduced and the calculation of mode m
match is explicitly shown. The effects of mode mismat
between the interfering light beams and the photodetec
are studied in detail in Sec. III, and analytical expressio
which show the mismatch dependence of fidelity of st
truncation by projection synthesis are given. Then in Sec.
the results of the findings are discussed for preparation
arbitrary superposition of vacuum and one-photon state
discussion of some practical issues and the characteriza
of mode structures of fields in a practical scheme are
dressed in Sec. V. And finally, Sec. VI includes a brief su
mary and conclusion of this study.

II. THEORY OF MODE MISMATCH USING
PULSE-MODE FORMALISM

In the QSD scheme shown in Fig. 1, interference
vacuum and single-photon states at BS1~50:50! and that of
the entangled state of modeb̂2 mode and the coherent state
BS2 ~50:50! are the fundamental optical processes. T
scheme is usually analyzed in the single-mode descriptio
which a pair of annihilation and creation operators for ea
beam splitter is used. In that picture, the spatiotemporal c
acteristics of the states input to the beam splitters are
sumed to be matched perfectly at the beam splitters and
tectors. However, in practice, these interfering light bea
are prepared independently and thus may have diffe
modes. Moreover, mode definitions of the states at the ou
of BS2 and that of the measuring apparatus~photon counting
detectors! may be different. In these cases, the detection
the correct photon numbers does not mean the correct
ditioning ~projection! of the desired output state. In practic
experiments, high level of attention must be given to ma
the modes of the input states and the detectors as muc
possible for a successful state preparation. A good m
matching shows itself as high visibility and can be a ma
challenge in experiments.

In this section, we will introduce the pulse-mode forma
ism and present general expressions to calculate the ov
of two number states with different modes. It is assumed
the bandwidths of the light pulses are sufficiently small a
the variation of the beam-splitter transmission and reflec
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parameters within the pulse bandwidths can be neglected
this case, these parameters become independent of p
shape and solely reflect the effect of beam splitters; be
splitting will not affect the mode structure of the input ligh
pulses. Following Refs.@16–19#, we define creation and an
nihilation operators of light pulses in terms of the operat
of the monochromatic modes that form them. Then the c
ation operator for a pulse whose mode profile is described
j can be written as

â†~j!5E dv j~v!â†~v!, ~2!

wherej(v) is normalized as

iji2[E dvuj~v!u251. ~3!

Using the continuous-mode bosonic commutators

@ â~v!,â†~v8!#5d~v2v8!, ~4!

we can obtain the following commutator:

@ â~j!,â†~j!#51. ~5!

In order to analyze the effects of mode mismatch, we h
to look at the relation between the mode descriptions of c
ation operators. The commutator between two operators w
different mode descriptions ofj(v) andz(v) can be calcu-
lated as follows@18#:

@ â~j!,â†~z!#5F E dv j* ~v!â~v!,E dv8 z~v8!â†~v8!G
5E dvE dv8 j* ~v!z~v8!@ â~v!,â†~v8!#

5E dv j* ~v!z~v!5~j,z!, ~6!

which means that the commutator between operators of
two modes corresponds to the overlap of these two mod

The operators defined above can be used to cons
number and coherent states with a given mode descrip
simply by replacing the usual discrete bosonic operators w
the pulse-mode operators of the given mode description
the following, ut;j& represents a Fock state whent is a
number or a Roman alphabet, and a coherent state whent is
a Greek alphabet.j denotes the mode profile of the corr
sponding state. Then a number state of modej can be writ-
ten as

un;j&5
1

An!
@ â†~j!#nu0&, ~7!

and a coherent state as
9-2



qs

a

an

h

-
the
co-

SD
um
n

its
ase

her-

ed
een
n
tures
de
me
, is

te
e
n a
tput
en-
, in
sent
of
he

of
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ua;j&5exp@aâ†~j!2a* â~j!#u0&, ~8!

which satisfiesâ(v)ua;j&5aj(v)ua;j&. Here, we define
the mode-profile function as

g~v,v8!5Tr@ r̂â†~v!â~v8!#, ~9!

which gives g(v,v8)5z(v,v8)5z(v)z* (v8) for a one-
photon state r̂5u1;z&^1;zu, and g(v,v8)5j(v,v8)
5uau2j(v)j* (v8) for a single-mode coherent stater̂
5ua;j&^a;ju with *dv z(v,v)51 and *dv j(v,v)
5uau2.

The overlap^n;jun;z& of two pure number statesun;z&
and un;j& can be found by successive applications of E
~2!–~6!,

^n;jun;z&5)
k51

n E dvk j* ~vk!z~vk!5)
k51

n

~j,z!5~j,z!n,

~10!

from which the overlap of two pure single-photon states c
be found aŝ 1;ju1;z&5(j,z).

The overlap of a pure one-photon stateu1;j& and a mixed
one r̂1, which is defined as

r̂15(
j

pj u1;z j&^1;z j u ~11!

with ( j pj51, is found using Tr@ r̂1u1;j&^1;ju# as

^1;jur̂1u1;j&

5E E dv dv8(
j

pjz j* ~v8!j~v8!z j~v!j* ~v!

5E E dv dv8 z~v,v8!j~v,v8!

5(
j

pj u~j,z j !u2, ~12!

where z(v,v8)5( j pjz j (v)z j* (v8), and j(v,v8)
5j(v8)j* (v) are found using Eq.~9!.

