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Realization of symmetric sharing of entanglement in semiconductor microcrystallites
coupled by a cavity field
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The entanglement of excitonic states in a system ofN spatially separated semiconductor microcrystallites is
investigated. The interaction among the different microcrystallites is mediated by a single-mode cavity field. It
is found that the symmetric sharing of the entanglement~measured by the concurrence! between any pair of the
excitonic state withN qubits defined by the number states~vacuum and a single-exciton states! or the coherent
states~odd and even coherent states! can be prepared by the cavity field for this system.
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I. INTRODUCTION

Quantum entanglement plays an important role in
quantum communication and quantum-information proce
ing. One can implement quantum teleportation of a giv
state from one place to another by virtue of the entang
state@1,2#. Entanglement among many particles is essen
for most quantum communication schemes. The simp
generalization of the entangled states for more than two
ticles is the so-called Greenberger-Horne-Zeilinger~GHZ!
state@3#. The entanglement of the nearest-neighbor pairs
an infinite collection of qubits arranged in a line was stud
by Wootters@4#. For a finite system, Koashiet al. @5# inves-
tigated the completely symmetric sharing of entanglem
for an arbitrary pair ofN qubits. Dür studied not only the
symmetric sharing of the pairwise entanglement but also
nonsymmetric sharing in a system ofN qubits @6#. The
nearest-neighbor entanglement ofN qubits in a ring configu-
ration was also studied and further a concrete physical
tem of N spin-12 particles interacting via the Heisenberg a
tiferromagnetic Hamiltonian was given@7#. The question
arises whether it is possible or not to prepare states with
symmetric sharing of entanglement in some real syste
within the present-day technology. And, if yes, how
achieve such entangled states?

Any many-body system with defined qubits, if set in
properly chosen state, will evolve through states contain
entangled qubits. Similarly, most of the ground states of r
systems contain entangled states. However, for the purp
of quantum computation and quantum information, the m
important aspects of quantum entanglement are especial~i!
deterministic control over the quantum coherence of sta
and ~ii ! time evolution and occurrence of maximally e
tangled states. In this study, we focus on the latter to
specifically, on the generation of the maximal pairwise e
tanglement. As was shown by Koashiet al. @5# that entangle-
ment cannot be unlimitedly shared among an arbitrary nu
ber of qubits, and the degree of bipartite entanglem
decreases with the increasing number of entangled pair
anN-qubit system in which any pair of particles is entangle
1050-2947/2002/66~6!/062309~8!/$20.00 66 0623
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The maximum degree of bipartite entanglement, measure
the concurrence, between any pair of qubits is bound by 2N.
Here, we will investigate a physical realization of this max
mally possible bipartite entanglement.

Within the past few years, advances in microfabricati
technology have allowed researchers to create unique q
tum confinement, and thereby have opened up a new re
of fundamental physics. As low-dimensional semiconduc
structures, quantum dots attract a considerable interest
cause of their atomlike properties. They can lead to no
optoelectronic devices that can be applied to the emerg
fields of quantum computing@8,9# and quantum-information
processing@10,11#. It is well known that Coulomb-correlated
electron-hole pairs called excitons can be optically genera
and controlled in a single dot@12#, and thus can be used t
store the quantum information and realize quantum comp
ing @13#. On the other hand, a significant fraction of quantu
computing and information schemes relies on the stro
coupling regime of the cavity quantum electrodynam
~QED!. The observed Rabi oscillations of excitons in a sing
quantum dot@14# suggest the possibility that the quantum d
cavity QED will be realized in the near future. However,
essential feature of a quantum dot is that the electronic
ergy levels are completely quantized, so the behavior of
citons deviates from the bosonic statistics. In the present
per, we will consider some slightly bigger semiconduc
microstructures, such as the microcrystallites. In this ca
the area of the microcrystallite is larger than that of the Bo
radius of the exciton, and the behavior of the excitons w
low excitation are the same as that of the bosonic partic
Chuanget al. @15# showed that the quantum code of th
bosonic mode enables a more efficient error correction.
the mode of the excitons offers a possible physical imp
mentation for such bosonic-mode coding. We propose a p
sible scheme to prepare the entangled excitonic states fo
symmetric sharing in the system ofN microcrystallites by
virtue of the cavity QED. The cavity field mediates the i
teraction among semiconductor microcrystallites, and th
the entangled excitonic states can be prepared by the ca
field.

