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Abstract
Decoherence effect on quantum entanglement of two optical qubits in a lossy
cavity interacting with a nonlinear medium (Kerr nonlinearity) is analysed.
The qubits are assumed to be initially in the maximally entangled states (Bell
or Bell-like states) or the maximally entangled mixed states, on the example
of Werner and Werner-like states. Two kinds of measures of the entanglement
are considered: the concurrence to describe a decay of the entanglement
of formation of the qubits, and the negativity to determine a decay of the
entanglement cost under positive-partial-transpose-preserving operations. It is
observed that the Kerr nonlinearity, in the discussed decoherence model, does
not affect the entanglement of the qubits initially in the Bell or Werner states,
although the evolution of the qubits can depend on this nonlinearity explicitly.
However, it is shown that for the initial Bell-like state and the corresponding
Werner-like state, the loss of the entanglement can be periodically reduced by
inserting the Kerr nonlinearity in the lossy cavity. Moreover, the relativity of
the entanglement measures is demonstrated, to our knowledge for the first time,
as a result of a physical process.

PACS numbers: 03.65.Yz, 42.50.Dv, 03.67.Mn

1. Introduction

Decoherence, resulting from the unavoidable and irreversible coupling of a quantum system
to its environment, turns a correlated quantum state of the system into a classical statistical
mixture [1]. Decoherence, causing usually a loss of quantum entanglement, is one of the
major limitations of practical capabilities of quantum computers [2]. Thus, the analysis of
the dynamics of entangled quantum two-level systems (qubits) coupled to the environment,
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represented by a thermal reservoir, is of particular importance. In this paper, we will study
the loss of the entanglement due to a dissipative nonlinear interaction of two optical qubits,
which are implemented by superpositions of vacuum and single-photon states of two-cavity
modes, and assumed to be initially in the maximally entangled states (MESs) or the maximally
entangled mixed states (MEMSs).

It is a well-accepted fact that there is no unique way to quantify mixed-state entanglement
and thus various measures with different operational interpretations have been proposed
to describe different aspects of the entanglement. We will apply the concurrence [3]—a
measure related to the entanglement of formation [4], and the negativity [5–7]—a measure
corresponding to an operation-limited entanglement cost [8, 9]. We have chosen these
particular measures as they are associated with a physical point of view and, moreover, can
easily be calculated in contrast to other measures including the entanglement of distillation or
the relative entropy of entanglement.

Our analysis is related to a new regime of quantum nonlinear optics involving highly
efficient nonlinear interactions between very weak optical fields, which has been recently
demonstrated experimentally in, e.g., dense atomic media by using an electromagnetically-
induced transparency (EIT) to resonantly enhance nonlinearities (for a review see [10]).
In particular, the observation of giant Kerr nonlinearities has been predicted [11] and first
measured in an ultracold gas of sodium atoms to be ∼106 greater than those in conventional
optical materials [12]. Physical realizations of a Kerr nonlinear cavity enabling strong
interaction of photons were suggested by Imamoǧlu et al [11, 13] and then studied by
others [14–18]. Motivated by these advances, there is increasing interest to apply the Kerr
nonlinearities for quantum information purposes [19], including the problem of the generation
of highly entangled states (see [15, 20] and references therein). Nevertheless, the effects of
decoherence on the entanglement of fields interacting via the Kerr nonlinearity have not been
discussed in more detail yet.

This paper is organized as follows. In section 2, we define the entanglement measures to
be used in our description of decoherence. The model and its solution for two optical qubits in a
lossy nonlinear cavity are presented in section 3. The main results concerning the decoherence
of the qubits being initially in the maximally entangled states and the maximally entangled
mixed states are presented in sections 4 and 5, respectively. A physical implementation of the
model and discussion of the results are given in section 6.

2. Entanglement measures

We will apply two measures of entanglement to analyse the effect of decoherence on the
entangled qubit states. The first measure is the concurrence defined for two qubits as [3]

C(ρ̂) = max

{
2 max

i
λi −

4∑
i=1

λi, 0

}
(1)

where λi are the square roots of the eigenvalues of the matrix ρ̂(σ̂1y ⊗ σ̂2y)ρ̂
∗(σ̂1y ⊗ σ̂2y),

where σ̂jy is a Pauli spin matrix of the j th qubit and the asterisk denotes complex conjugation.
The entanglement of formation, EF (ρ̂), which characterizes the amount of entanglement
necessary to create the entangled state [4], is for two qubits given by a simple monotonic
function of the concurrence [3]

EF (ρ̂) = H
{

1
2

[
1 +
√

1 − C(ρ̂)2
]}

(2)

where H {x} = −x log2 x − (1 − x) log2(1 − x) is the binary entropy. The entanglement of
formation and, equivalently, the concurrence vanish for an unentangled state, and are equal to 1
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for a maximally entangled state. A measure associated with the entanglement of formation is
the entanglement cost defined as [4] limn→∞ EF (ρ̂⊗n)/n which, in general, is quite difficult
to calculate. Thus, for simplicity, we will describe the entanglement cost limited to a special
class of operations to be specified in the following.

