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Abstract
Evolutions of quantum noise, characterized by quadrature squeezing
parameter and Fano factor, and of mixedness, quantified by quantum von
Neumann and linear entropies, of a pumped dissipative non-linear oscillator
are studied. The model can describe a signal mode interacting with a
thermal reservoir in a parametrically pumped cavity with a Kerr
non-linearity. It is discussed that the initial pure states, including coherent
states, Fock states, and finite superpositions of coherent states, evolve into
the same steady mixed state as verified by the quantum relative entropy and
the Bures metric. It is shown analytically and verified numerically that the
steady state can be well approximated by a non-classical Gaussian state
exhibiting quadrature squeezing and sub-Poissonian statistics for the cold
thermal reservoir. A rapid increase is found in the mixedness, especially for
the initial Fock states and superpositions of coherent states, during a very
short time interval, and then for longer evolution times a decrease in the
mixedness to the same, for all the initial states, and relatively low value of
the non-classical Gaussian state.

Keywords: quantum entropy, quadrature squeezing, sub-Poissonian statistics,
Wigner function, Husimi function, Kerr non-linearity, Schrödinger cats,
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1. Introduction

Quantum noise and mixedness are properties central to
quantum theory [1]. It is obvious that a pure signal state
interacting with a thermal environment loses its purity and
turns into a mixed state. Since real optical devices suffer from
losses, it is important to study their influence on the noise and
mixedness during the state evolution.

In the case of interactions of a small number of the signal
and reservoir modes, the noise and mixedness parameters
periodically rise and fall. But in the case of the signal
interacting with an infinite number of the reservoir modes,
the evolution is irreversible, and after a few characteristic time
intervals the signal mode transforms into an asymptotic steady
state depending on external parameters of the system, e.g., an
external classical pump. One can show that when the pump is

turned off, the final steady state of the signal will be the pure
vacuum state, but when the pump is turned on, the steady state
is not the vacuum but a mixed non-classical state. We show
further that the steady state can be properly approximated by
a non-classical Gaussian state (NCGS).

In the next sections we will investigate a particular
example of a non-linear interaction, i.e., a nontrivial dynamics
of initial signal modes in a pumped resonator with a non-linear
Kerr medium when losses are included (see, e.g., [2–4]). We
are interested mainly in the quantum noise and mixedness
(purity) evolutions of the signal mode. We discuss three
different types of the signal initial states including coherent
states, Fock states and superpositions of coherent states. We
study the influence of the losses, pump and non-linearity on
the signal evolution, in particular the fast decoherence of the
initial coherent superpositions.
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2. Interaction model

A pumped non-linear oscillator can be described in the
interaction picture by the following Hamiltonian [2, 3]:

Ĥ = ĤI + ĤR, (1)

ĤI = i(pâ† − p∗â) + Gâ†2â2, (2)

where â and â† are the annihilation and creation operators of
the signal mode, respectively. The first term in Hamiltonian
ĤI describes a pump process with the complex amplitude
p, the second term represents a Kerr process with the non-
linear interaction constant G and ĤR is the term describing the
interaction of the signal mode with the cold thermal reservoir.
For simplicity we use the units where h̄ = 1. The model can be
used in a description of, e.g., a parametrically pumped cavity
with a Kerr non-linearity. We adopt the Heisenberg–Langevin
approach [5], in which the Heisenberg equation for the signal
mode reads as

dâ

dt
= p − 2iGâ†â2 − γ0â + L̂, (3)

where L̂ is the Langevin force and γ0 is the loss parameter. For
the optical modes at room temperature, the number of thermal
photons can be assumed negligible. Therefore, in the following
we assume the zero-temperature approximation. In that case
the standard rules hold for the Langevin force:

〈L̂(t1)L̂(t2)〉 = 〈L̂†(t1)L̂(t2)〉 = 〈L̂(t1)〉 = 0,

〈L̂(t1)L̂†(t2)〉 = 2γ0δ(t1 − t2).
(4)

For the linear interaction (G = 0) of the signal mode, an
analytical solution can be found. For the coherent initial state
|α〉, the solution is |ψ〉 = |α(t)〉 with the time-dependent
complex amplitude

α(t) = αe−γ0t +
p

γ0

(
1 − e−γ0t

)
. (5)

So the initial coherent state with the amplitudeα finally evolves
into another coherent state with the amplitude p/γ0. The
evolution is essentially finished during a short period equal
to the first few characteristic times τ = 1/γ0. For the model
without a pump, the initial state turns into the vacuum state.

