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Abstract
We analyse the truncation of coherent states up to a single-photon Fock state
by applying linear quantum scissors, utilizing the projection synthesis in a
linear optical system, and nonlinear quantum scissors, implemented by
periodically driven cavity with a Kerr medium. Dissipation effects on
optical truncation are studied in the Langevin and master equation
approaches. Formulae for the fidelity of lossy quantum scissors are found.
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1. Introduction

The breathtaking advances in quantum computation and
quantum information processing in the last decade [1] have
stimulated progress in quantum optical state generation and
engineering [2]. Among various schemes, the proposal of
Pegg, Phillips and Barnett [3, 4] of optical state truncation
via projection synthesis has attracted considerable interest [5–
20] due to the simplicity of the scheme to generate and teleport
‘flying’ qubits defined as a running wave superposition of zero-
and single-photon states. The scheme is referred to as linear
quantum scissors (LQS) since the coherent state entering the
system is truncated in its Fock expansion to the first two terms
using only linear optical elements and performing conditional
photon counting. The optical state truncation can also be
realized in systems comprising nonlinear elements including
a Kerr medium [14, 15]. Such systems will be referred to
as nonlinear quantum scissors (NQS). Both LQS [12, 13]
and NQS [16, 17] can be generalized for the generation of
a superposition of N states. It is worth noting that there are
fundamental differences between the states truncated by the
LQS and NQS [18].

In this paper we analyse the effects of dissipation on
state truncation by quantum scissors. Various kinds of losses
in quantum scissors have already been analysed, including
inefficiency and dark counts of photodetectors [4, 7–10], non-
ideal single-photon sources [9, 10], mode mismatch [11], and
losses in beam splitters [7]. Özdemir et al [9–11] demonstrated
that the LQS exhibit surprisingly high fidelity in realistic

setups even with conventional photon counters, so long as the
amplitude of the input coherent state is sufficiently small. LQS
have recently been realized experimentally by Babichev et al
[5] and Resch et al [6], although only in the low-intensity
regime. The effect of losses on the optical truncation in NQS
has been studied for a zero-temperature reservoir [19] and
imperfect photodetection [15].

These studies of losses in LQS (with few exceptions,
e.g., for [7]) have been based on the quantum detection
and estimation theory using the positive operator valued
measures (POVM) [21]. In quantum-optics textbooks (see,
e.g., [22, 23]), the quantum-statistical properties of dissipative
systems are usually treated in three ways, by applying

(i) the Langevin (Langevin–Heisenberg) equations of motion
with stochastic forces,

(ii) the master equation for the density matrix, and
(iii) the classical Fokker–Planck equation for quasiprobability

distribution.

In the next section we will apply the Langevin approach to
describe dissipative LQS, while in section 3 we shall use the
master equation approach to study dissipative NQS.

2. Lossy linear quantum scissors in the Langevin
approach

The linear quantum scissors device of Pegg, Phillips and
Barnett [3, 4] is a simple physical system for optical state
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Figure 1. The scheme of linear quantum scissors: |α〉 is the input
coherent state, |αtrunc〉 is the output truncated coherent state, |0〉 and
|1〉 are vacuum and single-photon states, respectively; BS1 and BS2
are beam splitters; D2 and D3 are photon detectors. For a successful
truncation process, one of the detectors should detect one photon,
while the other should detect no photons.

truncation based only on linear optical elements (two beam
splitters BS1 and BS2) and two photodetectors (D2 and D3)
as depicted in figure 1. If the input modes a1 and a2 are in the
single-photon and vacuum states, respectively, and one photon
is detected at D2 but no photons at D3, then the lossless LQS
device with 50/50 beam splitters truncates the input coherent
state |α〉 in mode b3 to the following superposition of vacuum
and single-photon states in mode b1:

|αtrunc〉b1 = N ′
c2c3〈10|ψout〉b1c2c3 = |0〉b1 + α|1〉b1√

1 + |α|2 (1)

where α is the complex amplitude and N ′ is a renormalization
constant. The state (1) is referred to as the truncated
two-dimensional (or two-level) coherent state since it is the
normalized superposition of the first two terms of the Fock
expansion of the Glauber coherent state. By introducing a new
variable ᾱ such that cos(|ᾱ|) = 1/

