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Abstract
The problem of ordering of two-qubit states imposed by the relative entropy
of entanglement (E) in comparison with the concurrence (C) and negativity
(N ) is studied. Analytical examples of states consistently and inconsistently
ordered by the entanglement measures are given. In particular, the states for
which any of the three measures imposes order opposite to that given by the
other two measures are described. Moreover, examples are given of pairs of
the states for which (i) N ′ = N ′′ and C ′ = C ′′ but E ′ is different from E ′′,
(ii) N ′ = N ′′ and E ′ = E ′′ but C ′ differs from C ′′, (iii) E ′ = E ′′, N ′ < N ′′
and C ′ > C ′′; and (iv) states having the same E , C and N but still violating
the Bell–Clauser–Horne–Shimony–Holt inequality to different degrees.

Keywords: quantum entanglement, relative entropy, negativity, concurrence,
Bell inequality

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum entanglement is a key resource for quantum
information processing, but its mathematical description is still
far from completion [1] and its properties are more and more
intriguing. In particular, Eisert and Plenio [2], five years ago,
observed from Monte Carlo simulation of pairs of two-qubit
states σ ′ and σ ′′ that entanglement measures (say E (1) and
E (2)) do not necessarily imply the same ordering of states.
This means that the intuitive requirement

E (1)(σ ′) < E (1)(σ ′′) ⇔ E (2)(σ ′) < E (2)(σ ′′) (1)

can be violated. The problem was then analysed by others [3–
11]. In particular, Virmani and Plenio [4] proved that all
good asymptotic entanglement measures are either identical
or fail to impose consistent orderings on the set of all quantum
states. Here, an entanglement measure is referred to as ‘good’
if it satisfies (at least most of) the standard criteria [12–14]
including the criterion that for pure states it should reduce to
the canonical form given by the von Neumann entropy of the
reduced density matrix.

We will study analytically the problem of ordering of
two-qubit states imposed by the following three standard
entanglement measures.

The first measure to be analysed here is the relative entropy
of entanglement (REE) of a given state σ , which is defined by
Vedral et al [12, 13] (for a review see [15]) as the minimum of
the quantum relative entropy S(σ ‖ ρ) = Tr(σ lg σ − σ lgρ)
taken over the set D of all separable states ρ, namely

E(σ ) = min
ρ∈D S(σ ‖ ρ) = S(σ ‖ ρ̄), (2)

where ρ̄ denotes a separable state closest to σ . We assume,
for consistency with the other entanglement measures, that
lg stands for log2 although in the original Vedral et al
papers [12, 13] the natural logarithms were chosen. It is
usually difficult to calculate the REE analytically with the
exception of the case for states with high symmetry, including
those discussed in sections 3 and 4. Thus, in general, the
REE is calculated numerically using the methods described
in, e.g., [13, 16, 17]. The REE satisfies both continuity
and convexity (monotonicity under discarding information,
E(

∑
i piσi ) �

∑
i pi E(σi)) [18], but it does not fulfil

additivity (E(σ1 ⊗ σ2) = E(σ1) + E(σ2)) [19].
The second measure of entanglement for a given two-qubit

state σ is the Wootters concurrence C(σ ) defined as [20]

C(σ ) = max{0, λ1 − λ2 − λ3 − λ4}, (3)

where the λi s are the square roots of the eigenvalues of
σ(σ (y)⊗σ (y))σ ∗(σ (y)⊗σ (y)) put in nonincreasing order, σ (y)
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Figure 1. Numerical simulations of about 105 quantum states σ : (a)
REE E(σ ) versus concurrence C(σ ), (b) E(σ ) versus negativity
N(σ ) and (c) N(σ ) versus C(σ ). Curves correspond to the
Horodecki (H), pure (P), Bell diagonal (B) and σX (X ) states.

is the Pauli spin matrix and the asterisk stands for complex
conjugation. The concurrence C(σ ) is monotonically related
to the entanglement of formation Eform(σ ) [21] as given by the
Wootters formula [20]

Eform(σ ) = h
(

1
2

[
1 +

√
1 − C2(σ )

])
(4)

in terms of the binary entropy h(x) = −x lg x − (1 −
x) lg(1 − x). The concurrence and entanglement of formation
satisfy convexity [20, 22]. But, to our knowledge, the
question of additivity of the entanglement of formation is still
open [22, 23].

