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Realization of symmetric sharing of entanglement in semiconductor microcrystallites
coupled by a cavity field
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The entanglement of excitonic states in a syster gpatially separated semiconductor microcrystallites is
investigated. The interaction among the different microcrystallites is mediated by a single-mode cavity field. It
is found that the symmetric sharing of the entanglenfer@asured by the concurrendetween any pair of the
excitonic state wittN qubits defined by the number stateacuum and a single-exciton states the coherent
states(odd and even coherent statesan be prepared by the cavity field for this system.
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[. INTRODUCTION The maximum degree of bipartite entanglement, measured in
the concurrence, between any pair of qubits is bound By 2/
Quantum entanglement plays an important role in thedere, we will investigate a physical realization of this maxi-
quantum communication and quantum-information processmally possible bipartite entanglement.
ing. One can implement quantum teleportation of a given Within the past few years, advances in microfabrication
state from one place to another by virtue of the entangledechnology have allowed researchers to create unique quan-
state[1,2]. Entanglement among many particles is essentiafum confinement, and thereby have opened up a new realm
for most quantum communication schemes. The simpleé?f fundamental physics. As Iow—dlmenspnal semliconductor
generalization of the entangled states for more than two paStructures, quantum dots attract a considerable interest be-
ticles is the so-called Greenberger-Horne-ZeilinggHz) cause of the_lr ator_nllke properties. They can lead to n0\_/el
state[3]. The entanglement of the nearest-neighbor pairs fo _ptoelectronlc devices that can be applied o the emerging
an infinite collection of qubits arranged in a line was studied lelds of.quantum cqmputmbB,9] and quantum-information
by Wootters[4]. For a finite system, Koasl al. [5] inves- processing10,11. It is well known that Coulomb-correlated

. . ) lectron-hole pairs called excitons can be optically generated
tigated the completely symmetric sharing of entanglemengnd controlled in a single d¢fi.2], and thus can be used to
for an arbitrary pair ofN qubits. Du studied not only the '

: . L store the quantum information and realize quantum comput-
symmetric sharing of the pairwise entanglement but also thg,;113). on the other hand, a significant fraction of quantum

nonsymmetric sharing in a system of qubits [6]. The  ;omputing and information schemes relies on the strong-
nearest-neighbor entanglementMfubits in a ring configu- coupling regime of the cavity quantum electrodynamics
ration was also studied and further a concrete physical SySQED). The observed Rabi oscillations of excitons in a single
tem of N spin- particles interacting via the Heisenberg an- quantum dof14] suggest the possibility that the quantum dot
tiferromagnetic Hamiltonian was givefv]. The question cavity QED will be realized in the near future. However, an
arises whether it is possible or not to prepare states with thessential feature of a quantum dot is that the electronic en-
symmetric sharing of entanglement in some real systemergy levels are completely quantized, so the behavior of ex-
within the present-day technology. And, if yes, how to citons deviates from the bosonic statistics. In the present pa-
achieve such entangled states? per, we will consider some slightly bigger semiconductor
Any many-body system with defined qubits, if set in a microstructures, such as the microcrystallites. In this case,
properly chosen state, will evolve through states containinghe area of the microcrystallite is larger than that of the Bohr
entangled qubits. Similarly, most of the ground states of reatadius of the exciton, and the behavior of the excitons with
systems contain entangled states. However, for the purposésv excitation are the same as that of the bosonic particles.
of quantum computation and quantum information, the mosChuanget al. [15] showed that the quantum code of the
important aspects of quantum entanglement are espe6igally bosonic mode enables a more efficient error correction. So,
deterministic control over the quantum coherence of statethe mode of the excitons offers a possible physical imple-
and (ii) time evolution and occurrence of maximally en- mentation for such bosonic-mode coding. We propose a pos-
tangled states. In this study, we focus on the latter topicsible scheme to prepare the entangled excitonic states for the
specifically, on the generation of the maximal pairwise en-symmetric sharing in the system of microcrystallites by
tanglement. As was shown by Koadtial.[5] that entangle- virtue of the cavity QED. The cavity field mediates the in-
ment cannot be unlimitedly shared among an arbitrary numteraction among semiconductor microcrystallites, and then
ber of qubits, and the degree of bipartite entanglementhe entangled excitonic states can be prepared by the cavity
decreases with the increasing number of entangled pairs ifield.
anN-qubit system in which any pair of particles is entangled. We organize our paper as follows. In Sec. Il, we will
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propose a scheme based on the present-day technology and B (1) _ _