In the non-linear Kerr interaction case, the evolution
cannot be solved analytically for arbitrary evolution times
and suitable numerical methods have to be used. The state
evolution in this case is much more complex and is the main
subject of our study. Under reasonable assumptions some
analytical approximations can be derived as well. After
presenting our precise numerical results, we will also give
an exact quantum steady-state solution and its semiclassical
approximation in the long-time limit.

Alternatively, we can start from the Liouville equation,
which leads to the following master equation:

dρ̂

dt
= 1

ih̄
[Ĥ , ρ̂] = 1

ih̄
[ĤI, ρ̂] + R̂, (6)

where R̂ for the zero-temperature reservoir stands for

R̂ = 1

ih̄
[ĤR, ρ̂] = γ0

(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
. (7)

Master equation (6) can simply be expressed in the Fock basis
with the density matrix in the form

ρ̂ =
∑
nm

ρmn|m〉〈n| (8)

leading to a set of ordinary linear differential equations for the
density matrix elements ρmn = 〈m|ρ̂|n〉. For weak interaction
fields the differential equations can be solved numerically. The
exact quantum results presented in this article are obtained by
applying this method.

To visualize evolution of quantum states (pure or mixed)
generated in our system, we apply the Husimi and Wigner
functions, which are the special cases of the Cahill–Glauber
s-parametrized quasidistribution function W(s)(β) defined for
−1 � s � 1 as follows [6]:

W(s)(β) = 1

π
Tr{ρ̂ T̂ (s)(β)}, (9)

where ρ̂ is the density matrix of the field and

T̂ (s)(β) = 1

π

∫
exp(βξ ∗ − β∗ξ)D̂(s)(ξ ) d2ξ, (10)

and D̂(s)(ξ ) = es|ξ |2/2 D̂(ξ ) with D̂(ξ ) being the displacement
operator. The quasidistribution W(s)(β) in the number-state
basis can be calculated as [6]

W(s)(β) = 1

π

∑
m,n

ρmn〈n|T̂ (s)(β)|m〉, (11)

where

〈n|T̂ (s)(β)|m〉 =
(

n!

m!

)1/2 (
2

1 − s

)m−n+1 (
s + 1

s − 1

)n

× (β∗)m−n exp

(
− 2|β|2

1 − s

)
Lm−n

n

(
4|β|2
1 − s2

)
(12)

given in terms of the associate Laguerre polynomials Lm−n
n (x).

Equation (12) for s → −1 goes into the simple expression

〈n|T̂ (−1)(β)|m〉 = exp(−|β|2)β
n(β∗)m√

n!m!
(13)

as can be derived by observing that limε→0 ε
n Lm−n

n (
y
ε
) =

(−y)n/n!. Equation (12) can also be applied for s → 1
if the limit is taken carefully (see e.g. [7]). The special
cases of W(s)(β) for s = −1, 0, 1 are known as the Husimi
Q-function, the Wigner W -function and Glauber–Sudarshan
P-function, respectively. For example, the s-parametrized
quasidistribution function for coherent state |α〉 is given by the
Gaussian distribution W(s)(β) = 2/[π(1 − s)] exp[−2|β −
α|2/(1− s)], which for s = 1 becomes Dirac’s delta δ(β−α).
If a given state is described by the P-function, which is positive
definite and no more irregular than Dirac’s delta, then the
state is classical, otherwise the state is considered to be non-
classical. We use this criterion to show that the steady state of
our system is non-classical.

3. Measures of quantum noise and mixedness

Quantum noise properties of non-classical light can be
analysed in terms of the Fano factor and quadrature noise
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variances. The first parameter corresponds to direct photo-
pulse detections, while the second is related to homodyne
detection schemes. The Fano factor is defined by

F = 〈n2〉 − 〈n〉2

〈n〉 (14)

which for Poissonian states satisfies F = 1, while for sub-
and super-Poissonian states F < 1 and F > 1, respectively.
In particular, the Fock states are sub-Poissonian with F = 0
independently of the number of photons; coherent states are
Poissonian (F = 1), while thermal chaotic states are super-
Poissonian since F = 1 + 2〈n〉 > 1. The quadrature noise
squeezing parameter S is defined as the minimum variance S =
minθ 〈(�X)2〉 over all possible values of phase θ ∈ (0, 2π) of
the general quadrature operator Xθ = âe−iθ + â†eiθ . For a
coherent state S = 1, while a state with S < 1 is referred to
as the quadrature squeezed light, since it has lower noise level
than the coherent or vacuum state.