The overlap between a mixed number stater̂1 as given in
Eq. ~11! and a pure coherent stateua;j& can be found first
writing the coherent state in the photon number basis
then applying the above procedure. This will result in
05380
.

n

d

, ~13!

with L5*dv j(v,v)*dv z(v,v)5uau2. Here we define
Eq. ~13! as the mode-match parameterug0u2 that satisfies
ug0u21ug1u251 with ug1u2 representing the mode-mismatc
parameter.

In the following sections, we will use the formalism de
veloped in this section to study the QSD scheme where
input fields are a mixed single-photon state and a pure
herent state.

III. ANALYSIS OF MODE MISMATCH IN THE QSD
SCHEME FOR STATE TRUNCATION

In an optical-state truncation experiment using the Q
scheme, an input coherent light with an unknown quant
state~intensity and phase! is truncated up to its one-photo
state generating, at a remote port, a superposition of
vacuum and one-photon state preserving the relative ph
and intensity between these components of the input co
ent light.

In this section, we study the state truncation in the puls
regime and investigate the effect of mode mismatch betw
the interfering light beams on the fidelity of the truncatio
process. We also consider the case where the mode struc
of the photon-counting detectors are different from the mo
structures of the light pulses incident on them. We assu
that the input coherent light, with unknown quantum state
at b̂3 input of BS2 and has a mode profile described byj.
The â1 input port of BS1 is fed with a single-photon sta
whose mode profile is given byz. First, we consider the cas
where the one-photon input to the device is prepared i
mixed state and find the general expressions for the ou
density operator and fidelity of the process. After the pres
tation of the general formulas, we will analyze the process
detail, for a single photon prepared in pure state and pre
the results of this study. In the evaluation of the efficiency
the truncation process in this section, we will impose t
condition that the output state should be a superposition
vacuum and one-photon statesN(u0&1au1&) in the same
mode of the input coherent lightua&.

With the single photon prepared in a mixed state,

r̂a1
5(

j
pj u1;z j&a1a1

^1;z j u ~14!
9-3
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with ( j pj51, and the coherent state asua;j&b3
, the overall

input to the QSD scheme becomes

r̂ in5(
j

pj u1;z j&a1a1
^1;z j u ^ u0&a2a2

^0u ^ ua;j&b3b3
^a;ju.

Then the state just before the photon counting can be wri
as r̂ (b1 ,c2 ,c3)5Û2

†Û1
†r̂ inÛ1Û2 where the actions of the beam

splitters BS1 and BS2 are represented by unitary opera
Û1 and Û2, respectively@9,13,20#.

The probability of detecting a ‘‘click’’ at D2 and ‘‘no
click’’ at D3 is given by the trace over the three modes,

P105Tr(b1 ,c2 ,c3)@ r̂ (b1 ,c2 ,c3)P̂1
c2P̂0

c3#, ~15!

with P̂1
c2 and P̂0

c3 being the elements of positive-operato
valued measures~POVMs!. In general, for a detector with
quantum efficiency ofh, the POVM can be written as

P̂n5 (
m5n

`

hn~12h!m2nCn
mum&^mu, ~16!

wheren andm are the number of detected and incident ph
tons, respectively@21#. Cn

m represent the binomial coeffi

cients, and(0
`P̂n51. For the sake of simplicity, we assum

zero mean dark count (n50) in this study.
Then the output state atb̂1, which is conditioned on this

detection is found by a partial trace,

r̂out5
1

P10
Tr(c2 ,c3)@ r̂ (b1 ,c2 ,c3)P̂1

c2P̂0
c3#. ~17!

Then the density operator is written as

r̂out5
1

P10
(

j
pj@d00

( j )u0&b1 b1
^0u1d01

( j )u0&b1 b1
^1;z j u

1d10
( j )u1;z j&b1 b1

^0u1d11
( j )u1;z j&b1 b1

^1;z j u#, ~18!

with the following elements:

d00
( j )5

1

4 c2
^l;juĉ2~z j !P̂1

c2ĉ2
†~z j !ul;j&c2 c3

^d;juP0
c3ud;j&c3

1
1

4c2
^l;juP̂1

c2ul;j&c2 c3
^d;juĉ3~z j !P̂0

c3ĉ3
†~z j !ud;j&c3

1
i

4c2
^l;juĉ2~z j !P̂1

c2ul;j&c2 c3
^d;juP̂0

c3ĉ3
†~z j !ud;j&c3

2
i

4c2
^l;juP̂1

c2ĉ2
†~z j !ul;j&c2 c3

^d;juĉ3~z j !P̂0
c3ud;j&c3

,

~19!
05380
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d01
( j )5

21

2A2
ĉ2

^l;juP̂1
c2ul;j&c2 c3

^d;juP̂0
c3ĉ3

†~z j !ud;j&c3

1
i

2A2
c2

^l;juP̂1
c2ĉ2

†~z j !ul;j&c2 c3
^d;juP̂0

c3ud;j&c3
,

d11
( j )5

1

2c2
^l;juP̂1

c2ul;j&c2 c3
^d;juP̂0

c3ud;j&c3
,

andd10
( j )5d01

( j )* , whered5a/A2 andl5 ia/A2 are obtained
through the action of the BS2 onua;j&b3

. The creation op-
erators associated with the outgoing modes of BS2 are
resented byĉk

† wherek52,3.

