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Abstract
We discuss a model comprising two coupled nonlinear oscillators (Kerr-like
nonlinear coupler) with one of them pumped by an external coherent
excitation. Applying the method of nonlinear quantum scissors we show
that the quantum evolution of the coupler can be closed within a finite set of
n-photon Fock states. Moreover, we show that the system is able to generate
Bell-like states and, as a consequence, the coupler discussed behaves as a
two-qubit system. We also analyse the effects of dissipation on
entanglement of formation parametrized by concurrence.

Keywords: entanglement, Kerr coupler, Kerr nonlinearity, concurrence,
Bell states

1. Introduction

Quantum entanglement seems to be one of the most striking
phenomena of quantum physics. It is not only one of the most
fundamental concepts of quantum information theory, but also
allows investigation of many features of nonlocal properties
of quantum systems [1]. Various aspects of the entanglement
and its generation have been discussed in numerous papers,
especially from the point of view of quantum information ap-
plications including quantum key distribution [2], superdense
coding [3], quantum teleportation [4], fast quantum compu-
tations [5, 6], entanglement-assisted communication [7] or
broadcasting of entanglement [8].

In this paper we shall concentrate on the dynamics of the
Kerr nonlinear coupler and its ability to produce quantum
entangled states. Since the pioneering works of Jensen [9] and
Maier [10], the nonlinear couplers have attracted an increasing
interest [11–17] (for reviews see [18, 19]). As shown in
classical [9, 10] and quantum [11] models, the Kerr couplers
can exhibit self-trapping, self-modulation and self-switching
of the energy of the coupled modes. These phenomena
have potential applications in optical communications as,
e.g., intensity-dependent routing switches. Among various
other quantum statistical properties, it has been shown that
the Kerr couplers can be a source of sub-Poissonian and
squeezed light [12–16]. Another group of papers concerns the

3 Author to whom any correspondence should be addressed.

correspondences between the quantum and classical dynamics
of such systems [11] and their chaotic dynamics, including
synchronization effects [17].

Quantum optical systems based on Kerr nonlinearity
have been applied for various quantum information purposes
including entanglement purification [20], complete quantum
teleportation [21], or realization of qubit phase gates [22].
Here, we present another simple quantum information
application of Kerr nonlinearities, namely for generation of
entangled optical qubits from classical light.

We are interested here in a simple model comprising two
quantum nonlinear oscillators located inside one cavity. These
oscillators are linearly coupled to each other, while one of the
oscillators is excited by an external coherent field of a constant
amplitude. For this model we shall answer the questions of
whether it is possible to close the dynamics of the excited
nonlinear coupler within a finite set of n-photon states and,
which is the main subject of this paper, whether a nonlinear
excited coupler can be a source of maximally entangled (ME)
states.

2. The model and solutions

The model of the Kerr nonlinear coupler discussed here
contains two nonlinear oscillators linearly coupled to each
other and, additionally, one of them is coupled to an external
coherent field as presented in figure 1. We assume that this
excitation is linear and has a constant amplitude. This system
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Figure 1. Scheme of a pumped nonlinear coupler, described by
Hamiltonian (1), implemented by two ring cavities (a and b) filled
with Kerr media, where cavity a is being excited by a single-mode
external classical field.

can be described by the following Hamiltonian:

Ĥ = ĤNL + Ĥint + Ĥext (1)

where

ĤNL ≡ Ĥ (a)
NL + Ĥ (b)

NL = χa

2
(â†)2â2 +

χb

2
(b̂†)2b̂2, (2)

Ĥint = εâ†b̂ + ε∗âb̂†, (3)

Ĥext = αâ† + α∗â. (4)

We see that ĤNL describes nonlinear oscillators, Ĥint

corresponds to an internal coupling, whereas the term Ĥext

describes a linear coupling between the external field and
the mode of the field inside our cavity corresponding to the
oscillator a. The parameters χa and χb are nonlinearity
constants of the oscillators a and b, respectively, ε describes
the strength of the oscillator–oscillator coupling, whereas α
is the strength of the external excitation of the oscillator a.
It is worth noting that our Hamiltonian Ĥint does not include
nonlinear coupling proportional to b̂†b̂â†â but only the linear
one, described by (3). Nevertheless, the same Hamiltonian
ĤNL + Ĥint as ours was used, e.g., by Bernstein [23] and Chefles
and Barnett [11] to describe the nonlinear coupler.