Another useful measure of the entanglement is the negativity [6, 7], which corresponds
to a quantitative version of the Peres–Horodecki criterion [5]. We adopt here the following
definition:

N (ρ̂) = 2 max


0,−

∑
j

µj


 (3)

where the sum is taken over the negative eigenvalues µj of the partial transpose ρ̂TA of the
density matrix ρ̂ of the system. For two-qubit pure or mixed states, the sum in (3) can
be skipped as ρ̂TA has at most one negative eigenvalue [21]. The negativity satisfies the
standard conditions for a useful measure of the entanglement [22, 23]. For two-qubit states,
the negativity, defined by (3), becomes 1 for a MES and vanishes for an unentangled state,
the same as the concurrence. Recently, Audenaert et al [8] and, supplementarily, Ishizaka [9]
have provided an operational interpretation of the logarithmic negativity, defined by [23]

EN(ρ̂) = log2[N(ρ̂) + 1], (4)

as a measure of the entanglement cost for the exact preparation of a two-qubit quantum state
ρ̂ under quantum operations preserving the positivity of the partial transpose (PPT).

For an arbitrary two-qubit pure state

|�〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 (5)

with the normalized complex amplitudes cij , we have the concurrence and negativity equal to
each other and given by a simple formula

N� = C� = 2|c00c11 − c01c10|. (6)

However, for qubits in a mixed state, the entanglement measures are usually different. In
general, the inequality N (ρ̂) � C(ρ̂) holds for an arbitrary two-qubit state ρ̂ as first observed
by numerical investigation by Eisert and Plenio [7] and Życzkowski [24], and then proved by
Verstraete et al [25].

Eisert and Plenio [7] raised an intriguing problem of the relativity of entanglement
measures: if according to one measure of the entanglement the state ρ̂1 is more entangled than
ρ̂2 then does it imply that ρ̂1 is also more entangled than ρ̂2 according to another entanglement
measure? By the Monte Carlo simulation of thousands of two-qubit states, it was observed
that indeed the condition

C(ρ̂1) < C(ρ̂2) ⇔ N (ρ̂1) < N (ρ̂2) (7)

can be violated by some states ρ̂1 and ρ̂2 [7, 24, 26]. It should be stressed that this odd
looking property is physically sound since such incomparable states ρ̂1 and ρ̂2 cannot be
transformed into each other with unit efficiency by any local quantum operations and classical
communication (LQCC). In general, all good asymptotic entanglement measures are either
identical or put different orderings of quantum states as implied by the requirements of
equivalence and continuity of the measures on pure states [27]. Thus, by comparing various
entanglement measures defined to examine different methods of entanglement preparation
and/or its use, one indeed can arrive at the problem of different state orderings imposed
by the measures. The only alternative to avoid the state-ordering ambiguity is to declare
one entanglement measure for mixed states as the unique one, but this would preclude us
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from examining the problems of how to prepare the entanglement and how to make use
of it [28]. Here, we will give simple analytical examples of states differently ordered by
the concurrence and negativity, thus we will explicitly demonstrate the relativity of these
entanglement measures.

3. Model and its solution

Decoherence effects on optical modes (qubits) in a lossy nonlinear cavity can be described by
a model of N-coupled dissipative nonlinear oscillators represented by the following prototype
Hamiltonian [29]3:

Ĥ = Ĥ 0 + Ĥ NL + Ĥ I (8)

where

Ĥ 0 = h̄

N∑
j=1

ωj â
†
j âj + h̄

∑
k

N∑
j=1

�
(j)

k

(
b̂

(j)

k

)†
b̂

(j)

k , (9)

Ĥ NL = h̄

N∑
i,j=1

χij â
†
i âi â

†
j âj , (10)

Ĥ I = h̄
∑

k

N∑
j=1

[
g

(j)

k â
†
j b̂

(j)

k + h.c.
]
, (11)

and âj is the annihilation operator for the j th system oscillator at the frequency ωj ; b̂
(j)

k is the
annihilation operator for the kth oscillator in the j th reservoir at the frequency �

(j)

k ; χij are
the nonlinear self-coupling (for i = j ) and cross-coupling (for i �= j) constants proportional
to a third-order susceptibility of the Kerr nonlinear medium (see section 6) and g

(j)

k are the
coupling constants of the reservoir oscillators. Dissipation of the system is modelled by its
coupling to reservoirs of oscillators as described by the Hamiltonian Ĥ I . The evolution of
the dissipative system under the Markov approximation is governed by the following master
equation for the reduced density operator ρ̂ in the interaction picture:

∂

∂t
ρ̂ = 1

ih̄
[Ĥ NL, ρ̂] +

N∑
j=1

γj

2

{
n̄j

(
2â

†
j ρ̂âj − âj â

†
j ρ̂ − ρ̂âj â

†
j

)
+ (n̄j + 1)

(
2âj ρ̂â

†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj

)}
(12)

where n̄j are the mean thermal occupation numbers and γj are the damping constants, which
will be assumed the same, γ1 = γ2 ≡ γ , in the next sections. With the help of a disentangling
theorem for SU(1, 1) in thermofield dynamics notation, Chaturvedi and Srinivasan [30] have
found a general solution of the master equation (12) both for the quiet (n̄j = 0) and noisy
(n̄j > 0) reservoirs. By confining our analysis to the case of only two oscillators (N = 2)

coupled to the quiet reservoirs, the Chaturvedi–Srinivasan solution for the density matrix
elements 〈m1,m2|ρ̂(t)|n1, n2〉 in the photon-number basis can be written as

〈m1,m2|ρ̂(t)|n1, n2〉 =
∞∑

p1=0

∞∑
p2=0

R1R2〈m1 + p1,m2 + p2|ρ̂(0)|n1 + p1, n2 + p2〉 (13)

3 Hamiltonian ĤNL is sometimes defined in the normal-ordered form of â
†
j and âj . However, such Hamiltonian

differs from ours only in terms proportional to χjj â
†
j âj , which can be incorporated in the free Hamiltonian Ĥ0, so

does not effect the entanglement.



Decoherence of two maximally entangled qubits 7913

where

Rj ≡ Rj(mj , nj , pj ) =
[(

mj + pj

pj

)(
nj + pj

pj

)]1/2 (
γj

xj

[1 − exp(−xj t)]

)pj

× exp

{
i(χj1 + χj2)(mj − nj )t − [xj (mj + nj + 1) − γj ]

t

2

}
(14)

with xj = γj + 2i[χj1(m1 − n1) + χj2(m2 − n2)] and
(
q

p

)
are binomial coefficients. In our

scheme, qubits can be represented by the single-cavity modes restricted in the Hilbert space
spanned by vacuum and single-photon states (see, e.g., [31]). Then, for the qubit states,
solution (13) simplifies to the summations over p1, p2 = 0, 1 only.

By assuming no dissipation (γ1 = γ2 = 0) in our system, the evolution is governed by
the unitary operator exp(−iĤ NLt/h̄). It implies that, for the two qubits initially in a pure state
(5), the concurrence and negativity evolve periodically as follows:

N�(γ = 0, t) = C�(γ = 0, t) = 2|exp(2iχ12t)c00(0)c11(0) − c01(0)c10(0)| (15)

depending on the cross-coupling χ12 but not on the self-coupling constants χ11 and χ22. One
can observe that the evolution of the qubits in the nonlinear medium can lead to a periodical
generation of entangled states. Even for the initial separable state

|�(0)〉 = (d1|0〉1 + d2|1〉1) ⊗ (d3|0〉2 + d4|1〉2), (16)

where |d1|2 + |d2|2 = |d3|2 + |d4|2 = 1 and none of the amplitudes di is zero, the concurrence
and negativity periodically become positive

N�(γ = 0, t) = C�(γ = 0, t) = 4|d1d2d3d4 sin(χ12t)| (17)

which corresponds to the entanglement of up to H
{

1
2

[
1 +
√

1 − 16|d1d2d3d4|2
]}

ebits. In
particular, the initial state (16) with all the amplitudes equal to 1/

√
2, i.e.,

|�(0)〉 = |0〉1 + |1〉1√
2

⊗ |0〉2 + |1〉2√
2

≡ |+, +〉, (18)

evolves into a maximally entangled state, defined below by (26), having exactly 1 ebit at the
evolution moments t = (1 + 2n)π/(2χ12) (n = 0, 1, . . .). Nevertheless, the MESs are not
generated if our system is subjected to dissipation.