We organize our paper as follows. In Sec. II, we w
©2002 The American Physical Society09-1
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propose a scheme based on the present-day technology
model the Hamiltonian of the whole system. The solutio
corresponding to this Hamiltonian are given for the gene
initial state. In Secs. III and IV, the bosonic exciton opera
is used as an approach to deal with qubits uniformly. We w
show how to prepare the entangled excitonic states with
bits defined by different excitonic states using various ini
conditions of the cavity field. Any physical system cannot
isolated from its environment. The interaction between
system and the environment will result in their entangleme
then coherence of the qubit is destroyed with the time e
lution. So, in Sec. V, we will demonstrate the environme
effect on the entangled states. Finally, some comments
conclusions will be given.

II. MODEL AND ITS SOLUTION

We assume that there areN spatially separated semicon
ductor microcrystallites~also called large semiconducto
quantum dots@16–18#! which are placed into an ideal sem
conductor microcavity with a single-mode field, for examp
the microcrystallites are embedded in a disk structure of
semiconductor, which is similar to the Imamoglu model f
quantum dots@9#. And we assume that the radiusR of each
microcrystallite is much larger than the Bohr radiusaB of
excitons, but smaller than the wavelengthl of the cavity
field, that is,aB!R<l. Also the distance between each pa
of microcrystallites is larger than the optical wavelengthl of
the cavity field, and the microcrystallites indirectly intera
by virtue of the cavity field. We also assume that there
few electrons excited from the valence band to the cond
tion band such that the exciton density for each microcr
tallite is much smaller than the Mott density. So, all nonl
ear terms included in the interaction of the exciton-exci
and exciton-photon can be neglected in our model, and
excitons are considered as ideal bosons. The cavity fiel
assumed to resonantly interact with the zero-momentum
citons in each microcrystallite, the thermalization of the e
citons is neglected. Under the above conditions, we can
the effective Hamiltonian under the rotating wave appro
mation as follows@16,17#:

H5\va†a1\v(
j 51

N

bj
†bj1\(

j 51

N

gj~a†bj1abj
†!, ~1!

where a(a†) is the annihilation~creation! operator of the
cavity field with frequencyv, andbj (bj

†) is the annihilation
~creation! operator of the excitons in thej th microcrystallite
with the same frequencyv as that of the cavity field. First
we assume that the coupling constantsgj with j
51,2, . . . ,N between the cavity field and microcrystallite
are different. We can give the Heisenberg equations of m
tion for the operators of the cavity field and the excitons
follows:

]A~ t !

]t
52 i(

j
gjBj~ t !, ~2a!
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]Bj~ t !

]t
52 ig jA~ t ! ~ j 51,2, . . . ,N!, ~2b!

where the transformationsa(t)5A(t)e2 ivt and bj (t)
5Bj (t)e

2 ivt are applied. The solutions of Eqs.~2a!–~2b!
can be obtained as

A~ t !5a~0!cos~G8t !2 i(
j

f jbj~0!, ~3a!

Bj~ t !5(
m H d jm1

gjgm@cos~G8t !21#

G82 J bm~0!2 i f ja~0!,

~3b!

where G8[A( j 51
N gj

2; f j[ f j (t)5gjsin(G8t)/G8, a(0) and
bj (0) ( j 51, . . . ,N) are the initial operators of the cavit
field and excitons, respectively. We assume that the in
state of the whole system isuC(0)&5uc(0)&Cu0& ^ N, which
means that the cavity field is initially in the stateuc(0)&C ,
but there is no exciton in any microcrystallite. Then we c
obtain the wave function as follows:

uC~ t !&5U~ t !uc~0!&Cu0& ^ N, ~4!

with the time-evolution operatorU(t)5e2 iHt /\.