√
1 + |α|2 and sin(|ᾱ|) =

|α|/√1 + |α|2, and ϕ = Arg α, state (1) can be rewritten as

|αtrunc〉 = cos(|ᾱ|)|0〉 + eiϕ sin(|ᾱ|)|1〉 (2)

where, for brevity, subscript b1 is omitted. If the j th ( j = 1, 2)
beam splitter has an arbitrary but real transmission coefficient
t j and an imaginary reflection coefficient r j , then the LQS
generates the state [9]

|ψ〉b1 = |r1t2||0〉b1 + α|r2t1||1〉b1√|r1t2|2 + |α|2|r2t1|2
. (3)

This state evolves into the truncated coherent state (1) by
assuming identical BSs (r1 = r2 and t1 = t2).

In general, the transmission and reflection coefficients
of a perfect BS obey the conditions |t |2 + |r |2 = 1 and
tr∗+t∗r = 0, implied by the unitarity of BS transformation. By
including dissipation, these conditions can be violated. Thus,
the main goal of this section is to analyse the deterioration
of the truncation process due to the noise introduced by lossy
beam splitters and also by inefficient photodetectors. In the
simplest approach, one can model the BS losses and finite
detector efficiency by adding to our system additional beam
splitters, then all components of the system (including the
new BSs) can be assumed perfect. Here, we apply another
standard approach of the quantum theory of damping based on
the Langevin noise operators [22, 23]. We follow the analyses

of Barnett et al [24, 25] and Villas-Bôas et al [7]. The lossy
BS1 transforms the input annihilation operators â j into the
output b̂ j as follows [24, 25]:

â1 = t∗
1 b̂1 + r∗

1 b̂2 + L̂a1,

â2 = r∗
1 b̂1 + t∗

1 b̂2 + L̂a2

(4)

where we use the notation of figure 1, and L̂a1 and L̂a2 are
the Langevin noise (force) operators satisfying the following
commutation relations:

[L̂a1, L̂†
a1] = [L̂a2, L̂†

a2] = 1 − |t1|2 − |r1|2 ≡ �1,

[L̂a1, L̂†
a2] = [L̂a2, L̂†

a1] = −(t1r∗
1 + t∗

1 r1) ≡ −�1.
(5)

The transformation between the input (b̂ j ) and output (ĉ j )
annihilation operators of the lossy BS2 together with the effect
of finite efficiency (η ≡ η1 = η2) of the detectors generalizes
to [7]

b̂2 = √
ηt∗

2 ĉ2 +
√
ηr∗

2 ĉ3 + L̂b2,

b̂3 = √
ηr∗

2 ĉ2 +
√
ηt∗

2 ĉ3 + L̂b3

(6)

where the Langevin noise operators L̂b2 and L̂b3 obey

[L̂b2, L̂†
b2] = [L̂b3, L̂†

b3] = η�2 + (1 − η) ≡ x,

[L̂b2, L̂†
b3] = [L̂b3, L̂†

b2] = −η�2.
(7)

In (5) and (7), � j = t j r∗
j + t∗

j r j and � j = 1 − |t j |2 − |r j |2
are the j th beam splitter phase and amplitude dissipation
coefficients, respectively, which vanish for perfect beam
splitters. For simplicity, we assume that the BSs are identical
(r1 = r2 ≡ r, t1 = t2 ≡ t) and that they cause only amplitude
damping (� ≡ �1 = �2 �= 0) without introducing phase noise
(�1 = �2 = 0). By applying the transformations (4) and (6)
for the input state |ψin〉a1a2b3 = |1〉a1|0〉a2|α〉b3 and performing
the conditional measurement (projection synthesis) on modes
c2 and c3 (as shown in figure 1), one finds that the state of the
output mode b1 of the LQS is entangled with the environment
as follows [7]:

|ψ〉b1E = N ′′
c2c3〈10|ψout〉b1c2c3E

= N(|0〉b1|Λ0〉E + α|1〉b1|Λ1〉E ) (8)

where we write the environmental states compactly as

|Λ0〉E = √
ηr(t + αr L̂†

a2 + α L̂†
a1) exp(α L̂†

b3)|0〉E ,

|Λ1〉E = √
ηr t exp(α L̂†

b3)|0〉E

(9)

and the normalization N is given by

N = {η|r |2 |α|2ex |α|2 [|t |2(|α|−2 + 1) + |r |2x + �]}−1/2 (10)

and N ′′ is a renormalization constant. The fidelity of the output
state (8) of the lossy LQS to a desired perfectly truncated state,
given by (1), can be calculated from