The third useful measure of entanglement is the
negativity—a measure related to the Peres–Horodecki
criterion [24] as defined by

N(σ ) = 2
∑

j

max(0,−µ j ), (5)

where µ j s are the eigenvalues of the partial transpose σ� of
the density matrix σ of the system. Note that for any two-qubit
states, σ� has at most one negative eigenvalue. As shown by
Audenaert et al [25] and as a subsidiary by Ishizaka [26], the
negativity of any two-qubit state σ is a measure closely related
to the PPT entanglement cost as follows:

EPPT(σ ) = lg[N(σ ) + 1], (6)

which is the cost of the exact preparation of σ under quantum
operations preserving the positivity of the partial transpose
(PPT). EPPT(σ ), similarly to Eform(σ ) and E(σ ), gives an
upper bound of the entanglement of distillation [27]. As shown
by Vidal and Werner [28], the negativity is a convex function;
however, EPPT(σ ) is not convex as a combination of the convex
N(σ ) and the concave logarithmic function. Nevertheless,
EPPT(σ ) satisfies additivity. For a pure state |ψP〉, it holds that

Figure 2. REE versus (a) concurrence and (b) negativity for the
boundary states in figure 1(c).

C(|ψP〉) = N(|ψP〉) but EPPT(|ψP〉) � Eform(|ψP〉), where
equality holds for separable and maximally entangled states.
For these reasons, we will apply concurrence and negativity
instead of Eform and EPPT.

2. Numerical comparison of state orderings

In previous works much attention was devoted to the ordering
problem for the concurrence versus the negativity [2, 3, 9–
11]. Here, we will study analytically the ordering of two-qubit
states imposed by the REE in comparison to the other two
measures. But first let us show the violation of condition (1) by
numerical simulation. We have generated ‘randomly’ 105 two-
qubit states according to the method described by Życzkowski
et al [29, 30] and applied, e.g., by Eisert and Plenio [2]. The
results are shown in figure 1, where for each state σ generated
we have plotted E(σ ) versus C(σ ), E(σ ) versus N(σ ) and
N(σ ) versus C(σ ). It is worth noting that the apparent
saw-like irregularity of the distribution of states (along the
x-axes) is an artefact resulting from the modification of the
original Życzkowski et al method. That is, we have performed
simulations sequentially in ten rounds and during the kth round
we plotted the three entanglement measures only for those σ
for which C(σ ) was greater than (k − 1)/10. The speed-
up of this biased simulation is a result of fast procedures for
calculating the negativity or concurrence and very inefficient
ones for calculating the REE [13, 16, 17, 26]. Our sequential
method could be applied since the main goal for generating
states was to check efficiently the boundaries of the depicted
regions but not the distribution of states.

The bounded regions containing all the states generated,
as shown in figure 1 and for clarity redrawn in figure 2, reveal
the ordering problem as a result of ‘the lack of precision with
which one entanglement measure characterizes the other’ [7].
By simply generalizing the interpretation given by us in [11] to
include any two (E (1) and E (2)) of the entanglement measures
studied, one can conclude that for any partially entangled state
σ ′ there are infinitely many partially entangled states σ for
which the Eisert–Plenio condition, given by (1), is violated.
To demonstrate this result explicitly for a given state σ ′, it is
useful to plot [E (2)(σ )− E (2)(σ ′)] versus [E (1)(σ )− E (1)(σ ′)]
as shown in figure 3. Then the state σ corresponding to any
point in the regions II and IV is inconsistently ordered with
σ ′ with respect to the measures E (1) and E (2). In contrast, the
states σ , corresponding to any point in the regions I and III,
and σ ′ are consistently ordered by E (1) and E (2).
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Figure 3. How to find states either satisfying or violating condition
(1): all states σ for a given state σ ′ for which the chosen measures
E (1) and E (2) impose the same (opposite) order correspond to points
in regions I and III (II and IV).