Then the fidelity of this output stater̂out to the desired
truncated state

ufdesired&5
u0&b1

1au1;j&b1

A11uau2
, ~20!

which has the same mode profilej of the input coherent
light, can be calculated, using Eq.~1!, as

F5

(
j

pj$d00
( j )12 Re@aY jd01

( j )#1d11
( j )uau2uY j u2%

~11uau2!(
j

pj~d00
( j )1d11

( j )!

, ~21!

where b1
^1;z j u1;j&b1

5(z j ,j)5Y j represents the overlap o
the mode of the output single-photon state and that of
desired output state. The effect of the overlap of the phot
counting detectors and the fields incident on them is c
tained in the expressions of the elements of the output d
sity matrix, which will be clear in the following subsection

State truncation using the QSD scheme is based on
ditional measurement. Therefore, the correct application
interpretation of photodetection process is essential to ev
ate this scheme. In the following subsections, we will pres
a comparative study of different photon-counting detecto
First, we will use ideal counters that can resolve the pho
number incident on them and then proceed with a reali
description of photodetection with conventional phot
counters.

A. Photon-number-resolving detectors

This type of detector can resolve the number of incid
photons. In the following, we will first analyze the schem
for detectors that are matched only to a specific mode
then present the elements of POVM for a more realistic c
where the mode of the incident light beam cannot be
solved.

1. Mode-resolving detectors

For mode-resolving detectors, the elements of the POV
can be written as
9-4
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P̂0
c35 (

m50

`

~12h!mP̂m
c3~% !,

P̂1
c25 (

m50

`

mh~12h!m21P̂m
c2~% !, ~22!

where P̂m
ck(%) with k52,3 is the projection onto the eigen

space ofĉk
†(%) ĉk(%) with eigenvaluem satisfying the com-

mutators@ P̂m
ck(%),ĉk

†(j)#50 and @ P̂m
ck(%),ĉk(j)#50 if the

overlap (j,%)50. Here% represents the light mode that ca
be resolved by the detectors and%' represents the unre
solved light mode with (%,%')50. Then the light modes in
Eq. ~19! can be decomposed into two orthogonal modes
z j5x j%1J j%z j

' and j5k%1m%j
' where we definex j

5(%,z j ), J j5(%z j

' ,z j ) with ux j u21uJ j u251, and k

5(%,j), m5(%j
' ,j) with uku21umu251 to represent the

overlap~mode match! of two modes characterized byz j and
j, with the mode% that can be resolved by the detecto
Consequently, the annihilation and creation operators fo
given mode can be decomposed in the same way resultin
ĉ3(j)5k* ĉ3(%)1m* ĉ3(%j

'). A similar expression can be

obtained forĉ2(z j ) by using the given relations above. Th
overlap of the modes%z j

' and%j
' can be found by using the

commutators given in Eqs.~5! and ~6! as

@ ĉ2~%z j

' !,ĉ2
†~%j

'!#5~%z j

' ,%j
'!5~Y j2kx j* !/~mJ j* !.

~23!

Glauber’s displacement operator of the formD̂(d;j) can
be decomposed asD̂(d;j)5D̂(dk;%)D̂(dm;%j

'), enabling
us to write a coherent state of the formud;j& as ud;j&
5D̂(dk;%)D̂(dm;%j

')u0&. Moreover, from the definition of

the P̂m
ck(%) operator, we can easily show th

@ P̂m
c3(%),D̂(dm;%j

')#50, and @ P̂m
c3(%),D̂†(dm;%j

')#50.
The same commutation relation is valid for the displacem
operator of mode%z j

' .

Using the elements of POVMs given in Eq.~22! and the
transformations

D̂†~dm;%j
'!ĉ3~%j

'!D̂~dm;%j
'!5 ĉ3~%j

'!1dm,

D̂†~dm;%j
'!ĉ3

†~%j
'!D̂~dm;%j

'!5 ĉ3
†~%j

'!1m* d* ,

D̂†~dm;%j
'!D̂~dm;%j

'!5D̂†~dk;% !D̂~lk;% !5Î,
~24!

whereÎ is the identity operator, together with similar expre
sions for ĉ2 , l, and%z j

' , we can obtain the following ex

pression:

^d;juP̂0
c3ud;j&5exp@2huaku2/2#, ~25!
05380
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^l;juP̂1
c2ul;j&5

1

2
huaku2 exp@2huaku2/2#,

^d;juĉ3~z j !P̂0
c3ud;j&5

1

A2
a~Y j2hkx j* !exp@2huaku2/2#,

^l;juĉ2~z j !P̂1
c2ul;j&

5
i

2A2
ha@2kx j* 1uaku2~Y j2hkx j* !#

3exp@2huaku2/2#,

^d;juĉ3~z j !P̂0
c3ĉ3

†~z j !ud;j&

5
1

2
@2~12hux j u2!1ua~Y j2hkx j* !u2#

3exp@2huaku2/2#,

^l;juĉ2~z j !P̂1
c2ĉ2

†~z j !ul;j&

5
1

4
h@2ux j u2~22uaY j u223huaku2!

1uau2~2uk1x jY j u21uak~Y j2hkx j* !u2!#

3exp@2huaku2/2#.

Equation~25! together with Eq.~19! clearly shows that the
output state is dependent on how well the modes of the in
light beams~single photon and coherent states! are matched
to the modes of each other and to the modes of the pho
counting detectors.