4. Decoherence of the maximally entangled states

Let us assume that two qubits are initially in the Bell states

|ψ±〉 = 1√
2
(|01〉 ± |10〉) (19)

which evolve in the dissipative nonlinear cavity into the following mixed states:

ρ̂ψ±(t) = 1
2 {2(1 − g)|00〉〈00| + g(|01〉〈01| + |10〉〈10|) ± g(ei(χ1−χ2)t |01〉〈10| + h.c.)} (20)

where g = e−γ t and χi ≡ χii . The evolution is independent of the nonlinear cross-coupling
χ12 but depends on the self-couplings χ1 and χ2. We find that the concurrence is simply given
by

Cψ(t) = g (21)

and the negativity is

Nψ(t) =
√

2g2 − 2g + 1 + g − 1 (22)
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being independent of the sign in (19). As implied by the form of the density matrices (20), the
entanglement measures are independent of any Kerr couplings. On the other hand, the initial
Bell states

|φ±〉 = 1√
2
(|00〉 ± |11〉) (23)

evolve in our lossy system into

ρ̂φ±(t) = 1
2 {(2 − 2g + g2)|00〉〈00| + (1 − g)g(|01〉〈01| + |10〉〈10|)

± g(ei(χ1+2χ12+χ2)t |00〉〈11| + h.c.) + g2|11〉〈11|}. (24)

In contrast to ρ̂ψ±(t), the density matrices ρ̂φ±(t) depend on the cross-coupling between the
qubits. We find that the concurrence and negativity are the same for any evolution times and
any sign in (23) as given by

Cφ(t) = Nφ(t) = g2 (25)

in contrast to Cψ(t) and Nψ(t), given by (21) and (22), respectively, which are the same
at t = 0 and t = ∞ only. There are the following important properties of the discussed
entanglement decays. First, the concurrence (negativity) for the initial Bell states |ψ±〉 decays
slower (faster) than that for |φ±〉, as it holds Cψ(t) > Cφ(t) and Nψ(t) < Nφ(t) for any
damping constants γk > 0 (k = 1, 2) and any moments of time 0 < t < ∞. Thus, we
provide an explicit example of states violating condition (7). Second, in contrast to the density
matrices, the entanglement measures are independent of the nonlinear couplings for the initial
Bell states (19) and (23). Thus, decoherence-free evolution in the nonlinear cavity does not
change the entanglement, i.e., Cψ(γ = 0, t) = Nψ(γ = 0, t) = 1. Now we will give an
example of a maximally entangled two-qubit state evolving in the Kerr medium in such a way
that the entanglement depends on the cross-coupling χ12. Let us analyse the following initial
state:

|ϕ〉 = 1
2 (|00〉 + |01〉 + |10〉 − |11〉) ≡ 1√

2
(|0, +〉 + |1,−〉) (26)

where |±〉 = (|0〉 ± |1〉)/√2. The state |ϕ〉 is a MES since its concurrence and negativity are
equal to 1. For brevity, we neglect the self-couplings, χ1 = χ2 = 0, which do not affect the
entanglement. Then the initial pure state |ϕ〉 evolves in the Kerr medium into the mixed state
described by

ρ̂ϕ(t) = 1

4




(2 − g)2 h
√

g h
√

g −fg

h∗√g g(2 − g) g −fg3/2

h∗√g g g(2 − g) −fg3/2

−f ∗g −f ∗g3/2 −f ∗g3/2 g2


 (27)

given, as usual, in the computational basis {|00〉, |01〉, |10〉, |11〉}, and h = (γfg − 2iχ12)/

(γ − 2iχ12), g = exp(−γ t) and f = exp(2iχ12t). Moreover, if we assume no losses in the
nonlinear cavity (γ = 0), then the evolution of the initial state |ϕ〉 results in the entanglement
oscillations described simply by

Cϕ(γ = 0, t) = Nϕ(γ = 0, t) = |cos(χ12t)|, (28)

which is in contrast to the case of the initial Bell states |φ±〉 and |ψ±〉, which evolve without
changing their entanglements. The aperiodic decay of the entanglement for the density matrix
(27) occurs only if there is no interaction between the qubits and then it is described by

Cϕ(χ12 = 0, t) = 1
2g(1 + g), (29)

Nϕ(χ12 = 0, t) =
√

x2 − 4x + 1 + g − 1 (30)
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Figure 1. Decay of the concurrence for the initial Bell and Bell-like states: (a) Cψ(t), (b) Cφ(t),
(c) Cϕ(χ ′