III. PREPARATION OF THE ENTANGLED EXCITONIC
STATE BY THE SINGLE-PHOTON STATE

It is well known thatN qubits can be defined by the stat
of N spatially separated microcrystallites. The two most
teresting states for both experimentalists and theoretic
are the no-exciton and one-exciton states denoted byu0& and
u1&, respectively. So, we choose the computational ba
states of the qubit as$u0&,u1&% for each microcrystallite. If
the cavity field is initially in the single-photon stat
uc(0)&C5a†u0&C , which now can successfully be prepare
by the experiment, and no exciton is initially in any micro
rystallite, thenuC(0)&5a†u0&Cu0& ^ N. Based on this initial
condition, we interpolate the unit operatorU†(t)U(t) into
Eq. ~4! and consider the properties of the time-evolution o
erator U†(t)OU(t)5O(t) and U(t)u0&5u0&, the wave
function of the whole system can be obtained as follows

uC~ t !&5U~ t !a†u0&Cu0& ^ N

5a†~2t !u0&Cu0& ^ N

5Fa†~0!cos~G8t !2 i(
j

f jbj
†~0!Ge2 ivtu0&Cu0& ^ N

52 ie2 ivtu0&C(
j

f j u1& j u0& ^ ~N21!

1e2 ivtcos~G8t !u1&Cu0& ^ N, ~5!

which has been returned into the original frame, a
u1& j u0& ^ (N21) means thatN21 microcrystallites have no ex
citons, and only one exciton is excited by the cavity field
the j th microcrystallite. We are interested in the entang
9-2
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REALIZATION OF SYMMETRIC SHARING OF . . . PHYSICAL REVIEW A 66, 062309 ~2002!
ment between two subsystems of the excitons, such as
nth andmth microcrystallites, then after tracing out the ca
ity field and the degrees of freedom of otherN22 microc-
rystallites, the reduced density operator for this pair of qub
can be obtained as

r~ t !5 f m
2 u10&^10u1 f mf nu10&^01u1 f n

2u01&^01u1 f mf nu01&

3^10u1H cos2~G8t !1 (
lÞ$n,m%

f l
2J u00&^00u. ~6!

The entanglement between two qubits can mathematicall
described by using the concurrence@19#. We assume a pair o
qubits whose density matrix isr12. Then the concurrence o
the density matrixr12 is defined as

C5max$l12l22l32l4,0%, ~7!

wherel1 , l2 , l3, andl4, given in decreasing order, are th
square roots of eigenvalues for the matrix

M125r12~s1y^ s2y!r12* ~s1y^ s2y!, ~8!

with the Pauli matrix

s1y5s2y5S 0 2 i

i 0 D ,

where the asterisk denotes complex conjugation in the s
dard basis$u00&,u01&,u10&,u11&%, and s1y and s2y are ex-
pressed in the same basis. The entanglement of formatio
a monotonically increasing function ofC; and C50 (C
51) corresponds to an unentangled state~maximally en-
tangled state!. The concurrence for the reduced density o
erator~6! can be obtained using Eqs.~7! and ~8! as follows

C~ t !52 f mf n52gmgn

sin2~G8t !

G82
. ~9!

It is found that the concurrenceC periodically reaches its
maximum value, but the values of the concurrences are
ferent for different pairs, which means that the entang
ments between different pairs are different. The coupl
constants between the cavity field and microcrystallites
termine the entanglement of each pair. So, we can rea
symmetric sharing of entanglement of excitonic states
semiconductor microcrystallites only when all microcryst
lites have the same interaction with the cavity field, e.g.,g1
5g25•••5gN5g, which may be obtained with the deve
opment of the microfabrication technology in the near futu
Under this condition we can obtain the concurrence as

C~ t !5
2

N
~12^a†a&!5

2

N
sin2~Gt!, ~10!

with G5gAN, and the concurrenceC periodically reaches
its maximum value of 2/N. Comparing the time evolution o
the concurrence and the average photon number^a†a& of the
cavity field, we can easily find that when the average pho
number is zero, the concurrence reaches the maximal v
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of 2/N for any numberN of the microcrystallites and vice
versa. As an example forN53 and 5, Fig. 1 clearly shows
this point. Under the condition that all microcrystallites ha
the same coupling with the cavity field, when the conc
rence reaches its maximum values, the state of the m
crystallites system is in the generalizedW state, defined
@20# to be uWN&5(1/AN)(u10•••0&1u010•••0&1•••

1u0•••01&) and the cavity field is in the vacuum state, b
in the anisotropic case, we cannot obtain the generalizeW
state for any condition. We know that a single exciton can
taken as a boson even for the quantum dots, so the ass
tion of the microcrystallites is not necessary in the case
the cavity field initially in the single-photon state. In th
following two sections, we will mainly focus on the isotrop
interaction of the cavity field and microcrystallites to discu
the entangled coherent excitonic states.