The most natural measure of mixedness of a state, given
by ρ̂, is the von Neumann entropy [1]

E = −〈ln ρ̂〉 = −Tr{ρ̂ ln ρ̂}. (15)

The density matrix ρ̂ of any mixed state can be expressed as
the incoherent sum

ρ̂ =
N∑

k=1

pk |ψk〉〈ψk |, (16)

of the orthogonal pure states |ψk〉, where pk are their weight
factors, being eigenvalues of the density matrix ρ̂. As follows
from the general properties of the density matrix, it holds that
0 � pk � 1 and

∑N
k=1 pk = 1. Thus, the von Neumann

entropy can be expressed as

E = −
N∑

k=1

pk ln pk � 0. (17)

Another useful measure of mixedness is the linear entropy L
defined as

L = 1 − Tr{ρ̂2}, (18)

where the second term in (18) is referred to as the purity P of
the state

P = Tr{ρ̂2} =
N∑

k=1

p2
k . (19)

The mixedness L and the purity P are complementary in the
sense that whenever the entropy increases the purity falls.
For completeness, we note other generalized measures of the
mixedness including (see, e.g., [8]) the Renyi entropies defined
by Hq = ln Tr{ρq}/ (1 − q) (q = 2, 3, . . .), the Neumann–
Renyi entropy given by H2 = − ln Tr{ρ̂2} = − ln P or the
participation ratio defined to be R = 1/Tr{ρ2} = 1/P .

It is easy to show the following properties of the mixedness
parameters E and L: for any pure state it holds that E =
L = 0. For a mixture of two orthogonal states it holds that
0 � L � 1/2 and 0 � E � ln 2. For a balanced mixture of
two orthogonal modes p1 = p2 = 1/2 it holds that L = 1/2
and E = ln 2 as their maxima. For a mixed state composed
of N orthogonal pure states it holds that 0 � L � (N − 1)/N

and 0 � E � ln N . For a homogeneous superposition it is
pk = 1/N and therefore L = (N − 1)/N and E = ln N . So,
for a state strongly mixed with the reservoir, L can increase to
one and E to infinity.

For thermal or chaotic states, the density matrix is diagonal
with

ρkk = pk = 〈n〉k

(1 + 〈n〉)1+k
, (20)

implying that the linear entropy is

Lchaot = 2〈n〉
1 + 2〈n〉 (21)

and the corresponding von Neumann entropy is

Echaot = − ln
〈n〉〈n〉

(1 + 〈n〉)1+〈n〉 . (22)

Here, 〈n〉 stands for the number of photons in the chaotic mode.
For the vacuum state 〈n〉 = 0, which is a pure state, we get
E = L = 0, while for the chaotic state with 〈n〉 = 1 we get
E = ln 4 ≈ 1.386 and L = 2/3.

The thermal state is defined as the state which maximizes
the entropy when at the same time the energy is fixed. So, the
state with a fixed number of photons 〈n〉 has the upper limit
of entropy and the following inequality holds: E � Emax =
Echaot. The linear entropy has the upper limit of

Lmax = 1 − 1 + 2〈n〉
(1 + 3〈n〉) (1 + 3〈n〉/2) (23)

reached for a state with the descending arithmetic sequence
type distribution

pk = 2

2 + 3〈n〉
(

1 − k

1 + 3〈n〉
)
. (24)

For example, the state with 〈n〉 = 1 has the upper limit of the
linear entropy equal to Lmax = 7/10.

4. Numerical analysis of mixedness and noise

4.1. Ideal non-linear oscillator without pump

It is well known that in the case of Kerr dynamics without
losses and without a pump, the initial coherent state evolves
periodically into non-classical light with highly reduced
quantum noise [9] (see also [10] and references therein) and
also becomes superpositions of two (Schrödinger cats) [11]
and more (Schrödinger kittens) [12] coherent states. If the
initial state is

|ψ0〉 =
∞∑

k=0

ck|k〉, (25)

then its evolution is described by

|ψ〉 =
∞∑

k=0

cke−ik(k−1)Gt |k〉 (26)

being clearly periodic with the time period T = π/G , as the
state is |ψ (T )〉 = |ψ0〉. For example, the coherent initial
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Figure 1. Time snapshots of Husimi Q-function for the initial
coherent state |α〉 = |3〉. Kerr parameter G = 1, no loss γ0 = 0 and
no pump p = 0.
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Figure 2. The same as in figure 1 but for the dissipative model with
γ0 = 1.

state |ψ0〉 = |α〉 at the time t = T/2 becomes the coherent
superposition

|ψ2〉 = 1√
2

(
eiπ/4|iα〉 + e−iπ/4|−iα〉) . (27)

More generally, at the evolution time t = m
n T , which is a

rational fraction of the period T , the output state is given as a
coherent superposition of n coherent states dislocated regularly
on the circumference of a circle with a radius |α|. A typical
example of such a Kerr evolution can be seen in figure 1.
Obviously, the initial pure state remains pure (E = L = 0).