In the first part of our analysis we neglect damping
processes in our model, thus the system evolution can be
described by a time-dependent wavefunction. This function
can be written in the n-photon Fock basis as

|ψ(t)〉 =
∞∑

n,m=0

cn,m(t)|n〉a|m〉b (5)

where cn,m(t) is a complex probability amplitude of finding
our system in the n-photon and m-photon states for mode a
and b, respectively.

We have included here an external coupling and, therefore,
the energy inside the cavity is not conserved. As a
consequence, we can expect that in the evolution of the
system many of the states corresponding to a high number
of photons will be involved. However, we can overcome
this difficulty by applying the nonlinear quantum scissors
method discussed in [24] (for discussion concerning quantum
states defined in finite-dimensional Hilbert spaces and the
methods of their generation see the review papers [25, 26]
and references therein). Namely, it is seen from the form
of ĤNL that this Hamiltonian produces degenerate levels of

the energy equal to zero, corresponding to the following four
states: |0〉a|0〉b, |1〉a|0〉b, |0〉a |1〉b and |1〉a |1〉b. Moreover,
all couplings discussed here have constant envelopes, and,
similarly as in [24], we assume that they are weak. Therefore,
we can treat transitions within the mentioned set of the states
as of resonant nature. The evolution of the discussed system is
closed within the set of these four states and interactions with
other states can be neglected in our approximation. Thus, the
wavefunction describing our model can be written in the form

|ψ(t)〉 = c0,0(t)|0〉a |0〉b + c1,0(t)|1〉a |0〉b

+ c0,1(t)|0〉a |1〉b + c1,1(t)|1〉a |1〉b (6)

and, hence, the equations of motion for the system are

i
d

dt
c0,0 = α∗c1,0,

i
d

dt
c1,0 = εc0,1 + αc0,0,

i
d

dt
c0,1 = ε∗c1,0 + α∗c1,1,

i
d

dt
c1,1 = αc0,1.

(7)

To solve these equations we need to find roots of the fourth-
order polynomial, which leads to a very complicated and
unreadable form of final formulae. Therefore, although it is
formally possible, we shall not write the analytical solutions in
their most general form and we shall restrict our considerations
to the case of real α = ε. Moreover, we assume that for the
time t = 0 both oscillators are in vacuum states, i.e.,

|ψ(t = 0)〉 = |0〉a |0〉b. (8)

Then we get the following solutions for the probability
amplitudes ci, j (i, j = 0, 1):

c0,0(t) = cos(xt) cos(yt) +
1√
5

sin(xt) sin(yt),

c1,0(t) = −i
2√
5

cos(xt) sin(yt),

c0,1(t) = − 2√
5

sin(xt) sin(yt),

c1,1(t) = i
[

1√
5

cos(xt) sin(yt)− sin(xt) cos(yt)

]

(9)

where x = α/2 and y = √
5x . Solution (9) is valid under

the condition χ j � ε = α ( j = a, b), which implies that it
is apparently independent of nonlinearities χ j . But it should
be stressed that the corresponding nonlinear Hamiltonian ĤNL,
given by (2), is responsible for the truncation of the infinite-
dimensional state to the finite superposition, given by (6).
Otherwise, if χ j were not much stronger than ε and α, the state
generated would not be truncated to the finite superposition (6)
and the probability amplitudes cn,m(t)would depend explicitly
on nonlinearities χ j .

To check our solutions we can calculate the probability
amplitudes numerically in a basis expanded to the states
corresponding to greater number of photons than discussed
here (for the model discussed our considerations are restricted
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Figure 2. Probabilities for finding the coupler in the |0〉a |0〉b (dotted
curve), |1〉a |0〉b (dashed–dotted curve), |0〉a |1〉b (dashed curve) and
|1〉a |1〉b (solid curve) states from the analytical results and their
numerical counterparts (cross marks). The nonlinearity coefficients
χa = χb = 25 and the coupling strengths ε = α = π/25.

by the resonances to the one-photon and vacuum states only).
We perform the calculations following the method discussed
in [26], and first we construct the unitary evolution operator Û
applying the full Hamiltonian shown in (1):

Û = exp(−iĤ t). (10)

Then we are able to obtain the wavefunction |ψ(t)〉 by acting
the operator Û on the initial state of the system, and for the
case discussed here we have

|ψ(t)〉 = Û(t)|0〉a |0〉b. (11)

Figure 2 shows both analytical and numerical results of our
calculations. We see very good agreement between these
two methods, so the model based on the resonances works
very well. Moreover, from the numerical results for the
probabilities corresponding to the states |0〉a|2〉b (figure 3(a))
and |1〉a|2〉b (figure 3(b)), we see that the states corresponding
to the numbers of photons higher than one are practically
unpopulated. It is worth mentioning that our numerical
calculations have been performed in the m-dimensional Fock
basis, where m � 20 for each subspace associated with a single
mode of the field.