IV. PREPARATION OF THE ENTANGLED COHERENT
EXCITONIC STATE

There are other two interesting orthogonal states ca
the even and odd coherent states~CS!. These can be used a
a robust qubit encoding for a single bosonic mode subjec
amplitude damping, because the error caused by ampli
damping for this encoding can easily be corrected by a s
dard three-qubit error-correction circuit@21#. So, in this sec-
tion, we will discuss how to realize symmetric sharing
entanglement between any pair of qubits defined by the e
~odd! coherent excitonic states in semiconductor microcr
tallites. It is well known that one can define the even CS
the zero-qubit stateu0& and the odd CS as the one-qubit sta
u1& to encode aCNOT quantum gate@22#, that is,

u0&5N1~ ua&1u2a&), ~11a!

u1&5N2~ ua&2u2a&), ~11b!

with the normalization constantsN65(262e22uau2)21/2 and
u6a&5exp@2uau2/2#(n50

` @(6a)n/An! #un& are coherent
states of a bosonic annihilation operator, e.g., the cohe
states of the annihilation operatora for the cavity field. The
even and odd coherent superpositions of the photon state
cavity quantum electrodynamics and those of motional sta
of trapped ions can be created by experimentalists@23# over
the past several years. So, we can assume that the cavity
is initially either in the odd CS or in the even CS, and the

FIG. 1. Time evolutions of both the concurrenceC ~solid line!
and the average photon numbern5^a†a& of the cavity field
~dashed line! plotted for ~a! N53 and~b! N55.
9-3
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are no excitons in any microcrystallite. In order to realize
symmetric sharing of entanglement, we assume that all
crocrystallites have the same interaction with the cavity fie
then the wave function of the whole system can be written
the factorization of the wave function@24# as follows

uC~ t !&5N6U~ t !@ ua&C6u2a&C] u0& ^ N

5N6~ uau~ t !&Cuv~ t !a& ^ N

6u2au~ t !&Cu2v~ t !a& ^ N), ~12!

with u(t)5cos(Gt)e2ivt and v(t)52 i @sin(Gt)/AN#e2 ivt,
and the same coupling constants between microcrystal
and the cavity field are taken. We find that all excitonic c
herent statesuv(t)a& in microcrystallites evolve periodically
with time evolution, and their maximal amplitudes are 1/AN
times the amplitudeuau of the coherent cavity field. We ar
interested in the pairwise entanglement in the system oN
microcrystallites. After tracing out the cavity field and oth
degrees of freedom forN22 microcrystallites, the reduce
density operator for any pair can be expressed as

r~ t !5N6
2 $~ uv~ t !a&^v~ t !au! ^ 21~ u2v~ t !a&^2v~ t !au! ^ 2

6P~ t !~ uv~ t !a&^2v~ t !au! ^ 2

6P~ t !~ u2v~ t !a&^v~ t !au! ^ 2%, ~13!

where P(t)5^2u(t)auu(t)a&(^2v(t)auv(t)a&)N22

5exp@22uau214uau2sin2(Gt)/N#. We choose the time
dependent even and odd CS as the basis$u0̃&,u1̃&% for each
qubit in every microcrystallite as follows@25#:

u0̃&5N1~ t !~ uv~ t !a&1u2v~ t !a&), ~14a!

u1̃&5N2~ t !~ uv~ t !a&2u2v~ t !a&), ~14b!

where N6(t) are the normalization constants defined
N6(t)5(262e22[uau2sin2(Gt)/N])21/2. Then the reduced den
sity operator r(t) can be given, in the basi

$u0̃ 0̃&,u0̃ 1̃&,u1̃ 0̃&,u1̃ 1̃&%, in the following form:

r~ t !5
N6

2 @16P~ t !#

8N1
4 ~ t !

u0̃ 0̃&^0̃ 0̃u1
N6

2 @16P~ t !#

8N2
4 ~ t !

u1̃ 1̃&^1̃ 1̃u

1
N6

2 @17P~ t !#

8N1
2 ~ t !N2

2 ~ t !
$u0̃ 1̃&^0̃ 1̃u1u0̃ 1̃&^1̃ 0̃u1u1̃ 0̃&^0̃ 1̃u

1u1̃ 0̃&^1̃ 0̃u%1
N6

2 @16P~ t !#

8N1
2 ~ t !N2

2 ~ t !