The probability Pent that a randomly generated two-qubit
mixed state is entangled can be estimated as Pent ≈ 0.368 ±
0.002 [30] or Pent ≈ 0.365 ± 0.001 [2]. However, the
probability Pviol that a randomly generated pair of two-qubit
states violates condition (1) for concurrence and negativity is
much less than Pent and estimated as Pviol ≈ 0.047±0.001 [2].
Since the numerical analysis of Eisert and Plenio [2] and by the
power of the Virmani–Plenio theorem [4] we know about the
existence of states violating condition (1). But it is not a trivial
task to find analytical examples of such states, especially in
the case of the orderings imposed by the REE in comparison
to other entanglement measures. We believe that it is not only
a mathematical problem of classification of states with respect
to various entanglement measures but it can shed more light on
subtle physical aspects of the entanglement measures including
their operational interpretation. By means of a comparison
given in the following sections, we will find states exhibiting
very surprising properties. In particular, we will show that
states σ ′ andσ ′′ can have the same negativity, N(σ ′) = N(σ ′′),
the same concurrence, C(σ ′) = C(σ ′′), but still different
REEs, E(σ ′) 	= E(σ ′′). A deeper analysis of such states can be
useful in studies of properties of a given entanglement measure
(in this example, the REE) under operations preserving other
entanglement measures (here, the entanglement of formation
and the PPT entanglement cost). Thus, we believe that it is
meaningful to make an analytical study of the violation of
condition (1), as will be presented in greater detail in the
following sections.

3. Boundary states

The extreme violation of (1) occurs if one of the states
corresponds to a point at the upper bound and the other at the
lower bound. Thus, for a comparison of different orderings, it
is essential to describe the states at the boundaries.

The upper bounds in figure 1 marked by P correspond to
two-qubit pure states

|ψP〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, (7)

where a, b, c, d are the normalized complex amplitudes. The
concurrence and negativity are equal to each other and given
by

C(|ψP〉) = N(|ψP〉) = 2|ad − bc|. (8)

As shown by Verstraete et al [5], the negativity of any state
σ can never exceed its concurrence (see figure 1(c)), and this
bound is reached for the set of states for which the eigenvector
of the partial transpose of σ , corresponding to the negative
eigenvalue, is a Bell state. Evidently, pure states belong to
the Verstraete et al set of states. For a pure state the REE
is equal to the entanglement of formation, and thus is simply
given by Wootters’ relation (4) since E(|ψP〉) = Eform(|ψP〉).
In general, it holds that Eform(σ ) � E(σ ) [13], and the
REE for pure states gives the upper bound of the REE versus
concurrence [5]. We have also conjectured in [31], on the
basis of numerical simulations similar to those presented in
figure 1(b), that the upper bound of the REE versus negativity
N is reached by pure states for N � N0 ≡ 0.3770 · · ·.

Surprisingly, the REE versus N for pure states can be
exceeded by other states if N < N0, as was shown in [31]
by the so-called Horodecki states, which are mixtures of
the maximally entangled state, say the singlet state |ψ−〉 =
(|01〉 − |10〉)/√2 and a separable state orthogonal to it, say
|00〉, i.e. [1]

σH = C|ψ−〉〈ψ−| + (1 − C)|00〉〈00| (9)

for which the concurrence and negativity are given,
respectively, by

C(σH) = C, (10a)

N(σH) =
√
(1 − C)2 + C2 − (1 − C). (10b)

Verstraete et al [5] proved that a function of the form (10b)
determines the lower bound of the negativity versus
concurrence for any state σ (see curve H in figure 1(c)). On the
other hand, the REE versus concurrence for Horodecki states
is given by [13]

E(σH) = (C − 2) lg(1 − C/2) + (1 − C) lg(1 − C). (11)