4.2. Dissipative non-linear oscillator without pump

When losses are involved in the system without a pump, the
evolution is no longer periodic and it ends in the vacuum state.
During the time evolution, an initial state goes through various
non-classical states and through strongly mixed states. Some
analytical solutions of the dissipative Kerr non-linear oscillator
have been obtained both for ‘quiet’ (T ≈ 0) [13] and ‘noisy’
(T > 0) [14] reservoirs.

The role of dissipation is clearly seen by comparing the
evolution of the initial coherent state |α = 3〉 without (figure 1)
and with (figure 2) losses. The parameters used in figures 1
and 2 are G = 1, p = 0 and the loss parameterγ0 is 0 in figure 1
and 0.1 in figure 2. Due to losses, no superpositions of coherent
states arise in the evolution presented in figure 2. The effect can
be explained as a fast destruction of internal coherence. Now
we will analyse the evolution of the mixedness, characterized
by the von Neumann (E) and linear (L) entropies, and the
noise in terms of the Fano factor F and quadrature squeezing
parameter S given in figure 3 for the parameters G = 0.2,
p = 0 and γ0 = 1. First we focus on the evolution of the
initial coherent state |α〉 = |3〉 depicted by thick solid curves
in figure 3. As seen, the signal state is maximally mixed at
the time t ≈ 0.87 when the entropies reach the values of
E ≈ 0.57 (figure 3(a)) and L ≈ 0.31 (figure 3(b)). During the
evolution, the photocount statistics of the initial coherent state
remains Poissonian. It is a direct consequence of the fact that
the diagonal terms of the density matrix keep the Poissonian
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Figure 3. Evolution of the mixedness and noise for the system
without a pump: (a) the von Neumann entropy E , (b) linear entropy
L , (c) Fano factor F and (d) squeezing parameter S for the initial
coherent state |α = 3〉 (thick solid curves), the Fock state |n = 9〉
(dashed curves) and the superposition of three coherent states |ψ3〉
(thin solid curves). Resonator parameters are p = 0, G = 0.2 and
γ0 = 1.

character for all the times. It can be shown that it holds exactly
that

p(n) = exp(−〈n〉)〈n〉n

n!
, (28)

where 〈n〉 = |α|2 exp(−2γ0t), which explains why the Fano
factor remains constant and equal to one for all the times
(see figure 3(c)). On the other hand, the quadrature noise
evolves leading to the maximum squeezing of S ≈ 0.52 at
the time t ≈ 0.18. In figure 3, we have also presented by thin
solid curves the evolutions of the mixedness and the noise of
the initial superposition of three coherent states (Schrödinger
kittens)

|ψ3〉 = N3

(
|3〉 + |3ei 2π

3 〉 + |3e−i 2π
3 〉

)
, (29)

where N3 is a normalization constant. One can observe a rapid
increase in the mixedness measured by both E in figure 3(a)
and L in figure 3(b) during a very short time interval t < 0.05.
It can be explained as a general effect of the coherence loss of
quantum components of the superposition |ψ3〉. In general, it
can be shown that the superposition of three strong coherent
states (normalized by N ≈ 1/

√
3)

|ψ〉 = N (|α1〉 + |α2〉 + |α3〉) (30)

exponentially fast evolves into the mixed state

ρ̂ = N 2 (|α1〉〈α1| + |α2〉〈α2| + |α3〉〈α3|) (31)

as a consequence of the reservoir influence. The characteristic
time of the decoherence process between |αi〉 and |αk〉 (i 	= k
for i, k = 1, 2, 3) can be estimated as

τik ≈ (
2γ0|αi − αk |2

)−1
. (32)

So for strong fields, the decoherence process is much faster
than the dissipative process itself. The mixedness measured
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Figure 4. Evolution of the purity P and entropy E for the initial
Fock state |n = 9〉 (dotted curve) and for the superposition of three
coherent states |ψ3〉 with Kerr (thick solid curve) and without Kerr
(thin solid curve). The resonator parameters are the same as in
figure 3.

by the linear entropy increases to a value of L = 2/3,
while that measured by the von Neumann entropy increases
to E = ln 3 ≈ 1.10. In our case of |ψ3〉 the increase in the
linear entropy can be approximated by

L ≈ 2
3

[
1 − exp(−6γ0|α|2t)

]
(33)

whose validity is verified by the results shown in figures 3(a),
(b) and 4. We note that a better agreement with the
decoherence theory is achieved for the system when the Kerr
non-linearity is switched off (corresponding to thin solid curves
in figure 4) rather than switched on (depicted by thick solid
curves). For longer times, the noise dominates the process
and the signal state turns into the vacuum state. Thus, the
squeezing parameter evolves into the value of unity as shown
in figure 3(d). As for the initial coherent state, the Fano factor
for the initial superposition state |ψ3〉 remains unchanged and
equal to unity (see figure 3(c)) during the evolution of the
unpumped system for arbitrary values of the interaction G and
loss γ0 parameters.