model the Hamiltonian of the whole system. The solutions o = IgAM (=12, N), (2b)
corresponding to this Hamiltonian are given for the general

initial state. In Secs. Ill and 1V, the bosonic exciton operatorywhere the transformationsa(t)=A(t)e '*t and b;(t)
is used as an approach to deal with qubits uniformly. We will = B;(t)e'“! are applied. The solutions of Eq&a—(2b)
show how to prepare the entangled excitonic states with quean be obtained as

bits defined by different excitonic states using various initial

conditions of the cavity field. Any physical system cannot be

isolated from its environment. The interaction between the A(t)=a(0)cos(G’t)—|§j: fib;(0), (3a)

system and the environment will result in their entanglement,

then coherence of the qubit is destroyed with the time evo- 99, [cogG't)—1]

lution. So, in Sec. V, we will demonstrate the environment B,—(t)=2 Sim+ ALl bm(0)—if;a(0),
m

effect on the entangled states. Finally, some comments and G2
conclusions will be given. (3b)

where G’E\/E]ngjz; fi=f;(t)=g;sin(G't)/G’, a(0) and
bj(0) (j=1,...N) are the initial operators of the cavity
We assume that there akespatially separated semicon- field and excitons, respectively. We assume that the initial
ductor microcrystallites(also called large semiconductor state of the whole system j& (0))=|#(0))c|0)®N, which
quantum dot$16—18) which are placed into an ideal semi- means that the cavity field is initially in the stdt#(0))c,
conductor microcavity with a single-mode field, for example,but there is no exciton in any microcrystallite. Then we can
the microcrystallites are embedded in a disk structure of thebtain the wave function as follows:
semiconductor, which is similar to the Imamoglu model for oN
quantum dot$9]. And we assume that the radifsof each (W (1)=U(1)[4(0))c[0)*, (4)
microcrystallite is much larger than the Bohr radias of iHt/%
excitons, but smaller than the wavelengthof the cavity '
field, that is,ag<<R<\. Also the distance between each pair
of microcrystallites is larger than the optical wavelengtbf
the cavity field, and the microcrystallites indirectly interact
by virtue of the cavity field. We also assume that there are |t is well known thatN qubits can be defined by the states
few electrons excited from the valence band to the conducof N spatially separated microcrystallites. The two most in-
tion band such that the exciton density for each microcrysteresting states for both experimentalists and theoreticians
tallite is much smaller than the Mott density. So, all nonlin- gre the no-exciton and one-exciton states denotd@bgnd
ear terms included in the interaction of the exciton—exciton|1>, respectively. So, we choose the computational basis
and exciton-photon can be neglected in our model, and thetates of the qubit a§0),|1)} for each microcrystallite. If
excitons are considered as ideal bosons. The cavity field ighe cavity field is initially in the single-photon state
assumed to I’esonanﬂy interaCt with the Zero-momentum e)ﬁl/(o)>c: aT|0>C, Wh|Ch now can Successfu”y be prepared
citons in each microcrysta”ite, the thermalization of the eX'by the experiment, and no exciton is |n|t|a”y in any microc-
citons is neglected. Under the above conditions, we can usgstallite, then| ¥ (0))=a’|0)c|0)*N. Based on this initial

the effective Hamiltonian under the rotating wave approxi-condition, we interpolate the unit operator’(t)U(t) into

Il. MODEL AND ITS SOLUTION

with the time-evolution operatdd (t)=e™

IIl. PREPARATION OF THE ENTANGLED EXCITONIC
STATE BY THE SINGLE-PHOTON STATE

mation as followg16,17: Eqg. (4) and consider the properties of the time-evolution op-
erator UT(t)OU(t)=0(t) and U(t)|0)=]0), the wave
N N function of the whole system can be obtained as follows:

= Ta+ o + (a'p:+abl
H=fiwa'a ﬁw; bib; ﬁ; gj(a'b;+abl), (1) () =UDa0)c[0)
— ®N
where a(a') is the annihilation(creation operator of the =a'(~1)[0)c[0)
cavity field with frequencyw, andbj(bjT) is the annihilation
(creation operator of the excitons in thigh microcrystallite
with the same frequency as that of the cavity field. First,
we assume that the coupling constantg with j

= aT(O)cos{G't)—i; f;bf(0)|e""“Y0)c[0)y=N

' - - . _ _ia—iot 11\ [ O\®(N—1)
=1,2,... N between the cavity field and microcrystallites =—ie™ |0>C; fJ|1>J|O>
are different. We can give the Heisenberg equations of mo- .
tion for the operators of the cavity field and the excitons as +e '@lcog G't)|1)c|0)®N, (5)
follows:

which has been returned into the original frame, and

A |1);/0)*™~1) means thaN— 1 microcrystallites have no ex-
—=—i> g;Bi(t), (29  citons, and only one exciton is excited by the cavity field in
at T the jth microcrystallite. We are interested in the entangle-
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ment between two subsystems of the excitons, such as, the ] (@) (b)
nth andmth microcrystallites, then after tracing out the cav- AU A S U
ity field and the degrees of freedom of othér-2 microc- G R Voay iy i
rystallites, the reduced density operator for this pair of qubits 05 TAVERTAVERTAVER v
can be obtained as

ostici 1 i % i

p(t)=F2|10)(10)+ fof 1| 10)(01 + £2]01)(01) + f . | OL) W [AAVAY AVARVARVAY,

gt gt
X(10/+{cof(G't)+ >, f2{|00)(00Q. (6)
I#{n,m} FIG. 1. Time evolutions of both the concurren€e(solid line)

. . and the average photon number(a'a) of the cavity field
The entanglement between two qubits can mathematically b@jashed ling plotted for (@) N=3 and(b) N=5.

described by using the concurrenfd®]. We assume a pair of
gubits whose density matrix js;,. Then the concurrence of

the density matrixp., is defined as of 2/N for any numbemN of the microcrystallites and vice

versa. As an example fod=3 and 5, Fig. 1 clearly shows
C=maxA;—A—A3—A4,0}, (7)  this point. Under the condition that all microcrystallites have
the same coupling with the cavity field, when the concur-
wherehq, A», N3, and\,, given in decreasing order, are the rence reaches its maximum values, the state of the micro

square roots of eigenvalues for the matrix crystallites system is in the generalizé§ state, defined
. [20] to be |Wy)=(1/yN)(|10---0)+|010 --0)+---
M12= p1 01y ® 02y) p1 01y ® T3y), ® 4 |0---01)) and the cavity field is in the vacuum state, but

in the anisotropic case, we cannot obtain the generali¥ed

state for any condition. We know that a single exciton can be
0 —i taken as a boson even for the quantum dots, so the assump-

(le=0'2y=< . ) tion of the microcrystallites is not necessary in the case of
Y the cavity field initially in the single-photon state. In the

where the asterisk denotes complex conjugation in the Star{gllowin_g two section_s, we will main_ly focus on the isot_ropic

dard basis{|00),/01),/10),|11)}, and oy, and o, are ex- interaction of the cavity f|eld. anq microcrystallites to discuss

pressed in the same basis. The entanglement of formation Ege entangled coherent excitonic states.

a monotonically increasing function of; and C=0 (C

=1) corresponds to an unentangled stateximally en- IV. PREPARATION OF THE ENTANGLED COHERENT

tangled state The concurrence for the reduced density op- EXCITONIC STATE

erator(6) can be obtained using EqS) and(8) as follows

with the Pauli matrix

There are other two interesting orthogonal states called
. , the even and odd coherent stat€S). These can be used as
SI(G't) (9) a robust qubit encoding for a single bosonic mode subject to