3$u0̃ 0̃&^1̃ 1̃u1u1̃ 1̃&^0̃ 0̃u%. ~15!

Following the same steps as for Eqs.~7! and ~8!, we obtain
the concurrence corresponding to Eq.~15! as

C6~ t !5
e(4/N)uau2sin2(Gt)21

e2uau261
, ~16!
06230
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where 1(2) means that the cavity field is initially in the
even~odd! CS. It is also found that the concurrence perio
cally evolves. Although there is no simple analytical expre
sion between the concurrence and the average photon n
ber ^a†a& of the cavity field as Eq.~10!, we find that if the
average photon number of the cavity field,

^a†a&65uau2cos2~Gt!
17e22uau2

16e22uau2
, ~17!

is zero, then the value of the concurrence reaches maxim
and vice versa. So, for the fixed numberN of the microcrys-
tallites and the intensityuau2 of the cavity field, the relation-
ship of the time evolution between the concurrence and
average number of the cavity field is analogous to Fig. 1

It is very clear that the values of the concurrence~16!
depend on both the numberN of the microcrystallites and the
intensity uau2 of the cavity field. The maximal concurrenc
with the cavity field initially in even CS or odd CS decreas
with the increase of the microcrystallite’s numberN when
the intensityuau2 of the cavity field is fixed. It is because tha
exp$(4/N)uau2sin2(Gt)% in Eq. ~16! is a decreasing function
of the numberN, so a larger numberN corresponds to a
smaller concurrence. In the following, we have plotted Fig
to show the time evolution of the concurrences and the r
tionship between the concurrence, and the intensityuau2 for
different microcrystallite numberN. We find that the concur-
renceC2(t)[Codd(t) periodically reaches its maximal valu
at the evolution timesGt5(2n11)(p/2) (n50,1, . . . ),
and these points approach the upper bound value of 2N,
which has been illustrated in Figs. 2~a! and 2~c! by an ex-
ample forN53, whenuau2→0. It is because the odd CS o
the cavity field is reduced to the single-photon state wh
uau2→0, so the concurrenceC2(t) with initially the odd CS

FIG. 2. The concurrences are plotted as a function of time
of intensity uau2 of the cavity field whenN53 for the cavity field
initially in ~a! the odd CS and~b! the even CS. The maximal con
currences vsuau2 for N52, 3, 5, and 10 at optimum evolution
times are plotted for the cavity field initially in~c! the odd CS and
~d! the even CS.
9-4
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REALIZATION OF SYMMETRIC SHARING OF . . . PHYSICAL REVIEW A 66, 062309 ~2002!
is reduced to Eq.~10! and approaches upper bound value
2/N. Figure 2~c! also shows the variation for the maxim
value of the concurrence with the intensityuau2 of the cavity
field with different numberN of the microcrystallites, we
find that the maximal values of the concurrence decre
with the increase of the intensityuau2, except thatN52.
However, whenuau2→0, the even CS of the cavity field i
reduced to the vacuum state, the concurrenceC1(t)
[Ceven(t) with initially the even CS tends to zero. Th
maximal values ofC1(t) increase with the increase of th
intensity uau2, but when the intensityuau2 is greater than a
threshold value, which is determined by

N5
4uau2coshuau2

uau2euau21coshuau2W$2uau2sechuau2e2uau2tanhuau2%
,

~18!

for given numberN (N.2), whereW$z% is the product log
function defined as the solution forw of z5wew, then the
concurrence gradually tends to zero. The maxima ofC1(t)
are reached atGt5(2n11)(p/2) if N and uau2 satisfy Eq.
~18!. We can also find whenuau2 is large enough, such tha
uau2'4 whenN>4 anduau2'6 whenN53 @see Figs. 2~a!
and 2~b!#, where bosonic approximation for excitons
still good, then uav(t)& is approximately orthogonal to
u2av(t)& whenu(t)50, that is,^2v(t)auv(t)a&'0. Un-
der such condition, we can redefine two approximately
thogonal statesu1&5uav(t)& and u0&5u2av(t)& as one-
qubit state and zero-qubit state, then Eq.~15! for the reduced
density operator of two subsystems ofN (N.2) microcrys-
tallites can be simplified as

r'
1

2
@ u00&^00u6u11&^11u#, ~19!