3. Coupler and entanglement

The time evolution of the probability amplitudes can give some
information concerning entanglement in our system too. For
instance, if we see in a figure that the probability corresponding
to one of the discussed states is equal to another one and,
additionally, both are equal to 1/2 (|ci, j |2 = |ck,l |2 = 0.5 for
every i, j, k, l), we know that the system generates ME states.
Obviously, this method of finding entangled states is not very
accurate, especially for the case when we should observe and
compare various and often rapidly oscillating probabilities.
Therefore, we apply another method convenient for finding
entanglement in the system. Namely, we shall express the
obtained wavefunction in the Bell basis,

|ψ〉 = b1|B1〉 + b2|B2〉 + b3|B3〉 + b4|B4〉 (12)

where the states |Bi〉, i = 1, 2, 3, 4 are Bell-like states that can
be expressed as functions of the n-photon states discussed here
(Bell-like states differ from the commonly discussed Bell states
in the existence of the phase factor—for the case discussed
here, one of the n-photon states is multiplied by i):

|B1〉 = 1√
2
(|1〉a |1〉b + i|0〉a |0〉b),

|B2〉 = 1√
2
(|0〉a |0〉b + i|1〉a |1〉b),

|B3〉 = 1√
2
(|0〉a |1〉b − i|1〉a|0〉b),

|B4〉 = 1√
2
(|1〉a |0〉b − i|0〉a |1〉b).

(13)

These states are ME states, and therefore, for the cases when
|bi |2 = 1, i = 1, 2, 3, 4, our system also evolves into an
ME state. Figure 4 shows probabilities corresponding to the
Bell-like states as a function of time. Moreover, all parameters
describing our system are identical to those of figure 2. We see
that for the time t � 115 we get the state |B1〉 and for t � 80
the state |B2〉 is generated with high accuracy—our system
becomes maximally entangled. This entanglement involves
the states |0〉a|0b〉 and |1〉a|1b〉. Of course, one should keep
in mind that plots in figure 4 are for the probabilities, not for
their complex amplitudes, and hence we get the Bell-like states
from (13) with some phase factor. Nevertheless, our states are
maximally entangled. Moreover, figure 4 shows that the values
of probabilities for the states |B3〉 and |B4〉 can maximally reach
0.8. As a consequence, the states |1〉a|0b〉 and |0〉a|1b〉 cannot
be maximally entangled for the initial vacuum states |0〉a |0b〉.
But generation of |B3〉 and |B4〉 would be possible by assuming
that the system is initially in the states |1〉a|0b〉 or |0〉a |1b〉.

The Bell-like states (13) are maximally entangled;
however, they are not the only entangled states that could
be produced by the system. Therefore, to measure the
entanglement degree of the system we apply the measure that
is referred to as the concurrence. This quantity proposed by
Wootters [27] is one of the most commonly applied measures
of the entanglement. The concurrence for two-qubit states is
defined as

C = max{0, λ1 − λ2 − λ3 − λ4} (14)

where λi (i = 1, . . . , 4) are the square roots of the eigenvalues
of the matrix

ρ̃ = ρ
(
σ a

y ⊗ σ b
y

)
ρ∗(σ a

y ⊗ σ b
y

)
(15)

where σ
{a,b}
y are Pauli matrices defined in subspaces

corresponding to the modes {a, b}, and the eigenvalues
λi appearing in (14) should be taken in decreasing order.
Concurrence takes values from zero to unity, where for
unentangled states it vanishes, whereas for ME states it is equal
to unity.

Damping is the main and unavoidable source of
decoherence which can easily destroy entangled states. Hence,
for our results to be applicable in real physical systems, we
present a numerical analysis of the damping effects on the
concurrence. Let us assume that the leakage of photons from
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Figure 3. The same as in figure 2 but for the states (a) |0〉a |2〉b and (b) |1〉a |2〉b.
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Figure 4. Probabilities for finding the coupler in the Bell-like states. The nonlinearity coefficients χa and χb, and the coupling strengths ε
and α, are identical to those of figures 2 and 3.

the cavities a and b is described by the rates κa and κb,
respectively. Starting from Hamiltonian (1) and defining the
collapse operators by Ĉa = √

2κa â and Ĉb = √
2κbb̂, we can

write the time-independent Liouvillian in the standard Linblad
form

L̂ρ̂ = −i[Ĥ , ρ̂] +
∑
j=a,b

(Ĉ j ρ̂Ĉ†
j − 1

2 (Ĉ
†
j Ĉ j ρ̂ + ρ̂Ĉ†

j Ĉ j )). (16)

The evolution of the density matrix ρ̂(t) in the dissipative
system can be found numerically as a series of complex
exponentials exp(σk t) given in terms of the eigenvalues σk of
the Liouvillian L̂, given by (16).