G2 ' amplitude damping, because the error caused by amplitude

damping for this encoding can easily be corrected by a stan-

It is found that the concurrenc@ periodically reaches its dard three-qubit error-correction circi1]. So, in this sec-
maximum value, but the values of the concurrences are difion, we will discuss how to realize symmetric sharing of
ferent for different pairs, which means that the entangle£ntanglement between any pair of qubits defined by the even
ments between different pairs are different. The coupling©dd coherent excitonic states in semiconductor microcrys-
constants between the cavity field and microcrystallites det@llites. Itis well known that one can define the even CS as
termine the entanglement of each pair. So, we can realiz#€ zero-qubit statg) and the odd CS as the one-qubit state
symmetric sharing of entanglement of excitonic states ill) to encode &NOT quantum gat¢22], that is,
semiconductor microcrystallites only when all microcrystal-

C(t)=2f,f,=29m0n

lites have the same interaction with the cavity field, egg., 10)=N.(|a)+|~a)), (113
=g,=---=gn=9, Which may be obtained with the devel-
opment of the microfabrication technology in the near future. [1)=N_(le)=|=a)), (11b

Under this condition we can obtain the concurrence as 5

with the normalization constanté, = (2+2e2«%)~12and

|+ a)=exd —|af2]=7_[(£a)"/yn!]n) are coherent
states of a bosonic annihilation operator, e.g., the coherent
states of the annihilation operatarfor the cavity field. The

with G=g+/N, and the concurrenc€ periodically reaches even and odd coherent superpositions of the photon states in
its maximum value of 2. Comparing the time evolution of cavity quantum electrodynamics and those of motional states
the concurrence and the average photon nurtdka) of the  of trapped ions can be created by experimental &8 over
cavity field, we can easily find that when the average photoithe past several years. So, we can assume that the cavity field
number is zero, the concurrence reaches the maximal valus initially either in the odd CS or in the even CS, and there

C(t)= %(1—<a*a>)= %sinz(Gt), (10
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are no excitons in any microcrystallite. In order to realize the @ (b)
symmetric sharing of entanglement, we assume that all mi- o
crocrystallites have the same interaction with the cavity field, 4 o4
then the wave function of the whole system can be written by ’300_2,
the factorization of the wave functidi24] as follows

(W (1)) =N.U)[|a)c*|—a)c]|0)®N 1

=N (|au(t)clu(t)a) ™ s ©
+|—au(t))c| —v(t)a)®N), (12 1} %

. . 3 o8 = &
with u(t)=cosGte ' and v(t)=—i[sinGt)/N]e ", %0_6 °>’o .
and the same coupling constants between microcrystallite: %04 %0.
and the cavity field are taken. We find that all excitonic co- 80'2 =
herent statef (t) @) in microcrystallites evolve periodically '0 '0
with time evolution, and their maximal amplitudes are/N/ o 1 2 3 4 5 071 2 3 4 s
times the amplitudéa| of the coherent cavity field. We are lotl lotl

interested in the pairwise entanglement in the systeri\ of

microcrystallites. After tracing out the cavity field and other
degrees of freedom fal—2 microcrystallites, the reduced

density operator for any pair can be expressed as

FIG. 2. The concurrences are plotted as a function of time and
of intensity|a|? of the cavity field wherN=3 for the cavity field
initially in (a) the odd CS andb) the even CS. The maximal con-
currences vga|? for N=2, 3,5, and 10 at optimum evolution

_ N2 92 _ _ 92 times are plotted for the cavity field initially ifc) the odd CS and
p(O=NZ{(Jv(a) (vt a))**+(|~v(Da)~v(Da]) (@ the even CS.