For the initial Fock states |n = 9〉, a rapid increase in
the mixedness can also be observed in figures 3(a) and (b) as
depicted by dotted curves. For t ≈ 0.35 we find the mixedness
parameters to be L ≈ 0.8 and E ≈ 1.8. The mechanism of
decoherence and increase in the mixedness differ from those
for the initial superposition of coherent states. We can explain
the observed values simply as follows: by solving directly the
Schrödinger equation for the initial Fock state |n〉, we get a
diagonal density matrix at time t described by the binomial
distribution

p(k) = ρkk =
(

n

k

)(
e−2γ0t

)k (
1 − e−2γ0t

)n−k
, (34)

which is surprisingly completely independent of the Kerr non-
linearity G . The mixedness parameter L = 1−∑

p2(k) sums
up to an expression proportional to a hypergeometric function
2 F1(−n,−n, 1, x), which is difficult to handle. But we can
easily calculate the variance

�2k = n
(
e−2γ0t

) (
1 − e−2γ0t

)
(35)

which reaches a maximum at the time moment when e−2γ0t =
1/2. So we can estimate the searched maximum of the linear
entropy L at this moment. We have

Lmax ≈ 1 −
n∑

k=0

(
n

k

)2

2−2n = 1 − (2n)!

(2nn!)2
(36)
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Figure 5. Time snapshots of Wigner function for the initial coherent
state |α = 3〉. Resonator parameters are G = 0.2, γ0 = 1 and
p = 5.
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Figure 6. The same as in figure 5 but for the initial Fock state
|n = 9〉.

and for large n we get the following simple approximation:

Lmax ≈ 1 − 1√
πn
, (37)

by applying the Stirling formula n! ≈ √
2πne−nnn . Thus,

we can analytically estimate the loss of purity for n = 9 as
Lmax ≈ 0.815 according to (36) (or slightly less accurately
as 0.812 according to (37)), which can be expected at the
time t ≈ 0.347. We can calculate the entropy of the state
at the same time moment to get E ≈ 1.823. These estimations
are in full agreement with the precise numerical results given
in figures 5(a) and (b). Finally, we note that the squeezing
parameter decreases from S = 19, while the Fano factor
increases from F = 0 for the initial Fock state to reach the
value of one for the vacuum state in the time limit.

4.3. Dissipative non-linear oscillator with pump

Here, we will analyse the system with the classical pump
switched on, for which the initial state finally evolves into
a stationary non-vacuum state. Its properties are determined
by the pump intensity p and by the passive parameters γ0 and
G . We will study three typical evolutions for different initial
fields including coherent states, Fock states and superpositions
of three coherent states. Figure 5 shows the Wigner function
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Figure 7. The same as in figure 5 but for the initial coherent state
superposition |ψ3〉.

evolution of the coherent initial state |α = 3〉, figure 6 shows
the evolution of the Fock initial state |n = 9〉 and figure 7 shows
evolution of the superposition of three coherent states, given
by (29), for the same resonator parameters p = 5, γ0 = 1 and
G = 0.2. All the three states have been selected to have the
same initial energy 〈n〉 = 9 (in the last case approximately).
Six time snapshots of the Wigner function of the signal state are
presented for the time moments t = 0, 1/3, 2/3, 1, 5 and for a
very long time, practically corresponding to ∞. In figure 5, the
coherent initial state rotates and evolves into a banana-shape
state and finally ends in a steady state. In figure 6, the initial
Fock state of a ring shape is deformed and squeezes before
ending in a steady state. In figure 7, the initial superposition
of the coherent states rotates, deforms and its components
converge into the same steady state. For the coherent initial
state, the phase-space evolutions of the mean quantum 〈â(t)〉
and classical α(t) amplitudes in the time interval 0 < t < 10
are presented in figure 9. Both the spirals start at the point
α = 3, and end at α ≈ 1−2i. Note that the evolutions are very
similar to each other even for the other times, which shows the
validity of our semiclassical approximation. The evolutions
of the mixedness parameters E and L and the quantum noise
parameters F and S for all the three initial states in the pumped
system are depicted in figure 8. Note a rapid increase in the
mixedness especially in the cases of the initial Fock state and a
superposition of coherent states for very short evolution times,
and then for longer times a decrease in the mixedness for all the
initial states. We observe that the evolutions for short times are
similar to those presented in figure 3 for the unpumped system.
However, for longer times (even for t > 5 for the parameters
of figure 8) all three initial states of the pumped system evolve
into some mixed steady state different from the vacuum state.
This is in contrast to the evolution of the unpumped system, for
which E(p = 0) and L(p = 0) approach zero, while S(p = 0)
and F(p = 0) approach one in the time limit (see figure 3),
since the dissipative system without external pumping evolves
into the vacuum state for any initial fields. It is worth noting,
although it is out of the focus of our interest, that the weakly
pumped non-linear oscillator (p 
 G) enables the so-called
optical state truncation [15] and can be used for optical qubit
generation.
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Figure 8. Evolution of the mixedness and noise parameters, the
same as in figure 4 but for the pumped system with p = 5.
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Figure 9. Phase space trajectory of quantum 〈a(t)〉 (thick curve)
and classical α(t) (thin curve) solutions for t ∈ (0, 10).