Using Eq.~25! in Eqs. ~17!–~19!, and defining the nor-
malization parameter as

N05(
j

pj@ ux j u21uaku2~22hux j u2!#, ~26!

the output density operatorr̂out and the probability of correc
detection eventP10 can be, respectively, written as

r̂out5N 0
21(

j
pj$@ uaku2~12hux j u2!1ux j u2#u0&b1 b1

^0u

1k* a* x j u0&b1 b1
^1;z j u1akx j* u1;z j&b1 b1

^0u

1uaku2u1;z j&b1 b1
^1;z j u% ~27!

and

P105
1

4
hN0 exp@2huaku2#. ~28!

Then the fidelity of the truncation process can be found us
Eqs.~21!–~27! as
9-5
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ÖZDEMİR et al. PHYSICAL REVIEW A 66, 053809 ~2002!
F5
~12huaku2!Gx1uau2uaku2GY12uau2Gm1uaku2

~11uau2!@~12huaku2!Gx12uaku2#
,

~29!

where we have used

Gx5(
j

pj ux j u2, GY5(
j

pj uY j u2,

Gm5(
j

pj Re@k* Y jx j #. ~30!

For the photon-counting detectors that are matched tj
mode, that is,%5j implying k51 andx j5Y j* , fidelity of
the truncation process is found as

F512
uau2

11uau2
~112uau2!2ug0u2@11uau2~11h!#

2uau21ug0u2@12huau2#
,

~31!

where we have defined the mode-match parameter, with
help of Eqs.~12! and ~13!, as

ug0u25(
j

pj u^1;ju1;z j&u25(
j

pj uY j u2. ~32!

The density operator can be calculated by substituting E
~32! in Eqs.~27! and~26!. For a pure one-photon state inp
at theâ1 port of BS1, the density matrix simplifies into

r̂out5N 1
21S uau21~12huau2!ug0u2 a* g0*

ag0 uau2 D , ~33!

whereN152uau21(12huau2)ug0u2 andg05(z,j).
If the detectors can resolve only the mode of the o

photon state,%5z j , the expression for fidelity can be ob
tained from Eq.~29! by substitutingx j51 and k5Y j .
When the mode-mismatch parameter (ug1u2512ug0u2)
equals one, the fidelity of truncation becomes 1/(11uau2)
independent of the detection efficiency, solely dependen
the intensity of the input coherent light to be truncated. W
increasinguau2, fidelity of truncation decreases. Howeve
P10 will take the valueh/4 independent ofuau2. For the
special case ofh51, the expression for fidelity simplifies t

F512
uag1u2

11uau2
, ~34!

where the linear dependence of fidelity on mode-misma
parameter is clearly seen.

The density matrix of the truncated output state, when
input one-photon state is a pure one, becomes

r̂out5N 2
21S 11~12h!uag0u2 a* g0*

ag0 uag0u2D , ~35!

with N2511(22h)uag0u2. The density matrix given in
Eq. ~35! shows that mode-match parameter affects both
05380
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diagonal and off-diagonal terms of the density matrix as w
as the probability of proper detectionP10. From Eqs.~27!
and ~35!, it is clearly seen that when% is set toz, the am-
plitude of the input coherent stateua;j& is rescaled with the
amount of overlap betweenj andz modes. This correspond
to the case where an input of the formuag0 ;z& is used as the
input coherent state.

If the detectors cannot resolve the modez j of the one-
photon state, that is,z j5%z j

' hencex j50, the output state

becomes independent of the photon counting process w
results in a classical mixture of vacuum and one-pho
states. However, whenj5%j

' with k50, the quantum state
at the output will be vacuum because the detected pho
will always originate from the input single-photon state.

2. Mode-unresolving detectors

Since the detectors cannot resolve the mode, photon
any mode are registered by the detectors. In a one-ph
detection event, the registered photon could have bee
either of the modes. A no-photon detection event would i
ply that detector has not registered any photon of eithe
the modes. Then the elements of the POVM can be writte
in Eq. ~22! with P̂m

ck(%) replaced byP̂m
ck , resulting in

P̂0
c35 (

m50

`

~12h!mP̂m
c3 ,

P̂1
c25 (

m50

`

mh~12h!m21P̂m
c2 , ~36!

whereP̂m
ck is the projection operator to the subspace withm

photons in total. Consequently, the output density opera
and the probability of correct detection eventP01 become

r̂out5N 3
21(

j
pj$@11uau2~12h!#u0&b1 b1

^0u

1a* Y j* u0&b1 b1
^1;z j u1aY j u1;z j&b1 b1

^0u

1uau2u1;z j&b1 b1
^1;z j u% ~37!

and

P105
1

4
hN3 exp~2huau2!, ~38!

with N3511uau2(22h). Then the fidelity of truncation can
be calculated from Eqs.~21! and ~37! as

F512
uau2@21uau2~22h!2ug0u2~21uau2!#

~11uau2!@11uau2~22h!#
, ~39!

where we have usedug0u25( j pj uY j u2 from which the
amount of mode mismatch is calculated asug1u251
2ug0u2. For this type of detectors, one observes the follo
ing.
9-6
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~i! The diagonal elements of the output density opera
r̂out are independent of the mode matchY j . This is because
the detectors are sensitive only to the total number of in
dent photons, irrespective of their modes, while the corre
tion among the total photon numbers in pathsĉ2 , ĉ3, andb̂1
is not affected by the mode structures.

~ii ! The fidelity of the truncation process decreases
early with increasing mode-mismatchug1u2. This can be ex-
plained as follows. When the mode of the single photon a
that of the coherent light is not completely matched, we c
in principle, partially tell whether the photon observed atĉ2

was coming fromb̂2 or b̂3. This distinguishability destroys
the coherence betweenu0& and u1& in the output stater̂out,
and reduces the fidelity.