which means that no entanglement appears for each pa
microcrystallites, then the concurrences are zero for ca
field initially in odd CS or even CS. So when the cavity fie
is initially in the even CS, the points of the maximal valu
for the concurrence must be between 0 anduau2, with con-
dition ^2v(t)auv(t)a&'0. These points are determined b
Eq. ~18!.

The optimum values ofuau2 and N maximizing C1(t)
obtained from Eq.~18! and checked directly by numerica
maximization of Eq. ~16! are, e.g., as follows:uau2

53/2 ln(2)'1.04 for N53, and uau25 ln(11A2)'0.88 for
N54. While for N55 the maximum is atuau25 ln@16/9
1101/320/271102/310/27#/2'0.81. ForN56 and 8, analyti-
cal expressions can also be found. However, for other c
~i.e., N57 andN>9) there are no compact-form analytic
formulas foruau2 corresponding to the maximal concurrenc
The above numerical calculations can be seen from F
2~b! and 2~d!. Figure 2 also shown when the numberN of the
microcrystallites is equal to 2, the maximally entangl
states can be prepared for any intensity of the cavity fi
with initially the odd CS, but for the cavity field with ini-
tially the even CS, we can approximately prepare a ma
mally entangled state when the average photon numberuau2
is slightly larger than 1, e.g.,uau2>3 @see Fig. 2~d!#.
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As a comparison, we numerically show that the maxim
values of the concurrence in the case of the cavity field
tially in the odd or even CS for the different numberN of the
microcrystallites and the different intensityuau2 of the cavity
field from Figs. 3~a! to 3~d!. Figure 3 shows that the maxima
values of the concurrences with initially the odd or even
of the cavity field approach each other with increasing
intensity of the cavity field, but they are lower than the upp
bound values of 2/N for the concurrence. From Fig. 3~a!, we
can also find that the concurrence with the cavity field i
tially in the odd or even CS gradually approaches its ma
mal possible values of 2/N or zero when the intensity of the
cavity field tends to zero, that is,uau2→0.

V. DECAY OF THE ENTANGLED EXCITON STATES

The quantum computation and the quantum informat
take their power from the superpositions and entanglem
of the quantum states, however, the necessary coupling o
system to the environment tends to destroy this cohere
and reduces the degree of the entanglement with the
evolution of the total system. So, in this section, we w
discuss the decay of the entangled exciton states. For sim
fication of our discussion, we will model the interaction b
tween the system and environment as follows. We assu
that there is no interaction between the cavity field and
vironment. The dissipation of the system energy comes fr
the interaction of the excitons in the microcrystallites w
environment, here modeled as thermal radiation fields at z
temperature. We limit our discussion to the completely ide
tical N microcrystallites and the coupling constants betwe
microcrystallites, and cavity field are the same. Under
above assumptions, the Hamiltonian for the system, envir
ments, and their interactions can be written as

FIG. 3. The maximum values of the concurrences are depic
as a function of the numberN of semiconductor microcrystallites
for the different intensities of the cavity field with initially the od
or even CS for~a! uau250.01, ~b! uau250.1, ~c! uau251, and~d!
uau252, and dashed curve corresponds to the maximum poss
concurrence, given by 2/N, between any pair of qubits.
9-5
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H5\va†a1\v(
j 51

N

bj
†bj1\g(

j 51

N

~a†bj1abj
†!

1\(
j 51

N

(
k

v j ,kaj ,k
† aj ,k1\(

j 51

N

(
k

gj ,k~aj ,k
† bj1aj ,kbj

†!,

~20!

whereaj ,k(aj ,k
† ) are annihilation~creation! operators of ra-

diation fields with frequencyv j ,k andgj ,k are coupling con-
stants between thej th microcrystallite and radiation fields
For simplicity, we assume that allgj ,k are independent of the
microcrystallite size. We assume that each microcrysta
separately interacts with the environment, but the dissipa
dynamics is same for all the microcrystallites. The latter
sumption is not necessary but only simplifies the degree
algebra complexity for calculation.