4.4. Steady-state solution

In figures 5–7 we have presented the evolutions of the Wigner
functions up to the time t = 5 and then checked for much
longer times, practically, for t → ∞. From this study we
can conclude that all three initial states end in the same steady
state, which is centred around the same value of the complex
amplitude α ≈ 1−2i. All the other parameters studied, that is
E ≈ 0.278, L ≈ 0.135, 〈n〉 ≈ 5.13, F ≈ 0.69 and S ≈ 0.72
of the steady state are the same as well. So, the steady-state
solution is apparently unique and totally independent of the
initial states. It can be therefore fully determined by the
resonator parameters only. While for the system without a
pump the evolution ends in the vacuum state, for the pumped
system the asymptotic state is neither the vacuum nor pure,
and can have intriguing noise properties. We can prove it
by a decomposition of the steady-state density matrix in its
spectrum of eigenstates.

Drummond and Walls found that no Glauber–Sudarshan
P-function exists in the steady state except as a generalized
function [2]. The latter was used by Kheruntsyan to find the
following explicit form of the steady-state density matrix [4]:

ρ̂ss = C
∑
n,m

(ε∗)mεn

√
m!n!

0 F2(λ
∗ + m, λ + n, |ε|2)

�(λ∗ + m)�(λ + n)
|n〉〈m| (38)

where C = �(λ∗)�(λ)/0 F2(λ
∗, λ, 2|ε|2), ε = −ip/G , λ =

−iγ0/G , and 0 F2 is the generalized Gauss hypergeometric
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Figure 10. Evolution of the Bures metric (DB) and the quantum
relative entropy (DKL) for the same initial states as in figure 8.

Figure 11. Wigner functions W j = W (0)
ss (|ψ j 〉) ( j = 0, 1, 2) of the

first three pure state components of the steady state for the resonator
parameters G = 0.2, p = 5, γ0 = 1.

function. Equation (38) readily enables calculation of the
moments 〈(â†)mân〉ss by the expressions summing up to

〈(â†)mân〉ss = C(ε∗)mεn 0 F2(λ
∗ + m, λ + n, 2|ε|2)

�(λ∗ + m)�(λ + n)
(39)

which corresponds to a slightly modified Drummond–Gardiner
formula [3]. Solution (38), with the help of definition (11),
also enables calculation of the steady-state Husimi and Wigner
functions. For example, the latter can be given by [4]

W(0)
ss (β) = N (0)e−2|β|2

∣∣∣∣ Jλ−1(
√−8εβ∗)

(β∗)(λ−1)/2

∣∣∣∣
2

, (40)

where Jλ−1(x) is the Bessel function and N (0) is the
normalization constant.

To find a physical insight into the steady-state density
matrix (38), we rewrite it as the incoherent superposition (16)

ρ̂ss = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| + · · · (41)

of the orthogonal pure states |ψk〉 with the weight factors pk ,
which can be found numerically. Applying the eigenvalue
method for the steady state we have obtained all the spectrum
of the final state. Wigner functions of the first three most
important components are displayed in figure 11. The weight
coefficients of the strongest components are in the sequence of
p0 ≈ 0.928, p1 ≈ 0.068 and p2 ≈ 0.004. The first component
|ψ0〉, apart from the second and third components, is strongly
non-classical with its quadrature noise of about S0 ≈ 0.60,
while the compound steady state has the quadrature noise level
just about S ≈ 0.72. To verify the conclusion that the density
matrices ρ̂(t) for different initial conditions evolve into the
same steady state, described by the density matrix (38), we
calculate the Bures metric and the quantum relative entropy
(the generalized Kullback–Leibler distance) between ρ̂(t) and
ρ̂ss defined as follows [16]:

DB{ρ̂(t) ‖ ρ̂ss} = 2 − 2 Tr{[
√
ρ̂ssρ̂(t)

√
ρ̂ss]

1/2}, (42)

DKL{ρ̂(t) ‖ ρ̂ss} = Tr{ρ̂(t)[ln ρ̂(t) − ln ρ̂ss]}, (43)
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Figure 12. Exact quantum weight factors pk of the steady state
(thick curve with squares) versus the Gaussian state approximation
given by (A.3) (thin curve with circles).

respectively. The square of the trace in (42) is the so-called
Uhlmann transition probability or the Jozsa fidelity for mixed
states [17]. Figure 10 clearly shows that the Bures metric and
quantum relative entropy approach zero for the three different
initial fields including coherent states, their superpositions and
the Fock states.