12, t), (d) Cϕ(χ12 = 0, t) (dashed curve) and (e) Cenv
ϕ (χ ′

12, t) (dotted curve) for cross-
coupling constant χ ′

12 = 20 rad MHz and damping constant γ = 4 rad MHz.
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Figure 2. Decay of the negativity for the same Bell(-like) states and interactions as in figure 1:
(a) Nψ(t), (b) Nφ(t), (c) Nϕ(χ ′

12, t), (d) Nϕ(χ12 = 0, t) and (e) N env
ϕ (χ ′

12, t).

where x = g(1 − g)/2. For nonzero damping and cross-coupling parameters, both the
concurrence Cϕ(t) and the negativity Nϕ(t) exhibit decaying oscillations, as shown by curves
(c) in figures 1 and 2, respectively. The expressions for Cϕ(t) and Nϕ(t) are quite lengthy
in the general case of nonzero χ12 and γ , so we do not present them here. Instead we give
approximate formulae for the envelope function of the concurrence

Cenv
ϕ (t) ≈ g

4

[√
x − 2

3
(z +
√

2(x − 2y)(x + y − z)) + g − 1

]
(31)
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where x = 27 − 14g + 3g2, y =
√

159 − 129g + 37g2 − 3g3 and z =
√

(x + y)2 − 9y2, and
for the envelope of the negativity

N env
ϕ (t) ≈ 1

6

(
2 Re 3

√
v + i3(1 − g)g

√
3w − (2 − g)2 − g

)
(32)

where v = 8g6 − 18g5 − 93g4 + 324g3 − 273g2 + 180g − 64 and w = 116g6 − 316g5 +
297g4 + 930g3 − 515g2 + 624g + 16. Equation (32) was derived by assuming only that the
cross-coupling χ12 is much stronger than the damping constant γ , which implies that the
function h in the density matrix (27) approaches unity. The envelope functions, given by (31)
and (32), are depicted by curves (e) in figures 1 and 2, respectively. Another simpler but far
less accurate approximation of the negativity envelope function can be given by

N env
ϕ (t) ≈ 1

2

√
g3(g3 − 3g2 − g + 11)

g2 − 3g + 4
(33)

which was obtained by using the general properties of the eigenvalues µi of the partial
transpose ρ̂T1

ϕ (t) of density matrix (27), including
∑

i µi = 1 and
∏

i µi = det ρ̂T1
ϕ (t), and

observing that there exist two eigenvalues µi summing up approximately to zero. It is worth
noting that the envelope functions, the same as those given by (31) and (32), are for the
system initially in the separable state given by (18), for which ρ̂(t) has the form of (27)
but with the functions h and f modified as follows: h = [γ (2 + fg) − 2iχ12]/(γ − 2iχ12)

and f = −exp(2iχ12t). Note also that the envelope functions (31)–(33) are independent
of the cross-coupling χ12 under assumption χ12 � γ but, even in this regime, the
period of entanglement oscillations is a function of χ12. A closer comparison of the
entanglement for the Kerr interacting and non-interacting qubits in the lossy cavity leads
us to the following inequalities Cenv

ϕ (tn) = Cϕ(χ12 > 0, tn) > Cϕ(χ12 = 0, tn) and
N env

ϕ (tn) = Nϕ(χ12 > 0, tn) > Nϕ(χ12 = 0, tn) valid for the moments of time equal to
tn = nπ/χ12 for n = 1, . . . . By comparing the entanglement measures for all the analysed
MESs (see figures 1 and 2), we can finally conclude that

Cψ(t) � Cenv
ϕ (χ12 � 0, t) � Cϕ(χ12 = 0, t) � Cφ(t), (34)

Nψ(t) � Nϕ(χ12 = 0, t) � Nφ(t) � N env
ϕ (χ12 �� γ, t) (35)

where the equalities hold for the nonzero damping constant γ at the evolution moments
t = 0 and t = ∞, while for γ = 0 at any times t. Inequalities (34), (35), except those
for Cenv

ϕ (χ12 � 0, t) and N env
ϕ (χ12 �� γ, t), can be proved analytically, while the remaining

inequalities were checked numerically for a large class of parameters. Note that for small
values of χ12 in comparison to γ it holds Nϕ(χ12, t) � Nφ(t), nevertheless the last inequality
in (35) is satisfied even if χ12 ∼ γ , and more pronounced for χ12 � γ (see figure 2), which is
the condition assumed in the derivation of (31)–(33). Obviously, inequalities corresponding to
(34) hold for the entanglement of formation, EF (t), and those corresponding to (35) are also
valid for the PPT-entanglement cost, EN(t). The main conclusion is the following physical
interpretation of inequalities (34), (35): by enabling Kerr interactions between the qubits
initially in the Bell-like state, given by (26), the loss of the entanglement can be periodically
reduced.

