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ABSTRACT

The classical information entropy defined by Wehrl in terms of the Husimi Q-function is discussed and generalized
over the concepts of the Wehrl phase distribution!*? and the Wehrl intermode-correlation parameters.> The

classical entropic functions are applied to describe the quantum properties of single and/or two-mode optical
fields.
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1. INTRODUCTION

The entanglement as well the quantum information entropy are the most striking and interesting concepts
in quantum mechanics. Quantum entropy, proposed by von Neumann,® as a natural generalization of the
Boltzmann classical entropy can be applied for many quantum-mechanical problems. For instance, it can be
useful as a measure of quantum entanglement, quantum optical correlations, photocount statistics, quantum
decoherence and noise, purity of states and many others. The von Neumann entropy becomes zero for all pure
states, and hence cannot be used for discriminating them, whereas paradoxically, the Wehrl classical entropy
is useful for this purpose. In this paper we show how quantities defined on the basis of the Wehrl entropy can
be applied for the discrimination of the single-mode quantum fields and, in addition, to describe phase-space
correlations of the two-mode fields.

2. SINGLE-MODE FIELDS

The Wehrl entropy definition is based on the Husimi Q(c)-function corrcsponding to a given quantum field®

Q(a) = ~Tr (fla){al) = = (aljla) | 1)

where p is the density matrix for the quantum field, whereas |a) denotes a coherent state. Obviously, the
Q-function is normalized, i.e.

[a@da=1, (2)

where d?a = dReadlma = |o|d|a|dArga, and is referred to as quasi-probability function. The Wehrl classical
" information-theoretic entropy is defined via this function as follows®

Sw = [ Q@)nQa) da . (3)

This entropy is also referred to as the Shannon information of the Q-function.

To discriminate various quantum fields we can introduce other quantities, for instance the Wehrl phase
distribution or Wehrl entropy density' defined as:

Se =/Q(a)l’nQ(a) la| dle] (4)
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which is simply related to the Wehrl entropy by integration:

sw= [ [@mQ@/adaiie - [ sede . (5)

where © = Arga. Se can be interpreted as a phase distribution generalizing the so-called Husimi phase

distribution
Po = / / Q(e) ol dja (6)

defined as the marginal function of the Husimi Q-function.

To examine how useful the entropic functions are, we can calculate appropriate quantities for various quantum
optical fields. One of these states are the n-photon Fock states. The Q-function corresponding to the Fock states
can be written as

1 ’a[2n
Qa) = ———exp(~jaf?) , (7)
which is in the form of Poissonian distribution. As a conscquence, the Wehrl distribution Sg can be expressed
as™8
1 1
= — =]l - !
Se 27rSW 5 1 +n—ny(n+1)+In(znl)] , (8)

where 9(n + 1) = ~y + Y_7_, is digamma function defined using the Euler v constant.

Another example of the optical field is chaotic field. For this case the Husimi Q-function can be expressed

q
as"

_ 1 lof?
Q) = T+ D &P (‘ (ren) + 1) ’ ©

where (ficy) is the mean number of photons corresponding to the black-body thermal radiation at temperature

T and is equal to )
(flch> =

(10)
exp

- .
FaT 1
The quantity kp appearing here is the Boltzmann constant. As a consequence, the Wehrl distribution Se for
the chaotic field is given by’ ®

Se = %SW = 51; In((ficn) + 1) +Inw+ 1] . (11)
Since, both fields discussed here are of the random phase, the Wehrl distributions are phase independent and
arc cqual to the Wehrl entropies after muitiplication by the factor 2m. However, those quantities depend in
various ways on the mean number of photons. Fig. 1 shows the Wehrl entropies as a function of mean number of
photons for phase-independent (such as Fock states and chaotic fields), but also phase-dependent fields including
squeczed vacuum, and Glauber and two-photon coherent states. It is visible that the dependencies of Sy on (n)
are strongly determined by the character of the quantum field.

The Pegg-Barnett phase distribution!” and the marginal quasiprobability phase distributions!! are equal to
1/(2n) for any state with random phase, as depicted by broken circle in Figs. 2(d) and 2(e). The corresponding
Wehrl phase distributions Sg are phase independent too. However, they depend on the mean number of photons.
Figs. 2(d,e) show a comparison of the phasc distributions S and Po for the states with random phase. It is
seen that the Wehrl distributions are more informative then the conventional phase distributions (including the
Husimi (6) or Pegg-Barnett phase distributions). On thc other hand, curves in Figs. 2(b,c) corresponding to a
single curve in Fig. 1, show that the Wehrl phase distribution is also more informative than the Wehrl entropy.
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Figure 1. Wehrl entropy as a function of mean number of photons for various single-modec fields: (a) coherent state

({(ean) = |@|?); (b) squeezed vacuum and (c) two-photon coherent state (squcezed state) for (fs,) = sinh®¢; (d) Fock
states ((ArFock) = 1), and (e) chaotic field ({ficn)).