~iii ! The rate of decrease in the fidelity with respect
ug1u2 is higher for higher values ofh at a constantuau2.

~iv! For ug1u2<(11uau2)/(21uau2), increasingh can
partially compensate the mode-mismatch effect on the fi
ity and increase the value of fidelity, however, for high
ug1u2 values, increasingh causes slight decrease in fidelity

~iii ! and ~iv! can be explained by the effect of detect
efficiency h on the u0&^0u component ofr̂out given in Eq.
~37!. A lower value ofh increases the weight of theu0&^0u
component which is mode independent, and reduces the
fect of the mode mismatch on the fidelity of the process.

B. Conventional photodetectors

Conventional photodetectors~CPs! that are available in
the market cannot perform the ideal measurement of pho
number counting. The avalanche process taking place in
photodetectors makes it difficult to discriminate between
presence of a single photon and many photons. The
comes of such a detector can be either ‘‘yes,’’ when a
number of photons are incident on the photodetector
cause a ‘‘click’’ or ‘‘no’’ when no photons are detected
Moreover, CPs cannot resolve the mode of the incom
photon and thus show a ‘‘click’’ for photons belonging to a
mode. Then for the QSD scheme, where there are l
beams with different mode profiles incident on the detecto

the measurement can be described byP̂0
c3, which is the same

as given in Eq.~36!, and byP̂1
c2 that can be written as

P̂1
c2512P̂0

c2512 (
m50

`

~12h!mP̂m
c2 . ~40!

Consequently, the elements of the density operator for
generated output state, andP10 are found as

r̂out5(
j

pj$@2~22h!1uhaY j u224x~12h!#u0&b1 b1
^0u

12ha* Y j* u0&b1 b1
^1;z j u12haY j u1;z j&b1 b1

^0u

14~12x!u1;z j&b1 b1
^1;z j u%N 4

21 , ~41!

and
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P105
x

8
N4 , ~42!

whereN45( j pj$2@4(12x)1h(2x21)#1uhaY j u2% andx
5exp(2huau2/2). Then the fidelity of the truncation proces
can be calculated using Eq.~21! as

F512
1

~11uau2!N4

ˆ4~12x!1uau2$2~42h!24x~22h!

1ug0u2@ uau2h224~12x1h!#%‰. ~43!

If the intensity of the coherent light to be truncated isuau2
51, fidelity of the process forh51 drops from 0.94 to 0.28
when ug1u2 increases from zero~perfect match between th
light beams! to one~complete mismatch!. In the same way,
probability of correct detection events drops from;0.35 to
;0.27. When the density matrix is analyzed for this con
tion, it is seen that for the complete mismatch case, the
diagonal elements become zero and the output state is a
sical mixture of vacuum and one-photon states, 0.56u0&^0u
10.44u1&^1u.

In Fig. 2, we have depicted constant-fidelity contours a
function of ug1u2 and h for state truncation using conven
tional photon counters. It is seen that for low-intensity inp
coherent light, the effect of the mismatch on the fidelity
the truncation process is more profound than that of the
tector efficiencyh. Effect of h on the value of fidelity and
the allowable range of mode mismatch is more significant
higher values ofuau2 than the smaller values. The amount
mode mismatch that can be tolerated to achieve a pred
mined constant fidelityF is much higher for low-intensity
input coherent light than that of the high-intensity cohere
light. This can be explained by the following argument. T
mode mismatch has two effects: One is its effect on
off-diagonal element ofr̂out, which drives the output state
away from the desired one, Eq.~20!, by reducing the off-
diagonal part betweenu0& and u1&. This can also be viewed
as the mixing of the phase-flipped state (u0&
2au1&)/A11uau2. When uau2 is small, the phase-flipped
state is close to the original one, so the mixing has onl
small effect on the fidelity. However, whenuau2 is close to
unity, the flipped state is almost orthogonal to the origin
state, and the mixing reduces the fidelity significantly.

FIG. 2. Effect of mode-mismatch parameterug1u2 and the detec-
tor efficiency h on the fidelity of state truncation using conve
tional photon detectors. The intensities of input coherent light to
truncated are~a! uau250.4 and~b! uau252.5.
9-7
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The other effect of the mode mismatch is the termuY j u2

of the coefficient ofu0&^0u for r̂out. This term has a signifi-
cant effect whenuau2@1. In such a region, the event of n
photon in modeĉ2 is a very rare event deviated far from th
average, and hence its probability increases when the
tuation around the average increases. The mixing of a si
photon to the coherent state at BS2 enhance the fluctuat
if the modes are well matched. As a result, under the co
tion that no photon was found atĉ2, we have a larger chanc
of having no photon atb̂2. Since the desired state approach
u1& when uau2@1, this effect reduces the fidelity.

IV. MODE-MISMATCH EFFECTS ON STATE
PREPARATION BY THE QSD

The quantum-scissors device that exploits projection s
thesis can be used not only for state truncation but prep
tion of arbitrary superposition of vacuum and one ph
ton states, Nk@k0u0&1k1u1&], as well, where Nk

51/Auk0u21uk1u2. This can be achieved with high fidelit
and nonzero probability by properly choosing the intensity
the input coherent light. State preparation using QSD sch
differs from the state truncation with the condition that
state truncation quantum state of the input coherent ligh
not known, however, in state preparation the quantum s
of the input coherent light is optimized to prepare a kno
desired state.