By replacing C by
√

2N(1 + N) − N in (11), one gets an
explicit dependence of E(σH) on the negativity N(σH) [31].
It was conjectured that the REE for the Horodecki states
describes the lower bound of the REE versus concurrence [13],
as shown by curve H in figures 1(a) and 2(a), and also
conjectured [31] that it gives the upper bound of the REE versus
negativity if N � N0 as seen in figures 1(b) and 2(b) [31].
The ordering violation for any two of the three entanglement
measures can be shown for a pair of the Horodecki and pure
states, say σ ′ and σ , if one of the states is partially entangled
(0 < E (1)(σ ′) < 1) and σ is properly chosen according to the
rule shown in figure 3 with an exception for the following case:
if one of the states in the pair of the Horodecki and pure states
has the negativity equal to N0, then the ordering imposed by
the REE and negativity for these states is always consistent as
required by condition (1).

The lower bound in figure 1(b) and the upper bound in
figure 1(c) correspond to the Bell diagonal state (labelled by
B), given by

σB =
4∑

i=1

λi |βi〉〈βi | (12)
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with the largest eigenvalue max j λ j ≡ (1+C)/2 � 1/2, where∑
j λ j = 1 and |βi〉 are the Bell states. The negativity and

concurrence are the same and given by

C(σB) = N(σB) = C; (13)

thus σB, similarly to the pure states case, belongs to the
Verstraete et al set of states maximizing the negativity for
a given concurrence. For the Bell diagonal states, the REE
versus the concurrence (and the negativity) reads as [12]

E(σB) = 1 − h((1 + C)/2)

= 1
2

[
(1 + C) lg(1 + C) + (1 − C) lg(1 − C)

]
. (14)

If max j λ j � 1/2 then the state is separable; thus C(σB) =
N(σB) = E(σB) = 0. As an example of (12), one can analyse
the Werner state [32]

σW = 1 + 2C

3
|ψ−〉〈ψ−| +

1 − C

6
I ⊗ I, (15)

where 0 � C � 1; I is the identity operator of a single qubit.
Our choice of parametrization of (1) leads to straightforward
expressions for the negativity and concurrence given by (13).
The results of our simulation of 105 random states presented in
figure 1(b) confirm our conjecture in [31] that the lower bound
of the REE versus negativity is determined by the Bell diagonal
states. Nevertheless, to our knowledge, this conjecture and the
other proposed by Verstraete et al [5] on the lower bound of
the REE versus concurrence have not been proved yet [22]. By
contrast, it is easy to prove, by applying local random rotations
to both qubits [21], that the lower bound of the REE versus
fidelity is reached by the Bell diagonal states [13]. It is worth
noting that the REE versus concurrence for σB is not extreme,
as shown by curve B in figure 2(a).

Let us analyse another state corresponding to the upper
bound for N versus C, but neither reaching the bounds for E
versus C nor those for E versus N . The state is defined as a
MES, say the singlet state, mixed with |01〉 as follows:

σX = C|ψ−〉〈ψ−| + (1 − C)|01〉〈01| (16)

for which one gets

C(σX ) = N(σX ) = C. (17)

The eigenvalues of the partially transposed σX are
{1 − C/2,−C/2,C/2,C/2} and they correspond to the
eigenvectors given by {|01〉, |φ+〉, |φ−〉, |10〉}, where |φ±〉 =
(|00〉 ± |11〉)/√2. Thus, the Verstraete condition for states
with equal concurrence and negativity is fulfilled for the state
σX , as the negative eigenvalue −C/2 corresponds to the Bell
state. The separable state ρ̄X closest to σX was found by Vedral
and Plenio [13] as ρ̄X = (1 − C/2)|01〉〈01| + C/2|10〉〈10|,
which enables calculation of the following REE:

E(σX ) = h(C/2) − h(r/2), (18)

where r = 1 +
√
(1 − C)2 + C2. Although (17) describes the

upper bound for N versus C, (18) differs from the extreme
expressions for E versus C and E versus N given for the pure,
Horodecki and Bell diagonal states. Figures 2(a) and (b) show
clearly the differences.
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Figure 4. A contour plot of REE E(σY ) as a function of
C(σY ) = N(σY ) = C and parameter A according to (21).