We can obtain the Heisenberg equations of motion
each operator as follows:

]Bj

]t
52 igA2 i(

k
gj ,kAj ,ke

2 i (v j ,k2v)t, ~21a!

]A

]t
52 ig(

j 51

N

Bj , ~21b!

]Aj ,k

]t
52 ig j ,kBje

i (v2v j ,k)t, ~21c!

where the transformations a(t)5A(t)e2 ivt, bj (t)
5Bj (t)e

2 ivt, and aj ,k(t)5Aj ,k(t)e
2 iv j ,kt are made. From

Eq. ~21c!, we have

Aj ,k~ t !5Aj ,k~0!2 ig j ,kE
0

t

dt8Bj~ t8!ei (v2v j ,k)t8. ~22!

We replaceAj ,k(t) in Eqs.~21a! by Eq. ~22!, then obtain the
new equation as

]Bj

]t
52 igA2 i(

k
gj ,kAj ,k~0!e2 i (v j ,k2v)t

2(
k

ugj ,ku2E
0

t

dt8Bj~ t8!e2 i (v j ,k2v)(t2t8). ~23!

We can apply the Laplace transform and the Wign
Weisskopf approximation@26# to Eqs.~21b! and~23!, so that
we have the solution of the cavity field as

A~ t !5u8~ t !a~0!2 i(
j

v8~ t !bj~0!1(
j

(
k

v j ,k~ t !aj ,k~0!,

~24!

where conditionsA(0)5a(0), Bj (0)5bj (0), and Aj ,k(0)
5aj ,k(0) were used, and

u8~ t !5e2(g/4)tS g

4d
sin~dt !1cos~dt ! D , ~25a!
06230
e
e
-

of

r

-

v8~ t !5
g

d
e2(g/4)tsin~dt !, ~25b!

d5ANg22~g/4!2, ~25c!

where the small Lamb frequency shift is neglected and
decay rateg52pr(v0)ug(v0)u2. We also use the forme
assumptions under which all microcrystallites are the sa
and have the same dissipative dynamics so that the d
ratesg of each microcrystallite and the functionsv8(t) of
each term including operatorsbj (0) are the same. When th
environment is considered, the qubits for each microcrys
lite should be redefined as

u0̃&5M 1~ t !@ uv8~ t !a&1u2v8~ t !a&], ~26a!

u1̃&5M 2~ t !@ uv8~ t !a&2u2v8~ t !a&], ~26b!

with normalization constantM 6(t)5@262e22uv8(t)au2#21/2.
Now, we will investigate the decay when the cavity field
initially in the even and odd CS, but no excitons are initia
in any microcrystallite. After tracing out the degrees of t
environments and otherN22 microcrystallites for the time-
dependent wave function of the whole system, which c
also be obtained using the factorized form of the wave fu
tion, we get the reduced density operator for any two qub
as

r68 ~ t !5
N6

2 @16P8~ t !#

8M 1
4 ~ t !

u0̃ 0̃&^0̃ 0̃u1
N6

2 @16P8~ t !#

8M 2
4 ~ t !

u1̃ 1̃&

3^1̃ 1̃u1
N6

2 @17P8~ t !#

8M 1
2 ~ t !M 2

2 ~ t !
$u0̃ 1̃&^0̃ 1̃u1u0̃ 1̃&^1̃ 0̃u

1u1̃ 0̃&^0̃ 1̃u1u1̃ 0̃&^1̃ 0̃u%1
N6

2 @16P8~ t !#

8M 1
2 ~ t !M 2

2 ~ t !