For photon-number-resolving detectors for which the e
ments of POVM are given in Eq.~36!, the highest fidelity to
the desired state may not necessarily be obtained aa
5k1 /k0 due to both the nonunit detector efficiency and t
mode mismatch between the input states. So, we do not fia
to bek1 /k0 but leave it as a parameter to be optimized
the highest fidelity. Then the fidelity of this state preparat
is found as

F5
112uabuug0u21uabg0u21~12h!uau2

~11ubu2!@11~22h!uau2#
, ~44!

where we have assumed that arg(a)5arg(b) with b
5k1 /k0. Optimum value ofuau that maximizes the fidelity
of state preparation for an arbitraryb is found as

uau5F ~ ubg0u221!2

4ubu2ug0u4~22h!2
1

1

~22h!G 1/2

1
ubg0u221

2ubuug0u2~22h!
.

~45!

It is seen that the increase inh shifts the optimized value o
uau to higher values. As the mode mismatch increases,
optimized value ofuau decreases, and in the limiting cas
ug0u250 (ug1u251), it becomes zero independent ofh and
ubu. Figures 3 and 4 show the results of this study for wh
it is understood that the relative weight of vacuum and o
photon state in the superposition is crucial for the amoun
mode mismatch that can be tolerated for state prepara
with high fidelity. If ubu<0.4, fidelity values ofF>0.9 for
any amount of mode mismatch withh50.5. In this range of
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ubu, increasingh does not cause a significant improveme
of the value of fidelity. The effect ofh and ug1u2 is more
profound when the weight of one-photon component
dominant in the superposition, that is, whenubu.1.0. To
illustrate this we consider that the preparation of states w
ubu equals 0.2 and 5. Withh50.5 andug1u250.5, the cor-
responding maximized fidelities are found as 0.97 and 0.
When h is increased to 1.0, the fidelities will be 0.97~no
change! and 0.50, respectively. However, forh50.5, in-
creasing the mismatch parameterug1u2 from 0.5 to 0.8 will
cause a decrease in the fidelities which will become 0.96
0.15, respectively.

For the case of conventional photon counters as the
tectors, the expression of the optimizeduau and F are too
lengthy and complicated to give here. To have an idea of
state preparation with such detectors, here we give some
merical values. To prepare a state withubu50.4, the opti-
mum value foruau and the corresponding maximized fideli
are 0.39 and 0.99 when modes are completely matched
h50.7. However, with increasing mode mismatch amoun
ug1u250.25 and 0.5, the optimizeduau values decrease to 0.
and 0.21 with the corresponding fidelity values of 0.94 a

FIG. 3. Effect of the mode-mismatch parameter on the ma
mum fidelity of state preparation with detectors ofh50.5 andh
51.0 whenug1u2 equals: a, 0~perfectly matched modes!; b, 0.50; c,
0.75; and d, 1.0~complete mismatch!. The fidelity obtained forh
51.0 is higher than the fidelity forh50.5.

FIG. 4. Effect of the mode mismatch parameter on the o
mized intensity of the input coherent lightuau2 at which the fidelity
of state preparation is maximized forubu equal to: a, 0.2; b, 0.5; c
1.0; d, 2. A detection efficiency ofh50.5 is assumed.
9-8
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0.90, respectively. Further increase in the amount of m
mismatch forces the optimizeduau to become much closer t
zero and the fidelity to the minimum value of 0.862. Forh
50.5, the desired state can still be prepared with a fide
>0.90 if the mode mismatch is kept below 0.5 for which t
optimizeduau will lie in the range 0.21<uau<0.38. Then it
can be said that superposition states, for which the vacu
component of the superposition is dominant, can be prep
with high fidelity even with mode mismatch as much
50%. However, when the one-photon component of the s
becomes dominant, the mode mismatch show a much hi
deteriorating effect on the fidelity of state preparation. Wh
ubu52.5 ~the weights of vacuum and one-photon states
interchanged!, an increase of mode mismatch from 0 to 0.
causes the optimized value ofuau to change from 1.68 to
1.97. This, in turn, causes the maximized fidelity to decre
from 0.71 to 0.58, which is a 18.3% decrease, much hig
than the decrease of 4.26% for the caseubu50.4.

V. MODE STRUCTURES OF FIELDS AND PRACTICAL
CONSIDERATIONS

At the input of the BS2, one of the interfering fields is th
input coherent light and the other field is either a sing
photon wave packet or vacuum. In case of vacuum, the m
match is not a problem. However, when the field is sin
photon then its mode must be matched as much as pos
to the mode of the input coherent light. It is seen in E
~41!–~43! that the fidelity of truncation process using co
ventional photodetectors is a function of detector efficien
h, intensityuau2 of the coherent light to be truncated, and t
overlap of the modes of one photon state and the cohe
state which is defined asug0u25( j pj uY j u2 when one-photon
is in a mixed state of the form given in Eq.~11!. Then in a
practical scheme, whereh is limited with the CPs being use
and uau2 can be set freely, an information on the value
ug0u2 will enable the calculation of fidelity to evaluate th
efficiency and the quality of the truncation process. Once
mode profiles of the input light beams are characterized
rectly, their overlap can be found easily using Eq.~13!, and
consequently, fidelity of the process can be calculated u
Eq. ~43!. Therefore, to have an idea of the bounds of mo
matching and the physical phenomena affecting the proc
the characterization of the mode structures of the cohe
stateua;j& and the single-photon stateu1;z& is crucial.