Figure 2. Wehrl phase distributions for the same ficlds as in Fig. 1: (a) coherent states for a = 0,1,/10; (b) squeezed
vacuum for £ = 0.1,1; (c) two-photon coherent states for « = 1 and € = 0.1,1; (d) Fock states and (e) chaotic fields with
n = (Aen) = 0,10, --,50. Curves from the thickest to the thinnest correspond to increasing parameters. Additionally,
broken circles in figures (d) and (e) correspond to the Pegg-Barnett phase distributions being the same for all values of
{ficn) and n.

3. TWO-MODE FIELDS

The intermode correlations, related to the entanglement problems, seem to be one of the most interesting subjects
of quantum information theory. As a criterion of the pure-state bipartite cntanglement, the von Neumann
entropy (quantum entropy) of one subsystem has been aiready used.'>!®  Since, in this paper we analyze
nonclassical correlations between modes in phase-space for the two-mode squeezed vacuum, we will apply the
Wehrl entropy concept. For this case we apply the definitions of the parameters describing degrce of the intermode
correlations.? Thus, for the two-mode systems defined in the Hilbert space H = H4 ® Hp we introduce the
following quasiprobability Q(ay,az;8;,52):

Qlar, a3 61, 2) = ~(@Blfaslaf) . (12)

where |af) = |a) ® |3) and pap is the density operator defined in H. The Wehrl entropy for such a system can
be written as:

Slay, a2; 61, 082) = —/da1daz dpy dfa J Q(on, ag; B1, B2) In Qo az; 1, B2) (13)

with J = 1if (a1, o) + (@, @), or J = e, if (@1, 02) + (@, ag). The Q(ay, ag; 1, B2) function depends on four
variables of phase space. Hence, it allows us to define quasiprobabilities that represent individual modes:

Qlai,ag) = /dﬁldﬁzJQ(al,a2;ﬂ1,ﬁ2)
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Qe p) = [ dondas T Qlar,zin, ) (14)
and the quasiprobabilitics referred to as intermode distributions:
Qac 5] = [ daydd, 1 Qlas,axif,Ba) (15)

with i, j, p, ¢ = 1, 2 and i # p, j # q. Those quasiprobabilities can be used in the definitions of the following
entropies

Slon,az] = -/daldagJQ(al,ag) In Q(as, az)
Sl = - / dasdB; J Qs B;) In Qe ;) (16)
Sla) = — / dos J Qo) In Q(ax)

fulfilling the nonadditivity relation:
s [Z Ui] <> S(U) for U= U (18)

To cxamine the correlations in phase-space we introduce the quantity
I[u,v] = S[u] + S[v] — S[u,v] , (19)

where [[u,v] measures the information contained in the variable u about the variable v, and the mutual infor-
mation concept has been applied.?> Moreover, it is possible to cxamine other quantitics measuring correlations
in complex systems. Another examplc can be the parameter L defined as®

L' = Slay; ag] + S[B1; B2) — (Slou; ] + Slaz; Ba])

L" = Slay; ag] + S[B1; B2] — (S[an; Ba] + Slaz; 1)) (20)
and is related to I by the relations

L' = Iay; b + Iag; B2) — (Ion; ag] + S{61; Ba])

) Iay; Bo] + Iag; 1] — (I{an; o] + S[B1; B2]) - (21)

For any uncorrelated systems these parameters are non-positive. Otherwise, when correlations occur in the
system, both parameters (or one of them) are positive i.c. {’ > 0 and(or) {" > 0.

As an example of application of the above parameters we shall discuss the properties of the two-mode squeczed

vacuum state |£)
oo

1 .
— hr)" Ty o )
)= oy 2 tamr)“e )l (22
The quasiprobability @ for this state takes the following form
2_y2 w= (abtanhr)*tm
) b - e=e b ety (bt —v) (n—m)
Qe(a,6a; b, 8) = ¢ > T ; (23)

n,mn=>_0
wherce the coordinates in the phase-space corresponding to the modes a and b are specified as follows

a=ac® and A=be? (24)
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defining the amplitude and phase of each mode. The Q-function (23) enables us to calculate the parameters
mcasuring correlations in the system. For the state discussed here these parameters are:

Ila,¢a) =0, I[b,¢s] =0,
I[a’v ¢b] =0, I[b7 ¢a] =0. (25)

This result means that we have no correlations between the amplitude and the phase for the single mode.
Moreover, there are no correlations between the amplitudc and phase of different modes. Contrary, the mutual
information for phases of two modes differs from (25), is positive and equal to

2T
I[dai 5] = 21027 — /0 dbaddyQe(da; 60) In Qe (ui b5) - (26)

Similarly, the form of the appropriate formula for the mutual information of the amplitudes points that the
correlations between two amplitudes of the modes exist and depend on the value of the squeezing parameter r:

I[a;b) = Incosh®r — 2tanh®r + / dadbabQ¢(a;b) In Bg(ab tanhr) . (27)
0

The quantity By appearing in(27) is a modified Bessel function.

We sce, from the examples discussed in this communication, that the Wehrl entropy based parameters can
cnable us to investigate various quantum mechanical properties of quantum ficlds. Those quantities can help
distinguish various fields and investigate their properties from the point of view of the quantum information
theory. This fact concerns not only single-mode fields but two- and multi-modes fields too. For instance, we are
able to investigate their internal correlations and other properties related to the information theory.
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