5. Decoherence of the maximally entangled mixed states

We will analyse the decoherence process of the initially maximally entangled mixed
states of two qubits [32, 33, 35] on the example of the Werner states [36] defined to be
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(1/3 < p � 1):

ρ̂pψ±(0) = p|ψ±〉〈ψ±| +
1 − p

4
Î 1 ⊗ Î 2, (36)

ρ̂pφ±(0) = p|φ±〉〈φ±| +
1 − p

4
Î 1 ⊗ Î 2, (37)

where |ψ±〉 and |φ±〉 are given by (19) and (23), respectively, and Î 1,2 are the identity 2 × 2
matrices. Thus, the Werner states are mixtures of a MES (Bell state) and the maximally mixed
state, given by Î 1 ⊗ Î 2, which can be interpreted as an equal incoherent mixture of the four Bell
states. It is worth mentioning that the standard two-qubit Werner state is defined as ρ̂pψ−(0)

only [36]. This state, given in terms of the singlet state |ψ−〉, is invariant if both qubits are
subjected to the same unitary transformation, U ⊗ U . Nevertheless, by ignoring the U ⊗ U

invariance but keeping the same entanglement properties, the standard Werner state is often
generalized (see, e.g., [26, 33, 34]) to include mixtures of any MESs, as given by (36) and
(37). Following this convention, we will apply the generalized definitions of Werner states in
our study.

It is easy to show that the concurrences and negativities of the Werner states are the same
and given by

Cpψ(0) = Cpφ(0) = Npψ(0) = Npφ(0) = (3p − 1)/2. (38)

The Werner states can be considered the MEMSs since their degree of entanglement cannot
be increased by any unitary operations [32] and they have the maximum of entanglement for
a given linear entropy (and vice versa) [33]. In a special case of p = 1, the Werner states
go over into the MESs. The evolution of ρ̂pψ(t) for the initial Werner state (36) in the lossy
nonlinear cavity is described by

ρ̂pψ±(t) = 1
4 {[(2 − g)2 − g2p]|00〉〈00| + g2(1 − p)|11〉〈11| ± 2gp[ei(χ1−χ2)t |01〉〈10|

+ e−i(χ1−χ2)t |10〉〈01|] + g[2 − g(1 − p)](|01〉〈01| + |10〉〈10|)}, (39)

being independent of the cross-coupling χ12, which implies that a monotonical decrease of
the entanglement occurs according to

Cpψ(t) = max

{
0, gp − g

√
(1 − g)(1 − p) +

g2(1 − p)2

4

}
,

Npψ(t) = max

{
0,
√

(1 − g)2 + g2p2 − g2(1 − p)

2
− (1 − g)

}
.

(40)

In a special case of p = 1, the above formulae simplify to (21) and (22), respectively. On the
other hand, the evolution of ρ̂pφ(t) from the initial Werner state (37) reads

ρ̂pφ±(t) = 1
2 {(2 − 2g + xp)|00〉〈00| + (g − xp)(|01〉〈01| + |10〉〈10|) ± p(f |00〉〈11|

+ f ∗|11〉〈00|) + xp|11〉〈11|} (41)

where xp = (1 + p)g2/2 and f = g exp[i(χ1 + 2χ12 + χ2)t]. Hence, the time evolution
explicitly depends on the cross-coupling χ12, but in such a way that the concurrence and
negativity exhibit the same monotonic decrease independent of χ12 as follows:

Cpφ(t) = Npφ(t) = max
{

0,
g

2
[g(1 + p) − 2(1 − p)]

}
(42)

In a special case of p = 1, equation (42) reduces to g2 in agreement with (25). Note that the
subscript ± in Cpψ,Npψ,Cpφ and Npφ has been omitted as the functions are independent of
the sign in (36) and (37).
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Figure 3. Decay of the concurrence for the initial Werner(-like) states: (a) Cpψ(t), (b) Cpφ(t),
(c) Cpϕ(χ ′

12, t), (d) Cpϕ(χ12 = 0, t) and (e) Cenv
pϕ (χ ′

12, t) for various values of parameter p; γ and
χ ′

12 are the same as in figure 1.