=P (Ju(Da)—v(a])®? e
where +(—) means that the cavity field is initially in the

Pt (|—v(t)a)(v(t) a])®?}, (13)  even(odd) CS. It is also found that the concurrence periodi-
_ N-2 cally evolves. Although there is no simple analytical expres-
where P(t)=(-u(t)e|u(®) a)((~v(Dalo(t)a)) sion between the concurrence and the average photon num-

=exf—2|al*+4|al’siP(GY/N]. We choose the time- per(ata) of the cavity field as Eq(10), we find that if the
dependent even and odd CS as the bfi€s,|1)} for each  average photon number of the cavity field,
qubit in every microcrystallite as follow5]:
~ 17 e 2ol
10)=N,(O(Jo(hea)+|-v(t)a)), (149 <aTa>:=|a|20032(Gt)l

+g2lal®’

17

[D=N_-(O([v(Da)=|-v(O)a)), 4 :
is zero, then the value of the concurrence reaches maximum
where N_.(t) are the normalization constants defined asand vice versa. So, for the fixed numiéof the microcrys-
N. (1) =(2+ 2e~2[SP@N)-12 Then the reduced den- tallites and the intensitye|? of the cavity field, the relation-
. basis Ship of the time evolution between the concurrence and the
average number of the cavity field is analogous to Fig. 1.
It is very clear that the values of the concurreridé)
depend on both the numbirof the microcrystallites and the

sity operator p(t) can be given, in the
{/00),]071),]10),[271)}, in the following form:

2 2
p(t)= Ni[1=P(U)] [00)(00|+ Ni[1=P()] 1117 intensity | «|? of the cavity field. The maximal concurrence
8N4 (1) 8N* (1) with the cavity field initially in even CS or odd CS decreases
with the increase of the microcrystallite’s numberwhen
NZ[LFP(D)] o o s e o e the intensityl |2 of the cavity field is fixed. It is because that
mﬂo 1(01]+]01)(10[+[10)01] exp{(4/N)|a|?sir?(Gt)} in Eq. (16) is a decreasing function
* - of the numberN, so a larger numbeN corresponds to a
L N2[1+P(1)] smaller concurrence. In the following, we have plotted Fig. 2
+]10)(10|}+ — 5 to show the time evolution of the concurrences and the rela-
8N (1N (1) tionship between the concurrence, and the interjsity for
—— different microcrystallite numbeX. We find that the concur-
x{[00){11|+[11)00[}. (19 renceC_(t)=C°t) periodically reaches its maximal value

at the evolution timesGt=(2n+1)(w/2) (n=0,1,...),
and these points approach the upper bound value Nf 2/
which has been illustrated in Figs(a2 and Zc) by an ex-
(N[ afZSiP(GY _ 1 ample forN=3, yvhen|a|2—>0. Itis because the odd CS of

, (16) the cavity field is reduced to the single-photon state when
|a|?—0, so the concurrend@_(t) with initially the odd CS

Following the same steps as for E¢g) and(8), we obtain
the concurrence corresponding to Efj5) as

C.(t)=

el +q
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is reduced to Eq(10) and approaches upper bound value of (a) (b)
2/N. Figure Zc) also shows the variation for the maximal g lo2=0.01 = =01
value of the concurrence with the intensiity|? of the cavity ~— 8,, 08
field with different numberN of the microcrystallites, we § os| \2/N
find that the maximal values of the concurrence decrease , Cr=2/N 0.4
with the increase of the intensityr|?, except thatN=2. §M Coven 02 ¢
However, wher«|2—0, the even CS of the cavity field is o0 UO\C;"';
reduced to the vacuum state, the concurrer@e(t) 24 6 SN 121 s 246 B0 121
=C*®®t) with initially the even CS tends to zero. The © d
maximal values ofC, (t) increase with the increase of the !¢ =1 Y =2
intensity | @|, but when the intensitya|? is greater than a  gos o8 f{y
threshold value, which is determined by §os osf\\
3 2N
4| a|2coshal? &I NG N
|a|2e|“|2+ COS”LY|2W{_|C¥|256Ct1|a|29_‘a|2tan”a‘ }i:;—8) 0.0 o ae o 16 W 4C = Cé R
N N
for given numbemMN (N>2), whereW{z} is the product log FIG. 3. The maximum values of the concurrences are depicted

function defined as the solution fov of z=we", then the as a function of the numbed of semiconductor microcrystallites
concurrence gradually tends to zero. The maxim& oft) for the different intensities of the cavity field with initially the odd
are reached abBt=(2n+1)(w/2) if N and|a|? satisfy Eq.  or even CS for@) |«|*=0.01, (b) [a|?=0.1, (¢) |a|?=1, and(d)