We will also analyse the states dependent on two
parameters

σY = A|01〉〈01| + (1 − A)|10〉〈10| +
C

2
(|01〉〈10| + |10〉〈01|)

(19)

assuming that C � 2
√

A(1 − A) to ensure that σY is positive
semi-definite. States of the form given by (19) can be
obtained by mixing a pure state |ψP〉 with the separable
state ρ̄P closest to |ψP〉 [31]. This mixing leaves the closest
separable state unchanged, as implied by the Vedral–Plenio
theorem [13]. The eigenvalues of the partial transpose of σY

are {1− A, A,−C/2,C/2}, which correspond to the following
eigenvectors: {|10〉, |01〉, |φ−〉, |φ+〉}, respectively. Thus, the
negative eigenvalue −C/2 corresponds to the Bell state |φ−〉,
which implies that σY belongs to the Verstraete et al set of
states with equal negativity and concurrence,

C(σY ) = N(σY ) = C. (20)

The REE for state (19) reads as

E(σY ) = h(A)− h
(

1
2

[
1 +

√
(1 − 2A)2 + C2

])
(21)

which was obtained with the help of the closest separable
state ρ̄P = A|01〉〈01| + (1 − A)|10〉〈10| given in [13]. The
contour plot of E(σY ) is shown in figure 4. The states (19),
independent of parameter A, are the upper bound states for N
versus C. By changing A, the states (19) transform from the
pure states into Bell diagonal states; thus they can become the
upper bound states both for E versus C and E versus N � N0,
as well as the lower bound states for E versus N . In general,
a state corresponding to any point between curves P and B in
figures 2(a) and (b) can be given by (19).

4. Analytical comparison of state orderings

By analysing pairs of states discussed in the previous section
and by applying the rule shown in figure 3 we can easily find
analytical explicit examples of states violating condition (1)
for any two measures out of the triple, when the third measure
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Figure 5. States σ characterized by [C(σ ), N(σ ), E(σ )] lie in the
solid crescent-like region with its projections into the planes shown
in figure 1. All classes of state pairs from table 1 can be found by
analysing pairs of points at various cross sections of the region.

Table 1. All possible different predictions of the state orderings
imposed by the REE, concurrence and negativity. As explained in
the text, the remaining 13 classes of state pairs can be obtained from
the listed classes just by interchanging definitions of σ ′ and σ ′′.
Asterisks denote the classes for which we were not able to find
examples.

Class Concurrences Negativities REEs

1 C(σ ′) < C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) < E(σ ′′)
2 C(σ ′) < C(σ ′′), N(σ ′) > N(σ ′′), E(σ ′) < E(σ ′′)
3 C(σ ′) > C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) < E(σ ′′)
4 C(σ ′) < C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) > E(σ ′′)
5 C(σ ′) = C(σ ′′), N(σ ′) = N(σ ′′), E(σ ′) = E(σ ′′)
6 C(σ ′) < C(σ ′′), N(σ ′) = N(σ ′′), E(σ ′) < E(σ ′′)
7 C(σ ′) = C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) < E(σ ′′)
8 C(σ ′) < C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) = E(σ ′′)
9 C(σ ′) = C(σ ′′), N(σ ′) = N(σ ′′), E(σ ′) < E(σ ′′)
10 C(σ ′) < C(σ ′′), N(σ ′) = N(σ ′′), E(σ ′) = E(σ ′′)
∗11 C(σ ′) = C(σ ′′), N(σ ′) < N(σ ′′), E(σ ′) = E(σ ′′)
∗12 C(σ ′) > C(σ ′′), N(σ ′) = N(σ ′′), E(σ ′) < E(σ ′′)
∗13 C(σ ′) = C(σ ′′), N(σ ′) > N(σ ′′), E(σ ′) < E(σ ′′)
14 C(σ ′) < C(σ ′′), N(σ ′) > N(σ ′′), E(σ ′) = E(σ ′′)