3$u0̃ 0̃&^1̃ 1̃u1u1̃ 1̃&^0̃ 0̃u%, ~27!

with P8(t)5exp@22uau2(122uv8(t)u2)#. Then the concur-
rencesC68 (t) corresponding to Eq.~27! can be obtained as

C68 ~ t !5
e4uav8(t)u221

e2uau261
, ~28!

where v8(t) is determined by Eq.~25b!. We find that the
concurrence~16! is modified and becomes of the form~28!
after the effect of the environment is taken into accou
Now we will make further approximation. We assume th
the couplings of the cavity field with microcrystallites a
stronger than the decay of the exciton, i.e.,g@g. In this case
we can approximately obtain the concurrenceC68 (t) as

C68 ~ t !'
exp@~4uau2/N!sin2~gtAN!e2(g/2)t#21

e2uau261
. ~29!
9-6
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REALIZATION OF SYMMETRIC SHARING OF . . . PHYSICAL REVIEW A 66, 062309 ~2002!
Equation~29! shows that the entanglement between any p
of qubits decays in an oscillating form. It also shows that
increase of the microcrystallite numberN results in the de-
crease of the concurrence when the decay rateg and the
intensity uau2 are fixed. For convenience of discussion, w
can rescale time in Eq.~29! ast85Gt, then we can find tha
if the coherent intensityuau2 of the cavity field and the num
ber N of microcrystallites are given, then the larger ra
between decay rateg and the coupling constantg corre-
sponds to the faster reduction of the concurrence of the
tangled qubits. But if the ratio ofg and g is given and the
numberN is fixed, then the higher intensity of the cavi
field corresponds to the smaller concurrence. As an exam
Fig. 4 plots the variation of concurrence withN53 for a
reasonably good cavityg/g50.13 @in Figs. 4~a! and 4~b!#
@9#, or for a bad cavityg/g50.5 @in Figs. 4~c! and 4~d!#
according to Eq.~28!. Figure 4 clearly demonstrates ou
above discussions.

VI. CONCLUSIONS

We have studied an excitonic-state implementation of
multiparticle entanglement based onN spatially separated
semiconductor microcrystallites. The interaction among
microcrystallites is mediated by a single-mode cavity fie
We find that the entanglement~measured by the concurrenc!
between any pair of qubits that are defined by the excito
number states~vacuum and a single-exciton states! or the

FIG. 4. The time evolution of the concurrences depicted w
the number N53 of semiconductor microcrystallites forg/g
50.13~a!, ~b! andg/g50.5 ~c!, ~d! when the cavity field is initially
in the odd CS~a!, ~c! or in the even CS~b!, ~d!.
A

.J.

06230
ir
e

n-

le,
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e
.

ic

coherent excitonic states~odd and even CS!, depends on the
interaction between the cavity field and the semiconduc
microcrystallites. The entanglement between any pairs is
ferent from one another for the anisotropic case. When
microcrystallites have the same interaction with the cav
field, the maximal degree of the entanglement between
pair of qubits is the same. This condition can, probably,
satisfied with the development of the fabrication techniqu
for quantum dots and the semiconductor microcavity qu
tum electrodynamics. So, the symmetric sharing of the
tanglement between any pair ofN qubits in such a system i
realizable only when the interaction betweenN spatially
separated semiconductor microcrystallites and the ca
field is isotropic. Under the isotropic-interaction conditio
when the excitonic system reaches maximal entanglem
all photons in the cavity are transformed into the excitons
the system of the semiconductor microcrystallites. The g
eralizedW state and the maximal degree 2/N of entangle-
ment can be obtained for the cavity field initially in th
single-photon state. But if the cavity field is initially in th
odd or even CS, we cannot obtain the maximal degree
entanglement 2/N, except the special case where the cav
field is initially in the odd CS and there are two microcry
tallites in the cavity@27#.

We have also investigated the decay of any pair of
entangled qubits defined by the odd and even CS. The
tanglement between any pair of qubits decreases becau
the dissipation of the system energy to the environment
the coherent intensity of the cavity field and the number
microcrystallites are given, then with the rescaled time,
larger ratio between the decay rateg and the coupling con-
stantg corresponds to the faster reduction of the concurre
of the entangled qubits. For the given ratio between the
cay rateg and the coupling constantg, and the coheren
intensity of the cavity field, the increase of the microcryst
lite numberN results in the decrease of the concurrence. B
if the ratiog/g is given, and the numberN is fixed, then the
higher intensity of the cavity field corresponds to the sma
concurrence. Practically, the quality of the entanglement
be improved with the appearance of the new processing t
niques and the ultrahigh finesse cavities@9#. Finally, we
should point out that our discussion is limited to the prep
ration of the entangled coherent excitonic states, but we c
not control them using this model.
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