(18). We can also find whetw|? is large enough, such that |a|?=2, and dashed curve corresponds to the maximum possible
|a|2%4 whenN=4 and|a|2%6 whenN=3 [see Figs. &) concurrence, given by B/ between any pair of qubits.

and 2b)], where bosonic approximation for excitons is

still good, then|au(t)) is approximately orthogonal to  As a comparison, we numerically show that the maximal
| —av(t)) whenu(t) =0, that is(—v(t)alv(t)a)~0. Un-  yajyes of the concurrence in the case of the cavity field ini-
der such condition, we can redefine two approximately oOr+ia|ly in the odd or even CS for the different numbénof the
thogonal stateg1)=|av(t)) and [0)=|—av(t)) as one- mijcrocrystallites and the different intensity|2 of the cavity
qubit state and zero-qubit state, then Ekp) for the reduced  field from Figs. 3a) to 3(d). Figure 3 shows that the maximal
density operator of two subsystemsNf{N>2) microcrys-  yalues of the concurrences with initially the odd or even CS

tallites can be simplified as of the cavity field approach each other with increasing the
1 intensity of the cavity field, but they are lower than the upper
p~ §[|00><00| +[11)(11]], (19)  bound values of 2 for the concurrence. From Fig(8, we

can also find that the concurrence with the cavity field ini-
tially in the odd or even CS gradually approaches its maxi-
al possible values of R/ or zero when the intensity of the
avity field tends to zero, that ig|2—0.

which means that no entanglement appears for each pair
microcrystallites, then the concurrences are zero for cavit)é
field initially in odd CS or even CS. So when the cavity field
is initially in the even CS, the points of the maximal values
for the concurrence must be between 0 &aff, with con-
dition (—v(t)a|v(t)@)~0. These points are determined by
Eq. (18). The quantum computation and the quantum information

The optimum values ofa|? and N maximizing C,(t)  take their power from the superpositions and entanglement
obtained from Eq(18) and checked directly by numerical of the quantum states, however, the necessary coupling of the
maximization of Eq.(16) are, e.g., as follows]a|®  system to the environment tends to destroy this coherence
=3/2In(2)~1.04 forN=3, and|a|?=In(1+2)~0.88 for  and reduces the degree of the entanglement with the time
N=4. While for N=5 the maximum is afa|?=In[16/9  evolution of the total system. So, in this section, we will
+10Y%20/27+ 107°10/27)/2~0.81. ForN=6 and 8, analyti-  discuss the decay of the entangled exciton states. For simpli-
cal expressions can also be found. However, for other caséigation of our discussion, we will model the interaction be-
(i.e., N=7 andN=9) there are no compact-form analytical tween the system and environment as follows. We assume
formulas for| @|? corresponding to the maximal concurrence.that there is no interaction between the cavity field and en-
The above numerical calculations can be seen from Figsdironment. The dissipation of the system energy comes from
2(b) and 2d). Figure 2 also shown when the numidéofthe  the interaction of the excitons in the microcrystallites with
microcrystallites is equal to 2, the maximally entangledenvironment, here modeled as thermal radiation fields at zero
states can be prepared for any intensity of the cavity fieldemperature. We limit our discussion to the completely iden-
with initially the odd CS, but for the cavity field with ini- tical N microcrystallites and the coupling constants between
tially the even CS, we can approximately prepare a maximicrocrystallites, and cavity field are the same. Under the
mally entangled state when the average photon numilér  above assumptions, the Hamiltonian for the system, environ-
is slightly larger than 1, e.gl@|?>=3 [see Fig. 2d)]. ments, and their interactions can be written as