Figure 5 shows the plot of the concurrence evolution for
the case discussed here—we have a single external excitation
of the coupler and we assume that all couplings existing in
the system are weak (α = ε = π/25) in comparison to Kerr
nonlinearities χa = χb = 25. Various curves in figure 5
correspond to concurrence evolutions with different dissipation
rates. We see that the time-varying concurrence is modulated
by an oscillation of low frequency. As a consequence, several
maxima appearing here are of various values. Two of them for
dissipation-free evolution (depicted by solid curve), which are
the closest to unity, correspond to the formation of Bell-like
states |B1〉 and |B2〉 discussed earlier and shown in figure 4. As
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Figure 5. Concurrence for the excited nonlinear coupler for various
cavity leakage rates κa = κb equal to 0 (solid curve), 10−4 (dashed
curve) and 10−3 (dot–dashed curve). The quantities χa , χb, ε and α
are identical to those of figure 4.

a consequence, we can treat our system as a source of ME states
for low dissipation. On the scale of figure 5 and for the chosen
coupling parameters, the differences between the evolution
with the leakage rates κa = κb � 10−5 and the dissipation-
free evolution are invisible. However, higher leakage rates
beyond short time evolution cause essential deterioration of
the concurrence, limiting the effective generation of ME states.
Thus, the results of our calculations indicate that the system
discussed is highly sensitive to the dissipation processes. Even
relatively small losses from the cavity are able to destroy the
entanglement. Therefore, we should assume that we deal
here with a very high Q cavity that is capable of preserving
practically the whole radiation field located inside. However,
this assumption is very desirable from our point of view. For
this case the coupler can be weakly excited by external fields
only—the less photons can escape from the cavity through the
mirror, the smaller the number of photons that can be injected
inside this way.

4. Conclusions

In this paper we have discussed a model of a nonlinear
coupler linearly excited by a single-mode coherent field.
We have shown that the evolution of the system is closed
within a finite set of states and only |i〉a| j 〉b (i, j = 0, 1)
states are populated. We have applied here the method
used for the nonlinear quantum scissors [24] and have
found some analytical formulae for the probability amplitudes
corresponding to these states. We have shown that, starting
from the vacuum state |0〉a|0〉b of our system, its evolution
leads to Bell-like state generation. Moreover, we have
calculated the concurrence and its behaviour indicates that the
ME states are produced for the system if the photon leakage
rates out of the cavities are less than 10−5 for the chosen
coupling and nonlinearity parameters. Moreover, we have
shown that the concurrence exhibits some modulation effect
as a result of the existence of various couplings in our system.
For each of the couplings we have a frequency and their
interference leads to some long-frequency oscillations in the
system.

We see that our model, despite its simplicity, exhibits
intriguing features. We can say that the properties of the
system discussed here are much desired from the point of
view of the physical properties of the nonlinear couplers.
Our scheme can be used for generation of entangled optical
qubits from classical light, which is a basic but rather simple
quantum information problem. Introduction of conditional
measurement in this scheme, along the lines of the proposal
by Duan et al [20], is probably worth further study from
the point of view of more sophisticated quantum information
applications [20–22].

Finally, we mention the experimental feasibility of the
presented scheme. Since our solution is applicable only when
the cavity-field intensities are very small, an objection arises
that the Kerr nonlinearities are usually negligible in this case.
However, the recent breakthrough advances in nonlinear optics
involving very weak light fields show that the nonlinearities can
be enhanced by several orders of magnitude in ultracold atomic
systems using electromagnetically induced transparency when
resonant optical absorption is eliminated ([28] and references
therein). In particular, giant Kerr nonlinearities have been
theoretically predicted [29] and first experimentally measured
to be ∼106 greater than those in the conventional optical
materials [30]. Thus, we believe that the scheme discussed
here can be feasible experimentally.
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Korolkova N and Peřina J 1997 J. Mod. Opt. 4 1525
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W Leoński and A Miranowicz
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[26] Leoński W and Miranowicz A 2001 Advances in Chemical
Physics Part 1, vol 119 (New York: Wiley) p 195

[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Lukin M D and Imamoǧlu A 2001 Nature 413 273
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