In practice, the single-photon state input to the QS
scheme is prepared by a conditional measurement on a
photon state generated by pulsed spontaneous param
down-conversion~SPDC!. In this process, a pump beam co
verts spontaneously, with a small probabilityO(1024), into
two photons with lower energy due to an interaction in
nonlinear crystal. The two photons, which are created alm
simultaneously within a time window that is given by th
inverse of the emitted bandwidth, constitute a highly e
tangled quantum state and are separated into two emis
channels that are named asidler andsignal. Starting from the
interaction Hamiltonian of SPDC, the biphoton state gen
ated by a pulsed light can be written as@22–25#
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uw&5u0& i u0&s2 ixE d3ks d3ki dvs dv i u1;k i ,v i& i u1;ks ,vs&s

3E d3kp dvp Ep
(1)~kp ,vp!E

t0

`

dt ei (2vp1v i1vs)t

3E d3r K ~r !ei (kp2ks2ki )r, ~46!

where Ep
(1)(kp ,vp) is the positive-frequency electric fiel

operator of the pump,x is proportional to the second-orde
nonlinear susceptibility, andK(r ) describes the volume o
the nonlinear crystal with a value of 1 inside the crystal a
0 outside. The last integral corresponds to the Fourier tra
form of K(r ), which can be written asK(Dk) with Dk
5kp2ks2k i and has the form of a sinc function. To sim
plify the calculations the following assumptions are made

~i! Limit of the time integration in Eq.~46! can be taken
from 2` to 1` because we are interested in the fields
from the crystal, thus integral becomes an impulse funct
d(vp2vs2v i) expressing the energy conservation in t
process.

~ii ! Crystal volume is much larger than the spatial exte
of the pump pulse inside the crystal, thus sinc functions
be approximated by impulse function expressing perf
phase matching.

~iii ! We confine ourselves to a single spatial mode, th
replacingk integrals by frequency integrals.

~iv! The pump is a pure strong coherent light.
After straightforward but lengthy calculations, we end

with the following biphoton state:

uw&5u0& i u0&s2 ix

3E Ep
(1)~vs1v i !dvs dv i u1;v i& i u1;vs&s . ~47!

The detection of a photon in the idler channel projects
quantum state in the signal channel into a one-photon s
The photon in the idler channel is selected by spatial a
frequency filters that determine the mode structure of
tected photon, this, in turn, will affect the mode structure
the photon in the signal channel that is conditioned on
detection in the idler channel. Here, since only a single s
tial mode is considered we focus on the effect of the char
teristics of temporal filters on the process. Filtering opera
F̂i which selects the photon in the idler channel is written

F̂i5E dv i F~v i !u1;v i& i i ^1;v i u, ~48!

whereF(v i) denotes the transmission function of the filte
Then the unnormalized state in the signal channel beco
Tri(F̂i uw&^wu), where trace is taken over idler states. Con
quently, the field in the signal channel can be found as
9-9
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r̂s5Tri~F̂i uw&^wu!

5uxu2E dvs dvs8 dv i F~v i !Ep
(2)~vs1v i !

3Ep
(1)~vs81v i !u1;vs&sŝ 1;vs8u. ~49!

In a practical QSD application, this one-photon state is in
to BS1 after which it interferes with the coherent state
BS2. We assume that a collimated pump field with a Gau
ian spectral distribution

Ep
(1)~v!5E0 expF2

~v2vp
o!2

2sp
2 G ~50!

and a Gaussian spectral filter in the idler channel with
intensity transmission function

F~v i !5F0 expF2
~v2v i

o!2

s i
2 G , ~51!

where 2A2sp and 2s i are the 1/e widths of the pump field
and the intensity transmission function of the interferen
filter in the idler channel with the central frequencies ofvp

o

and v i
o5vp

o/2. Then using Eqs.~49!–~51!, the state in the
signal channel is found as@25#

r̂s5G0E dvs dvs8 expF2
DX1

21DX2
2

2~sp
21s i

2!
2

s i
2~vs2vs8!2

4sp
2~sp

21s i
2!

G
^ u1;vs&sŝ 1;vs8u, ~52!

whereG0 is a constant factor,DX15vs2vp
01v i

0 andDX2

is the same asDX1 with vs replaced byvs8 . A comparison
of Eq. ~52! with Eq. ~9! will reveal that the termG0 multi-
plied by the exponential corresponds to the mode pro
z(v,v8) of the state in the signal channel.

The light beam to be truncated in the QSD scheme is
coherent state and it is taken from the same pulsed l
before it is frequency doubled to obtain the pump pulse
vp

0 for SPDC. Then the coherent state to be truncated h
spectrum with a central frequencyvc5vp

0/2. Mode profile
of the coherent light can be found by taking its correlati
function, which will yield

j~v,v8!5G1 expF2
~v2vc!

21~v82vc!
2

2sc
2 G . ~53!

Assuming that the beam splitters and the propagation of
fields until they mix at BS2 do not change the mode pro
of the fields, the overlap of the one-photon state and
coherent state can be found using
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ug0u25

E dv dv8 j~v,v8!z~v,v8!

E dv j~v,v!E dv z~v,v!

~54!

as in Eq.~13!.
If we assume that for each run of the experiment the m

profile of the photon in the signal channel is the same a
reproducible, the mode-match parameter can be expresse
the following simple expression:

ug0u25
2scsp

~sc
21sp

2!