V. DECAY OF THE ENTANGLED EXCITON STATES
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N N
H=fiwa'a+ho>, blbj+%g>, (a'b;+abf) v (t)— Se ~OMgin ot), (25b)

i=1 i=1

N N
5=+Ng*—(y/4)?, 25¢
+ﬁj21 Ek wj,ka;kaj'kjtﬁgl ; gj,k(a;r,kbﬁaj,kb;r), g°—(v/4) (250

where the small Lamb frequency shift is neglected and the
(20) decay ratey=2mp(wo)|g(wo)|?>. We also use the former
wherea; (al,) are annihilation(creation operators of ra- assumptions under which all microcrystallites are the same
diation ]Jié|dSJ’With frequency: » anda. . are counling con- and have the same dissipative dynamics so that the decay
stants between thj hqmicrowclr’kstallitgejvgnd radiaFt)iongfieIds ratesy of each microcrystaliite and the functions(t) of
S # Y . ' each term including operatobg(0) are the same. When the
For simplicity, we assume that al| , are independent of the

- . . . environment is considered, the qubits for each microcrystal-
microcrystallite size. We assume that each microcrystallit q y

separately interacts with the environment, but the d|S:5|pat|vEfeIte should be redefined as

dynamics is same for all the microcrystallites. The latter as-

sumption is not necessary but only simplifies the degree of [0)=M.(O[[0" ) +[-v" ()], (263
algebra complexity for calculation. _
We can obtain the Heisenberg equations of motion for [1)=M_(O)[|v'(H)a)—|—v'(t)a)], (26b)

each operator as follows: ,
with normalization constaritl . (t)=[2+2e~2lv'(el"]=12

‘9Bj _ (wj =)t Now, we will investigate the decay when the cavity field is
o IgA |E OjxAy a8 (213 initially in the even and odd CS, but no excitons are initially
in any microcrystallite. After tracing out the degrees of the
(;A environments and othéd—2 microcrystallites for the time-
= —IQE Bj, (21b  dependent wave function of the whole system, which can
also be obtained using the factorized form of the wave func-
tion, we get the reduced density operator for any two qubits
aAjrk__- B i(w—wj )t 21 as
TR L A (210
_ 2 &+ 2 +p/
where the transformations a(t)=A(t)e” ot = p, i(t) pl(t)= w|ﬁ~>< 0|+ MHE
=B;(t)e ", and a; \(t)=A; ((t)e "“ix are made. From N 8MY(t) 8M2(t)
Eq. (210) we have
. N[1FP'(1)]
L A , X (A1|+ o {0 1)([01) +[61)(10)
Aj,k(t)=Al-yk(O)—|gj,kJ0dt’Bj(t’)e'(“’“"i,k)‘ . (22 8MZ (M2 (t)
o e NA[1EP(D)]
We replaceA; (t) in Egs.(21a by Eq.(22), then obtain the +[10)(01|+[10)(10[}+ W—Z
new equation as H(OMZ()
78 _ x{[00)(11|+[11)00l}, 27

0 = 19A- |Z 9; kA (0)e (@Kot
with P’(t)=exd —2/a|?(1—2jv’'(t)]>)]. Then the concur-
t _ ) rencesC’.(t) corresponding to Eq27) can be obtained as
-> |gj,k|2f dt’BJ-(t’)e*'(‘”J,k*"’)(‘*t ). (23
k 0

elev' M _q
We can apply the Laplace transform and the Wigner- Ci(t)= eZIa\zil ’ (28)
Weisskopf approximatiof26] to Eqgs.(21b) and(23), so that
we have the solution of the cavity field as wherev’(t) is determined by Eq(25b. We find that the
concurrenceg16) is modified and becomes of the for(@8)
A()=u’(t) a(O)—|E t)b;(0) +2 2 vj (D)2 (0), after the effect of the environment is taken into account.