As the last example, let us assume qubits to be initially in the Werner-like state defined
by (1/3 < p � 1):

ρ̂pϕ(0) = p|ϕ〉〈ϕ| +
1 − p

4
Î 1 ⊗ Î 2 (43)

in terms of the MES given by (26). The concurrence and negativity for (43) are equal to
Cpϕ(0) = Npϕ(0) = (3p − 1)/2 being the same as for the other Werner states. However,
its evolution essentially differs from ρ̂pψ±(t) and ρ̂pφ±(t) by exhibiting oscillations of the
entanglement. In detail, it is described by the density matrix elements

[ρ̂pϕ(t)]ij = p(1−δij )[ρ̂ϕ(t)]ij (44)

given in terms of (27), but with the off-diagonal terms multiplied by p as δij stands for the
Kronecker delta. In a special case of the lossless nonlinear cavity, the entanglement of the
state ρ̂pϕ(γ = 0, t) evolves periodically as follows:

Cpϕ(γ = 0, t) = Npϕ(γ = 0, t) = 1
2 max{0, p(2|cos(χ12t)| + 1) − 1} (45)

which is opposite to the time-independent evolution of the other Werner states, namely
ρ̂pψ±(γ = 0, t) = ρ̂pφ±(γ = 0, t) = const. One can conclude from (45) (see also
figures 3 and 4) that by decreasing parameter p, the entanglement and the time intervals in
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Figure 4. Decay of the negativity for the same Werner(-like) states and interactions as in figure 3:
(a) Npψ(t), (b) Npφ(t), (c) Npϕ(χ ′

12, t), (d) Npϕ(χ12 = 0, t) and (e) N env
pϕ (χ ′

12, t).

which the states are entangled decrease. For the dissipative nonlinear cavity, the entanglement
corresponding to the evolution of ρ̂pϕ(t) exhibits decaying oscillations shown by curves (c)
in figures 3 and 4. As in the previous section, we are mainly interested in the envelopes of
these oscillations. In the special case of p = 1, when the initial Werner-like state goes over
into the Bell-like state, the concurrence and negativity envelopes are given by (31) and (32),
respectively. By assuming χ12 � γ , an approximate formula for the p-dependent envelopes
of the concurrence can be given by

Cenv
pϕ (t) ≈ g

4
max

{
0,

1√
3

(√
xp + 4p

√
yp − 2

√
xp − 2p

√
yp

)
+ g + p − 2

}
(46)

in terms of xp = 3G2 + 2Gp + 11p2 and yp = 3G3 + G2(10 + 9p) + G(3 + 14p) + p(9 + 16p),
where G = 2−g. Note that (46) for p = 1 is another approximate formula of the concurrence
envelope for the initial MES |ϕ〉, but leading to a slightly worse approximation than that given
by (31). For brevity, the lengthy formula for the p-dependent negativity envelope, N env

pϕ (t),
generalizing equation (32), is not presented explicitly here although it was used for plotting
the envelope curves (c) in figure 4. By analysing figures 3 and 4, we conclude that

Cenv
pϕ (tn) = Cpϕ(χ12 > 0, tn) � Cpϕ(χ12 = 0, tn),

N env
pϕ (tn) = Npϕ(χ12 > 0, tn) � Npϕ(χ12 = 0, tn)

(47)
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Figure 5. Four-level atomic system for the resonantly enhanced Kerr nonlinearity in the Schmidt–
Imamoǧlu scheme.

at moments of time tn ≈ nπ/χ12 (n = 1, 2, . . .), which means the decay of entanglement of
the initially Werner-like state (43) in a lossy cavity can be periodically retarded by inserting
the Kerr nonlinearity in the cavity.

6. Discussion and conclusions

Let us finally address the question whether the interactions studied in this paper can be
experimentally observable. As mentioned in the introduction, the conditions assumed
in the paper of the strong Kerr interaction at low light intensities can be satisfied, e.g.,
for the EIT schemes as studied theoretically [11, 13–17] and confirmed experimentally
[12, 18]. Schmidt and Imamoǧlu [11] have proposed a renowned EIT scheme where a low-
density cloud of cold atoms with the four-level structure, shown in figure 5, exhibits giant
resonantly enhanced nonlinear cross-coupling with vanishing linear susceptibilities at low
intensities. In the scheme, atoms are placed in a cavity (or double cavity) tuned to two
frequencies: ω1 of the mode a1 resonant with the transition |1〉 ↔ |3〉, and ω2 of the
mode a2 detuned by �ω2 of the transition |2〉 ↔ |4〉. The EIT effect for the modes a1

and a2 is induced by a classical coupling field of frequency ωc resonant with the transition
|2〉 ↔ |3〉. By assuming that |ω1 − ω2| � �ω2, no nonlinear self-coupling will occur in the
system. Nevertheless, as shown in the preceding sections, only the cross-coupling changes
the entanglement evolution. By adiabatically eliminating all the atomic levels, Schmidt
and Imamoǧlu have found the real part of the resonantly enhanced third-order nonlinear
susceptibility, Re(χ(3)), to be given by |µ13|2|µ24|2nat