is not analysed. However, the number of classes of state
pairs increases to 14, as shown in table 1, on including all
possible different predictions of the state orderings imposed by
all the three measures simultaneously. The number of classes is
given mathematically by permutation with replacement (where
the order counts and repetitions are allowed) and equal to
33. But we should not count twice the classes defined by
opposite inequalities (e.g., class 2 can be equivalently given
by E(σ ′) > E(σ ′′), C(σ ′) > C(σ ′′) and N(σ ′) < N(σ ′′))
since the definition of states σ ′ and σ ′′ can be interchanged.
Thus, the number of classes decreases to (33 − 1)/2 + 1 = 14.
One can identify all these classes by analysing pairs of points

E’’-E’

N’’-N’

C’’-C’

1. 2.

3. 4. 5.

6. 7. 8.

9. 10. 11.

12. 13. 14.

Figure 6. A schematic representation of the 14 classes of state pairs
listed in table 1, where f ′ = f (σ ′) and f ′′ = f (σ ′′) for
f = C, N, E . The central point corresponds to a state σ ′ for which
� = [0, 0, 0]. A pair of states σ ′ and σ ′′, where the latter is
represented by any point inside the marked region of the i th
(i = 1, . . . , 14) sub-figure, satisfies the inequalities of the i th class
in table 1.

in the crescent-like solid region in C N E space shown in
figure 5 with the familiar projections into the planes C E (see
also figure 1(a)), N E (figure 1(b)) and C N (figure 1(c)).
Unfortunately, a graphical illustration of various cross sections
of the solid crescent in figure 5 would not be clear enough.
Thus, in figure 6, we give a symbolic representation of the 14
classes of table 1 by depicting only small cubes around point
[C(σ ′), N(σ ′), E(σ ′)] for a given state σ ′. In a sense, the
cubes are cut inside the solid crescent shown in figure 5.

In the following, we will give explicit examples of the
pairs of states satisfying the inequalities listed in table 1. To
make the notation compact we write

� ≡ [C(σ ′′)− C(σ ′), N(σ ′′)− N(σ ′), E(σ ′′)− E(σ ′)].

States consistently ordered by all the three measures as required
by the Eisert–Plenio condition (1) belong to class 1. The vast
majority of the randomly generated pairs of two-qubit states
belong to this class. The simplest analytical example is a pair
of pure states |ψi〉 = ai |00〉+bi |01〉+ci |10〉+di |11〉 (i = 1, 2),
for which |a1d1 − b1c1| 	= |a2d2 − b2c2|. Similarly, by
comparing other pairs of states, for example (σH(C ′), σH(C ′′)),
(σB(C ′), σB(C ′′)) or (σX (C ′), σX (C ′′)) for C ′ 	= C ′′, one
arrives at the same conclusion. A pair of states from class
2 can be given, e.g., by the Bell diagonal and Horodecki
states for slightly different concurrences (or negativities). For
example, if σB(C = 0.5) and σH(C = 0.6), then � =
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[0.1,−0.179, 0.003], or for the same σB but σH having its
negativity equal to 0.4 then � = [0.158,−0.1, 0.055] as
required. As an example of the state pair from class 3,
we choose the Horodecki and pure states such that their
negativities are close to N0. For example, let σH have the
negativity N0 − 0.1 and |ψP〉 have its coefficients satisfying
2|ad − bc| = N0; then � = [−0.187, 0.1, 0.064]. On
choosing a pure state with concurrence C ′ = 0.625 · · · and
the Horodecki state for C ′′ = 0.846 · · · ≡ C0, we observe
that their REEs are the same. Then, an example of the
state pair from class 4 can be given by the above pure
state and the Horodecki state with its concurrence slightly
less than C0, say C(σH) = C0 − 0.02, which implies that
� = [0.200, 0.044,−0.037] as required. The classes 1–4 are
defined solely by sharp inequalities, and thus they are crucial
in our comparison of different state orderings.