In the next section we will show that the steady state can
be well described as a non-classical Gaussian state at least for
high pump intensities.

5. Linearized approximation of the steady-state
solution

Now we will give a linearized approximation of the steady-
state solution of the Heisenberg equation (3). We start with
the classical approximation for strong fields, when the quantum
noise can be neglected and the signal mode can be described
by a complex amplitude. The Heisenberg equation (3) gives
the ordinary differential equation

dα

dt
= p − 2iG|α|2α − γ0α (44)

for the complex amplitude α. Minor differences between
the exact quantum mean amplitude 〈a(t)〉 and the classical
amplitude α(t) for the coherent initial state |α = 3〉 and for
the resonator parameters p = 5, G = 0.2 and γ0 = 1 can be
seen in the phase-space trajectory depicted in figure 9.

If we are interested in the steady-state solution only, we
may replace the left-hand side of equation (44) by zero and
solve it. The complex equation can be transformed into the
real equation

|p|2 = (
γ 2

0 + 4G2|α|4) |α|2, (45)

which is a cubic equation in intensity |α|2. A simple analysis
shows that the amplitude |α| of the steady-state solution is
a monotonic function of the pump parameter |p| and so
equation (45) has a unique solution and no threshold can be
observed. Since the explicit form of the solution is too complex
to find some relevant physics in it, we will not present it
here. We note only that for the resonator parameters p = 5,
G = 0.2 and γ0 = 1 assumed in the examples investigated
in the previous section one can find the exact classical steady-
state solution |α|2 = 5 and α = 1−2i. In particular, for p = 0
equation (45) has a trivial solution of α = 0, for weak pump
|p|2 
 γ 3

0 /2G the amplitude grows linearly with the pump
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intensity asα ≈ p/γ0 and for very strong pump |p|2 � γ 3
0 /2G

the amplitude grows with the third root of the pump intensity

α ≈ −i
p

|p|
( |p|

2G

)1/3

. (46)

To describe the noise properties of the signal mode we will
search for a solution to equation (3) as a sum of two components
â = α + Â, where α is the strong classical complex amplitude
and Â is the weak quantum noise operator. By inserting it
into equation (3) and after linearization one gets the following
equation for the noise operator:

d Â

dt
= −γ Â − δ Â† + L̂, (47)

where the complex coefficients γ and δ depend on time through
the amplitude α and are given by the relations

γ = γ0 + 4iG|α|2, δ = 2iGα2. (48)

The solution of equation (47) is a Gaussian state, defined
by (A.2) in the appendix, exhibiting purely non-classical
properties, thus referred to as the NCGS. The time evolution
of the NCGS parameters B and C is described by the two
differential equations

Ḃ = −2
(
γ + γ ∗) B − (

δ∗C + δC∗) ,
Ċ = −δ (1 + 2B)− 2γC.

(49)

From them one can obtain numerically the linearized solution
of the Heisenberg equation (3), but it is meaningless when we
know the exact quantum solution. Instead of that we will focus
on the steady-state solution only. Since |γ | > |δ|, a stationary
solution of the operator equation (47) exists. It is the NCGS
with the following parameters [18]:

2B = |δ|2
|γ |2 − |δ|2 , 2C = − δγ ∗

|γ |2 − |δ|2 . (50)

Since we know all three parameters α, B and C of the NCGS,
we can simply estimate the other parameters of the steady
state, where the corresponding formulae are given in the
appendix. For example, for the quadrature noise squeezing
parameter (A.7) one can derive a simple formula

S = |γ |
|γ | + |δ| � 1 (51)

demonstrating that the steady state is squeezed. The parameter
x , defined by (A.4), is explicitly given by

x = 1

2




√
|γ |2

|γ |2 − |δ|2 − 1


 . (52)

Numerically, for the resonator parameters p = 5, G = 0.2
and γ0 = 1, we get α = 1 − 2i, γ = 1 + 4i, δ = 1.6 − 1.2i,
S ≈ 0.673, F ≈ 0.711, x ≈ 0.072, p0 ≈ 0.933, p1 ≈ 0.062
and p2 ≈ 0.004. From formula (A.6) we estimate the linear
entropy of the steady state as L ≈ 0.126 and from (A.5)
we estimate the von Neumann entropy as E ≈ 0.263.
Surprisingly, these estimations match the exact values already

for relatively low pump intensities. For higher pump intensities
the agreement is even better.