(
2ε0h̄

3�2
c�ω2Vcav

)−1
, where µij is the

electric dipole matrix element between the states |i〉 and |j 〉, nat is the total number of atoms
contained in the cavity of volume Vcav,�c is the coupling-field Rabi frequency and ε0 is the
permittivity of free space. With the help of the expression for Re(χ(3)), it is easy to show that
the Kerr nonlinear cross-coupling is given by [13, 15]

2χ12 ∼ 3|g13|2|g24|2
�2

c �ω2
nat (48)

where gij = µij

√
ωi/(2εh̄Vcav) is the coupling coefficient between the atoms and the cavity

mode ai of frequency ωi . It is worth stressing that the above formulae for Re(χ(3)) and
χ12 are valid under the condition that |g13|2nat

/
�2

c < 1 required by the applied adiabatic
elimination procedure [37]. The EIT-enhanced Kerr-coupling constants for the Schmidt–
Imamoǧlu scheme can be estimated moderately as ∼0.2 rad MHz [15], or by putting the
stringent limit on the required cavity parameters [37], as ∼100 rad MHz [13]. In our numerical
analysis, we have chosen χ12 = 20 rad MHz. A typical cavity decay rate obtainable in current
experiments is of the order ∼4 rad MHz, which is five times smaller than the value of χ12 chosen
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for plotting figures 1–4. This estimation is less stringent than that given in [13]. It is worth
noting that the EIT leads to remarkable light-speed reduction [12], which enables reduction
of the cavity decay rate in the Schmidt–Imamoǧlu setup with the same finesse mirrors. We
have analysed decays within times <80 ns, which are fairly shorter than the dephasing time
(∼9 µs) for an atom cloud measured in the Hau et al experiment [12] but longer, for obvious
reasons, than the evolution times (∼8 ns) in the quantum non-demolition scheme of Duan
et al [15].

In conclusion, we have analysed the evolution of two optical modes in qubit states
interacting via a Kerr nonlinearity in a lossy cavity modelled by dissipative coupled nonlinear
oscillators being initially in the maximally entangled pure or mixed states. We have found
that for the initial Bell (|ψ±〉 and |φ±〉) or Bell-like (|ϕ〉) states, the decay of the concurrence,
or equivalently the entanglement of formation, is the slowest for |ψ±〉 and the fastest for |φ±〉,
while the decay of the negativity, or equivalently the PPT-entanglement cost, is the slowest for
|ϕ〉 (if the nonlinearity parameter is much greater than the damping constants) and the fastest
for |ψ±〉. Thus, we have provided simple analytical examples of states differently ordered by
concurrence and negativity. These seemingly inconsistent results are physically meaningful
as discussed in, e.g., [7, 24, 26] and proved in general terms by Virmani and Plenio [27].
Nevertheless, to our knowledge, our analysis is the first demonstration of the relativity of the
entanglement measures as a result of a physical process. Moreover, we have also studied
decoherence of the initial maximally entangled mixed states on the example of three kinds
of Werner(-like) states as related to the different Bell(-like) states |ψ±〉, |φ±〉 and |ϕ〉. Our
analytical and numerical results show the differences and similarities of the negativity and
concurrence decays of the Werner(-like) states in comparison to the Bell(-like) states.

We have demonstrated that by inserting a medium with the Kerr nonlinearity, described
by Hamiltonian (10), into the lossy cavity, evolution of the initial Bell states |ψ±〉 or |φ±〉 and
the corresponding Werner states is changed but in such a way that the entanglement decays in
the same manner as without the nonlinear medium. However, if the qubits placed in a lossy
cavity are initially in the Bell-like state |ϕ〉 or the corresponding Werner-like state, the loss
of entanglement can be periodically delayed (partially recovered) by inserting a medium with
the Kerr nonlinearity.
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Şahin K Özdemir and Ryszard Tanaś for stimulating discussions.

References

[1] Giulini D et al 1996 Decoherence and the Appearance of a Classical World (Berlin: Springer)
[2] Braunstein S L and Lo H-K (ed) 2001 Scalable Quantum Computers: Paving the Way to Realization (New York:

Wiley-VCH)
[3] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[4] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[5] Peres A 1996 Phys. Rev. Lett. 77 1413

Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
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[29] Peřinová V and Lukš A 1994 Progress in Optics vol 33 ed E Wolf (Amsterdam: North-Holland) p 129
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