Now, we will present a more subtle comparison to include
the classes when some of the entanglement measures are equal
to each other for different states. Class 5 is interesting enough
to be analysed separately in the next section. An example of
the state pair from class 6 can be given by the Bell diagonal
and Horodecki states with the same negativities, say equal
to 1/2, which implies that � = [0.225, 0, 0.127]. Also a
member of class 7 can be given by the above states but for
the same concurrences, say C = 0.5, which implies that
−� = [0, 0.293, 0.066]. Simple examples of the state pairs
from classes 6 and 7 can also be found by considering the
following state:

σZ (C, N) = 1
2 [(1 − α)(|01〉〈01| + |10〉〈10|)

+ C(|01〉〈10| + |10〉〈01|) + 2α|00〉〈00|] (22)

for N > 0 and C ∈ 〈N,
√

2N(N + 1)− N〉, where α = (C2 −
N 2)/(2N). The range-limited C ensures semi-definiteness of
σZ . State (22) can be generated by mixing the Horodecki state
σH with the separable state ρ̄H closest toσH given by Vedral and
Plenio [13] (for details see [31]). We note that the coefficients
C and N in (22) are chosen such that

C(σZ ) = C, N(σZ ) = N . (23)

Then, we can write the REE as follows:

E(σZ ) = h3
(
(1 + α)β, 1

2 (1 + α)(1 − 2β) + βC
)

− h3(α,
1
2 (1 − α + C)), (24)

where β = α(1 + α)/[(1 + α)2 − C2] and h3(x1, x2) =
− ∑3

i=1 xi lg xi with x3 = 1 − x1 − x2. By changing C
and N separately, we can obtain σZ with a desired REE.
For example, by fixing the negativity, we get the state pair
corresponding to class 6, as shown by the contours of constant
negativity in figure 7(a). On the other hand, by fixing the
concurrence, the resulting states σZ satisfy the conditions for
class 7, as presented by the contours of constant concurrence
in figure 7(b).

To class 8 belongs a pair of, e.g., the pure state with
concurrence 0.625 · · · and the Horodecki state with C =
0.846 · · ·; then it holds that E(|ψP〉) = E(σH) = 0.5, and
� = [0.220, 0.080, 0] as required. To find an exemplary
member of class 9, one can compare a pure state and any
other state from the Verstraete et al set of states (including σB,
σX or σY ) with the same concurrence, which means also the

Figure 7. Contour plots of the entanglement measures for σZ : (a)
negativity N(σZ ) as a function of C(σZ ) and E(σZ ), (b) concurrence
C(σZ ) as a function of N(σZ ) and E(σZ ) and (c) REE E(σZ ) as a
function of C(σZ ) and N(σZ ). The contours are depicted at values of
0.1,0.2, . . . , 1 from the bottom left corner to the upper right corner.

same negativity. For example, for C(|ψP〉) = C(σB) = 1/2
one gets � = [0, 0, 0.189]. As regards class 10, we can
compare the pure and Horodecki states with the same negativity
N = N0, which implies that E(|ψP〉) = E(σH). Thus, we
have � = [0.265, 0, 0]. Unfortunately, by comparing the
states discussed in this section, we have not found examples
of state pairs from classes 11–13. But we can give a few
exemplary members of class 14. For example, by comparing
the Bell diagonal state for C ′ = 0.779 · · · and the Horodecki
state for C ′′ = 0.846 · · · we find that E(σB) = E(σH) = 0.5,
while their negativities and concurrences violate condition (1)
to the following degrees: � = [0.066,−0.074, 0]. Also by
analysing figure 7(c) for any two points at the same contour
of constant REE, we find exemplary state pairs from class 14.
Thus, we have presented simple analytical examples of the
states satisfying 11 out of 14 classes listed in table 1.