Now we will make further approximation. We assume that
(24)  the couplings of the cavity field with microcrystallites are

. stronger than the decay of the exciton, i y. In this case
where conditionsA(0)=a(0), B;(0)=b;(0), andA;(0)  \ye can approximately obtain the concurrel@e(t) as
=a; «(0) were used, and -

ex (4|a|?/N)sir?(gtyN)e (72— 1

e2al’+1

U’ (t)=e~ (7 4—755in(5t)+cos(5t) . (253 CL(t)~ (29)
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(b) coherent excitonic statdedd and even CSdepends on the
interaction between the cavity field and the semiconductor
microcrystallites. The entanglement between any pairs is dif-
ferent from one another for the anisotropic case. When all
microcrystallites have the same interaction with the cavity

8 field, the maximal degree of the entanglement between any
pair of qubits is the same. This condition can, probably, be
satisfied with the development of the fabrication techniques

(d) for quantum dots and the semiconductor microcavity quan-

tum electrodynamics. So, the symmetric sharing of the en-

tanglement between any pair Nfqubits in such a system is
realizable only when the interaction betwedh spatially
separated semiconductor microcrystallites and the cavity
field is isotropic. Under the isotropic-interaction condition,
when the excitonic system reaches maximal entanglement,
all photons in the cavity are transformed into the excitons in
the system of the semiconductor microcrystallites. The gen-
FIG. 4. The time evolution of the concurrences depicted withgerglizedW state and the maximal degreeN2bf entangle-

the numberN=3 of semiconductor microcrystallites foy/g  ment can be obtained for the cavity field initially in the

=0.13(a), (b) andy/g=0.5(c), (d) when the cavity field is initially  sjngle-photon state. But if the cavity field is initially in the

in the odd CS(a), (c) or in the even CSb), (d). odd or even CS, we cannot obtain the maximal degree of
entanglement N, except the special case where the cavity

) field is initially in the odd CS and there are two microcrys-
Equation(29) shows that the entanglement between any paitjites in the caviy27].

of qubits decays in an oscillating form. It also shows thatthe  \y\ie have also investigated the decay of any pair of the
increase of the microcrystallite numbirresults in the de- entangled qubits defined by the odd and even CS. The en-
crease of tr21e concurrence when the decay ra@nd the  (nglement between any pair of qubits decreases because of
intensity |a|* are fixed. For convenience of discussion, wWehe gissipation of the system energy to the environment. If
can rescale time in Eq29)2ast’ =Gt, then we can find that e coherent intensity of the cavity field and the number of
if the coherent intensitya|* of the cavity field and the num-  microcrystallites are given, then with the rescaled time, the
ber N of microcrystallites are given, then the larger ratio larger ratio between the decay rageand the coupling con-
between decay ratg' and the coupling constarg corre-  giantg corresponds to the faster reduction of the concurrence
sponds to the faster reduction of the concurrence of the enys the entangled qubits. For the given ratio between the de-
tangled qubits. But if the ratio of andg is given and the ¢4y ratey and the coupling constarg, and the coherent
numberN is fixed, then the higher intensity of the cavity ntensity of the cavity field, the increase of the microcrystal-
field corresponds to the smaller concurrence. As an exampl@e numberN results in the decrease of the concurrence. But
Fig. 4 plots the variation of concurrence wit=3 for a  if the ratio y/g is given, and the numbe is fixed, then the
reasonably good cavity/g=0.13[in Figs. 4a) and 4b)]  pigher intensity of the cavity field corresponds to the smaller
[9], or for a bad cavityy/g=0.5[in Figs. 4c) and 4d)]  concurrence. Practically, the quality of the entanglement can
according to Eq.(28). Figure 4 clearly demonstrates our pe improved with the appearance of the new processing tech-
above discussions. niques and the ultrahigh finesse cavitigd. Finally, we
should point out that our discussion is limited to the prepa-
VI. CONCLUSIONS ration of the entangled coherent excitonic states, but we can-

. - . _ not control them using this model.
We have studied an excitonic-state implementation of the

multiparticle entanglement based oh spatially separated
semiconductor microcrystallites. The interaction among the
microcrystallites is mediated by a single-mode cavity field. The authors are grateful to Yoshiro Hirayama arahi@
We find that the entanglemeftheasured by the concurrence K. Ozdemir for most helpful discussions. One of authors
between any pair of qubits that are defined by the excitoni¢Yu-xi Liu) is supported by the Japan Society for the Promo-
number stategvacuum and a single-exciton stagtes the tion of Science(JSPS.
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