F ≡ ‖b1〈αtrunc|ψ〉b1E‖2 (11)

which leads us to the following relation:

F = N 2η|r |2 exp(x |α|2)
×

(
|t |2(|α|2 + 1) +

|α|2
1 + |α|2 (|r |2x + �)

)
(12)
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Figure 2. The scheme of nonlinear quantum scissors: a cavity with a
Kerr medium is pumped by external ultra-short pulses of laser light.

where the normalization N is given by (10). By defining
R = 1/|α|2, equation (12) can be simplified to

F = 1 − (η� + 1 − η)|r |2 + �

(1 + R)[(η� + 1 − η)|r |2 + � + |t |2(1 + R)]
(13)

where x = η� + (1 − η). In a special case for 50/50
BSs, |r |2 = |t |2, our solution simplifies to that of Villas-
Bôas et al ([26]; note that the corresponding fidelity in [7]
is misprinted). By neglecting the losses caused by the beam
splitters, solution (13) is further reduced to the well-known
Pegg–Phillips–Barnett fidelity [3]:

F = 1 − |α|4(1 − η)

(1 + |α|2)[1 + |α|2(2 − η)]
. (14)

By also assuming perfect detectors, the fidelity becomes unity,
as expected.

3. Lossy nonlinear quantum scissors in the master
equation approach

In the nonlinear quantum scissors scheme, schematically
depicted in figure 2, a cavity mode is pumped by an external
classical pulsed laser field, described by the Hamiltonian ĤK,
and is interacting with a Kerr medium, described by the
Hamiltonian ĤNL. Thus, the whole system Hamiltonian is
given by [14, 19]

ĤS = Ĥ0 + ĤNL + ĤK (15)

where
ĤNL = h̄

κ

2
(â†)2â2, (16)

ĤK = h̄ε(â† + â)
∞∑

k=−∞
δ(t − kTK) (17)

and the free Hamiltonian of the system is Ĥ0 = h̄ωâ†â. In
equation (16), â is the annihilation operator for a cavity mode at
frequencyω, andκ is the nonlinear coupling proportional to the
third-order susceptibility of the Kerr medium. In (17), Dirac δ-
functions describe external ultra-short light pulses (kicks); the
real parameter ε is the strength of the interaction of the cavity
mode with the external field; TK is the period of free evolution
between the kicks. The truncation process in the system, given
by (15), occurs if

(i) TK 
 Tround-trip 
 2π/ω, where ω is the light frequency
and Tround-trip is the round-trip time of the light in the cavity,
and

(ii) the kicks are much weaker than the Kerr nonlinear
interaction, ε � κ .

As shown in [14, 16], the state generated by the NQS is a
two-dimensional coherent state [27, 28] of the form

|ᾱtrunc〉 ≈ cos(|ᾱ|)|0〉 − i sin(|ᾱ|)|1〉 (18)

where ᾱ = −ikε. Dissipation of the NQS system is modelled
by its coupling to a reservoir of oscillators (heat bath) described
by the Hamiltonian

Ĥ = ĤS + ĤR + ĤSR, (19)

ĤSR = h̄
∑

j

(g j âb̂†
j + g∗

j â
†b̂ j ) (20)

where ĤS is given by (15) and ĤR = h̄
∑

j χ j b̂
†
j b̂ j is the

free Hamiltonian of the reservoir, where b̂ j is the annihilation
operator of the j th reservoir oscillator. By applying the
standard methods of the quantum theory of damping [22], one
finds that the NQS evolution between the kicks is governed
under the Markov approximation by the following master
equation in the interaction picture:

∂

∂t
ρ̂ = −i

κ

2
[(â†)2â2, ρ̂]− γ

2
([â†, âρ̂] + h.c.)+γ n̄[â†, [ρ̂, â]]