Note that in the strong pump approximation, a very simple
relation holds, |γ | = 2|δ|, which gives crude estimations of
S = 2/3 and F = 2/3. Since x = 1

3

√
3 − 1

2 ≈ 0.0774, the
linear entropy is estimated as L = 1 − √

3/2 ≈ 0.134 and
the entropy as E ≈ 0.278. We can also estimate the weight
coefficients of steady state decomposition as p0 ≈ 0.928,
p1 ≈ 0.067, p2 ≈ 0.005. So, even the crude estimations well
match the exact values obtained numerically in the previous
section.

In figure 12 we have compared the exact quantum weight
factors pk of the steady state and the approximate Gaussian
weight factors given by (A.3) with x ≈ 0.072 calculated
from (A.4) for the resonator parameters G = 0.2, γ0 = 1
and p = 5. This graphical representation shows the validity
of our approximation.

6. Conclusions

We have studied the evolution of the quantum noise and
mixedness of a dissipative non-linear oscillator, described by
a Kerr non-linear oscillator, pumped by a classical external
field. We quantified the quantum noise by the quadrature
squeezing parameter and the Fano factor, while the mixedness
by the quantum von Neumann and linear entropies. Dissipation
was described in the standard Heisenberg–Langevin approach
by coupling the system to a zero-temperature reservoir. We
demonstrated that initial pure states, including the Fock states,
coherent states and their finite superpositions, exhibited fast
decoherence and evolved into the same steady mixed state,
being well approximated by a non-classical Gaussian state as
verified by the Bures metric and the quantum relative entropy.
We presented analytical formulae and numerical results for
the steady state parameters to show that the state exhibits
quadrature noise squeezing and sub-Poissonian statistics if
the thermal reservoir is cold. We observed, especially for
the initial non-classical states including the Fock states or the
finite superpositions of coherent states, a rapid increase in the
mixedness at the very beginning of the evolution, and then for
longer times a fall in the mixedness to the same low value of
the asymptotic non-classical Gaussian state in the case of the
cold reservoir.
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Appendix. Gaussian states

The Gaussian state is defined as a state with Gaussian
quasidistribution and Gaussian characteristic functions (see,
e.g., [5, 19, 20]), which can be identified completely by the
three parameters

α = 〈â〉, B = 〈â†â〉 − 〈â†〉〈â〉, C = 〈â2〉 − 〈â〉2.

(A.1)
Thus the Gaussian state can be defined by its Cahill–Glauber
s-parametrized quasidistribution function
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W(s)(β) = 1

π
√

Ks
exp

(
−1 − s + 2B

2Ks
|β − α|2

+
[

C∗

Ks
(β − α)2 + c.c.

])
, (A.2)

where Ks = (1/2 − s/2 + B)2 − |C|2. The Gaussian state
is a natural generalization of coherent (B = C = 0) and
chaotic (C = 0) states. Note that in a special case of s = 1
the Glauber–Sudarshan function P(β) ≡ W(1)(β) exists if
K1 > 0, otherwise the state described by (A.2) is non-classical,
and thus referred to as the NCGS. The Gaussian states are
mixed states with the weight coefficients

pk = xk

(1 + x)1+k , (A.3)

where

x =
√(

B +
1

2

)2

− |C|2 − 1

2
. (A.4)

The von Neumann entropy of the Gaussian state (A.2)
reads [19]

E = − ln
xx

(1 + x)1+x . (A.5)

Similarly, it is easy to show that the purity parameter is

P = (1 + 2x)−1, (A.6)

while the quadrature noise squeezing parameter reads

S = 1 + 2(B − |C|) (A.7)

and its Fano factor is

F = 1 + 2B +
Cα∗2 + C∗α2

|α|2 + B
, (A.8)

where the parameters α, B and C are defined by (A.1). Note

that the squeezing occurs if B < |C| or equivalently if K1 < 0,
so any NCGS exhibits quadrature squeezing.

References

[1] von Neumann J 1955 Mathematical Foundations of Quantum
Mechanics (New York: Princeton University Press)

[2] Drummond P D and Walls D F 1980 J. Phys. A: Math. Gen. 13
725

[3] Drummond P D and Gardiner C M 1980 J. Phys. A: Math.
Gen. 13 2353

[4] Kheruntsyan K V 1999 J. Opt. B: Quantum Semiclass. Opt. 1
225
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