5. States with the same E, C and N

Here, we will analyse examples of inequivalent states σ ′ 	= σ ′′,
which have the same degree of entanglement according to
E , C and N , thus corresponding to class 5 in table 1. It is
tempting to choose simply two different pure states with their
coefficients satisfying |a1d1 − b1c1| = |a2d2 − b2c2|, which
guarantees the fulfilment of the equalities required for this
class. However, such pure states can be transformed into each
other by local operations. To show this, first we note that any
pure state, given by (7), can be transformed by local rotations
into the superposition |ψ̃P(p)〉 = √

p|01〉 +
√

1 − p|10〉
(0 � p � 1), for which the concurrence and negativity are
equal to 2

√
p(1 − p), as a special case of (8). The same value

of these entanglement measures occurs also for |ψ̃P(1 − p)〉,
but this state can be transformed into |ψ̃P(p)〉 by applying a
NOT gate to each of the qubits. Thus, we have shown that pure
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states are not good examples of the state pairs from class 5.
Then, let us choose, e.g., two different Bell diagonal states but
with the same largest eigenvalue greater than 1/2. By virtue
of (13) and (14), we conclude that these states have the same
degree of entanglement according to the REE, concurrence and
negativity. However, as we will show in the following, they
can violate the Bell inequality to different degrees.

The maximum possible violation of the Bell inequality in
the Clauser–Horne–Shimony–Holt (CHSH) form [33]

|〈B〉σ | = |E(φ1, φ2) + E(φ′
1, φ2) + E(φ1, φ

′
2)− E(φ′

1, φ
′
2)| � 2

(25)
for a two-qubit state σ is given by [34]

max
B

〈B〉σ = 2
√

M(σ ). (26)

Here,B is the Bell operator, φi , φ
′
i are two dichotomic variables

of the i th qubit and E(φ1, φ2) is the expectation value of
the joint measurement of φ1 and φ2, and so on for the other
expectation values. The quantity M(σ ) is the sum of the two
largest eigenvalues of TpT †

p , where Tp is the 3 × 3 matrix
formed by the elements tnm = Tr(σσ (n)⊗σ (m)) given in terms
of the Pauli matrices σ ( j). Inequality (25) is satisfied if and
only if M(σ ) � 1 [34]. As shown in [10], for any pure state
|ψP〉, the Bell inequality violation parameter M(σ ) is closely
related to the concurrence and negativity as follows:

√
max{0,M(|ψP〉)− 1} = C(|ψP〉) = N(|ψP〉). (27)

We find that M(σ ) for the Bell diagonal state reads as

M(σB) = 2 max
(i, j,k)

[(λi − λ j )
2 + (λk − λ4)

2], (28)

where subscripts (i, j, k) change over cyclic permutations of
(1, 2, 3). Concluding, the Bell inequality violation depends on
all λi s, while the entanglement measures E , C and N depend
solely on the largest λi . Thus, as an example of a state pair
from class 5, we can choose two Bell diagonal states σ ′

B and σ ′′
B

with only the largest eigenvalues being the same and greater
than 1/2 for both states, which implies that the states cannot
be transformed into each other by LOCC operations but still
have the same degrees of entanglement: E(σ ′

B) = E(σ ′′
B),

C(σ ′
B) = C(σ ′′

B) and N(σ ′
B) = N(σ ′′

B).

6. Conclusions

We have analysed the problem of inconsistency in ordering
states with the entanglement measures. The problem was
raised by Eisert and Plenio [2] on the basis of the numerical
example of the concurrence and negativity and then studied by
others [3, 5–11]. The ordering problem is closely related to the
existence of the upper and lower bounds of one entanglement
measure versus the other [5, 7, 11, 31]. Here, we presented
analytical examples of the pairs of states consistently and
inconsistently ordered by the relative entropy of entanglement
in comparison to the concurrence and negativity. In particular,
we have found examples of states for which any of the
measures imposes order opposite to that given by the other
two measures, which corresponds to classes 1–4 in table 1.
We have also identified: pairs of states with, in particular,
(i) the same concurrences and negativities but different

REEs (corresponding to class 9), (ii) the same REEs and
negativities but different concurrences (class 10), (iii) the same
REEs but different and oppositely ordered concurrences and
negativities (class 14); and (iv) states having the same three
entanglement measures (class 5), but still violating the Bell–
CHSH inequality to different degrees.

Acknowledgments

We are grateful to M Horodecki, P Horodecki, Z Hradil,
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