(21)
where γ is the damping constant and n̄ is the mean number of
thermal photons, n̄ = {exp[h̄ω/(kBT )]−1}−1, at the reservoir
temperature T , where kB is the Boltzmann constant. Let the
kick be applied at time tK, then the solution of equation (21)
for any time t after tK but before moment tK + TK is the
same as the solution for the ordinary damped anharmonic
oscillator [29, 31, 32] with the initial state given at time tK.
We can write the solution compactly as (ρnm ≡ 〈n|ρ̂|m〉):
ρnm(tK + t) = exp

[
γ t

2
+ i(n − m)κt

]
En+m+1

n−m (t)

×
∞∑

l=0

ρn+l,m+l (tK)
√

Cn+l
n Cm+l

m ḡl
n−m(t)

× F

[
−n,−m, l + 1; 4n̄(n̄ + 1)

�2
n−m

sinh2 tn−m

]
(22)

where F is the hypergeometric function, Cx
y are binomial

coefficients, tx = γ�x t/2, and

ḡx (t) = 2(n̄ + 1)

�x +�x coth tx
,

Ex(t) = �x

�x sinh tx +�x cosh tx

(23)

with �x = √
�2

x − 4n̄(n̄ + 1) and �x = 1 + 2n̄ + iκx/γ .
By assuming the reservoir to be at zero temperature, the
solution (22) reduces to [30, 33, 34]

ρnm(τK + τ) = exp

[
i(n − m)

τ

2

]
f (n+m)/2
n−m (τ)

×
∞∑

l=0

ρn+l,m+l (τK)

√
Cn+l

n Cm+l
m

(
λ[1 − fn−m(τ)]

λ + i(n − m)

)l

(24)

where τ is the scaled time given by τ = κt , so τK = κtK.
Moreover, λ = γ /κ , and fx (τ) = exp[−(λ + ix)τ ]. For a
lossless anharmonic oscillator, i.e. for λ = 0, the solution (24)
further simplifies to

ρnm(τK +τ) = exp

{
i[n(n−1)−m(m −1)]

τ

2

}
ρnm(τK). (25)
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Solution (22) describes the evolution of the NQS only between
the kicks. On the other hand, the evolution at each kick is given
by

lim
δ→0

〈n|ρ̂(tK + δ)|m〉

= lim
δ→0

∞∑
n′,m′=0

Unn′ 〈n′|ρ̂(tK − δ)|m ′〉U ∗
mm′ (26)

where

Unm = 〈n|Û |m〉 = 〈n| exp[−iε(â† + â)]|m〉 (27)

in analogy to the Milburn–Holmes transformation for the
pulsed parametric amplifier with a Kerr nonlinearity [34].
By observing that Û is the displacement operator Û =
exp[−iε(â† + â)] = D̂(−iε), we can use the well-known
Cahill–Glauber [35] formulae leading for n � m to

Unm = e−ε2/2

√
m!

n!
(−iε)n−m Ln−m

m (ε2) (28)

and for n < m to

Unm = e−ε2/2

√
n!

m!
(iε)m−n Lm−n

n (ε2) (29)

where L y
x (z) is an associated Laguerre polynomial. Thus, we

have a complete solution to describe the effects of dissipation
on, in particular, the truncation fidelity after the kth kick, which
is given by

F̄(t) = 〈ᾱtrunc|ρ̂(t)|ᾱtrunc〉
= cos2(kε)ρ00(t) + sin(2kε)Imρ01(t) + sin2(kε)ρ11(t) (30)

where the perfectly truncated state |ᾱ〉NQS was applied
according to (18).

4. Conclusions

We have studied dissipative quantum scissors systems for
the truncation of a Glauber (infinite-dimensional) coherent
state to a superposition of vacuum and single-photon Fock
states (two-dimensional coherent state). We have contrasted
the Pegg–Phillips–Barnett quantum scissors based on linear
optical elements and the Leoński–Tanaś quantum scissors
comprising a nonlinear Kerr medium. We have analysed
the effects of dissipation on truncation fidelity in the linear
scissors within the Langevin noise operator approach and in
the nonlinear system in the master equation approach.
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