1

A11~s i
2!/~sc

21sp
2!

. ~55!

This expression gives the lower theoretical bound for
temporal mode match for a QSD realization.

In practice, the data related with the filters are given
full-width-half-maximum~FWHM! of the intensity transmis-
sion function~intensity versus wavelength! and we measure
the FWHM of the intensity spectrum of the light field. Ther
fore, we have to calculate the mode-match parameter u
these experimentally accessible data. Applying the narr
bandwidth limit s i ,p!v i ,p

o and sc!vc , the relation be-
tweens, of the functions in Eqs.~50!–~53! and the experi-
mentally accessible bandwidths (l,,FWHM) with ,5c,i ,p is
given as s,5A1/ln 2pc(Dl,,FWHM /l,

2) with l, being the
central wavelength of the spectrum. As a preliminary expe
ment, for example, we have measured FWHM bandwidths
Dlc,FWHM57 nm for a pulsed laser with central waveleng
lc5790 nm andDlp,FWHM54 nm after it is frequency
doubled. With these values, the lower bound for mode ma
is found asug0uLB

2 .0.64, 0.72, and 0.73, respectively, fo
interference filters ofl i ,FWHM510 nm, 4 nm, and 1 nm use
in the idler channel. It is clearly seen that narrow-band
tering in the idler channel is crucial for high values of mo
overlap. The overlap of the spectrum of the modes can
further increased by using interference filter between B
and the photon-counting detectors as in the scheme in
@9#. In that case, the problem reduces to first filtering t
signal and the coherent light spectrum with the same narr
band filter and then calculate their overlap. Then for a fil
of the form ~51! with a 1/e width of 2s f , theoretical upper
bound for overlap is calculated as

ug0u25
2Amcmp~112mc!A112~mp1m i !

~mc1mp14mcmp!A11
2m i~114mc!

~mc1mp14mcmp!

,

~56!

where mk5(sk /s f)
2 with k5 i ,c,p. In the limiting cases:

~a! s f→`, this expression becomes equal to Eq.~55!, ~b!
s f→0, ug0u2 approaches one. Using the numerical valu

given above, ifs f5s i510 nm is chosen,ug0u2.0.83 is ob-
tained. Fors f5s i54 nm, ug0u2 becomes;0.86. With fil-
ters with much narrower bandwidths,ug0u2 approaches unity.
Substituting ug0u250.86 in Eq. ~43! with uau251 and h
9-10
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50.5 gives a fidelity value ofF.0.82. Whenuau250.5 is
used, a value ofF.0.89 is obtained.

Although in the above discussion, we have analyzed o
the temporal mode matching, the expressions for the sp
mode matching can be derived using the same procedur
must also be noted that using very narrow frequency
spatial filters will result in attenuation of the fields incide
on the detectors causing a decrease in the rate of havi
correct detection. In a realistic experiment scheme, like
one we have proposed in Ref.@9#, very good spatial mode
matching can be achieved by using single-spatial-mode
bers after BS2 when the output modes are input to
photon-counting detectors@26–28#. A spatiotemporal mode
matching value of;0.66 has been reported in a quantu
tomography of single-photon-state experiment@25#. Rarity
et al. @28# have reported an experimentally obtained visib
ity of ;0.63 in an experimental scheme similar to our p
posal@9#. In another experiment performed to test Bell-ty
inequality for Einstein-Podolsky-Rosen state in a homod
measurement, Kuzmichet al. @26# have reported visibility
values greater than 0.8 by using narrow-band filters w
bandwidths 3.5 nm and 6 nm. Within the range of repor
experimental values forug0u2, we can predict a fidelity of
F>0.7 for state truncation and preparation using the Q
scheme whenuau2<1.0, i.e., withug0u250.66, h50.5, and
uau250.5, a fidelity value of;0.8 is calculated. Higher val
ues ofuau2 will reduce the attainable fidelity.

VI. CONCLUSION

A major obstacle for the practical realization of state tru
cation and preparation using projection synthesis
quantum-scissors device is the mode mismatch of the in
light beams to the device. In order to study this problem a
te
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its effect on the quality of the process we have developed
pulse-mode projection-synthesis approach, characterized
mode of the interfering light beams, and derived the anal
cal expressions for the output density matrix and fidelity. T
study includes not only the mode mismatch between the
terfering light beams but that between them and the pho
detectors, as well. POVMs for the analysis are derived
discussed. It has been understood that mode mismatch
stroys the off-diagonal elements of the output density ma
strongly and in the limiting case of complete mismatch, o
diagonal elements become zero resulting in a classical m
ture at the output. When the intensity of the input coher
light is much lower than one, mode mismatch and detec
efficiency do not have significant effect on the output of t
process. When the intensity becomes higher, fidelity of
truncation process degrades rapidly with increasing m
match. The same behavior is shown to be valid for the pre
ration of arbitrary superpositions of vacuum and one-pho
states. It has been depicted that the intensity of the in
coherent light can always be optimized to maximize the
delity of the preparation of a desired superposition sta
When desired state has vacuum component dominant,
effect of mismatch is not significant, however, when on
photon state becomes dominant, fidelity is strongly affec
by mismatch. In low mode-mismatch cases, increasing de
tion efficiency increases the fidelity of truncation, howev
when the mode mismatch becomes larger, the effect of
tector efficiency on the fidelity of the process decreases.
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@13# Ş.K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto, J

Mod. Opt.49, 977 ~2002!.
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