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Abstract

Bell-inequality violation and entanglesnt, measured by Wootters’ concurrenand negativity, of two qubits initially in
Werner or Werner-like states coupled to thermal reservoirs are analyzed within the master equation approach. It is shown how
this simple decoherence process leads to generation of states manifesting the relativity of two-qubit entanglement measures.
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1. Introduction

Quantum nonlocality, responsible foiolation of Bell-type inequalitiefl,2], and entanglement (inseparability)
are the fundamental resources of madguantum-information theory and still the most surprising features of
guantum mechanics (see, e[g]). Itis therefore desirable to investigate the degrees of the Bell-inequality violation
and of entanglement of a quantum state not only in relation to efficiency of quantum-information processing, but
also to understand better subtle aspects of the physical nature.

It is well known that pure statefgl] or a mixture of two Bell states violate Bell inequalities whenever they
are entangled. So, one could naively think that the only mixed states that do not violate the Bell inequalities are
separable states. However, Werifigf demonstrated the existence of entangled states which do not violate any
Bell-type inequality. The standard two-qubit Werner state is defing8lby

1_
p)(,p)(O)zp|Y>(Y|+TpI®I 1)

being a mixture fop € (0, 1) of the singlet stat¢¥) = (|01) — |10))/+/2 and the separable maximally mixed state,
given byl ® I, where! is the identity operatorfoa single qubit. Definition(1) is often generalized to include
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mixtures of any maximally entangled state (MES) inste&the singlet state only. So, e.g., one can analyze the
Werner-like state defined {$—8]

1_
p\P(0) = p|X)(X| + Tp’®” @)

as a convex combination of the Bell st&a# = (]00) +|11))/+/2 and! ® I. The original Werner stafd), contrary

to (2), is invariant if both qubits are subjected to same unitary transformatioti sa/ . Nevertheless, for a given

p, both state¢1) and(2) exhibit the same entanglement properties, f2)ss also referred to as the Werner state

[6-8]. In addition to the fact that the Werner states can liaregied without violating any Bell inequality for some

values of parametep, they can still be used for quantum-information processing including telepor{&tiboy.
Moreover, the Werner states, given {) and(2), can be considered maximally entangled mixed states of two
qubits[6,11]in the sense that their degree of entanglement cannot be increased by any unitary operations, and they
have the maximum degree of entanglementf given linear entropy (and vice versa).

We will study the effects of a lossy environment, modelled by thermal reservoirs, on the Bell-inequality violation
and on the entanglement of the initial Werner and Werner-like states in the quest for new states including those
having different orderings induced by two entanglement measures: concufesnog negativityV (defined in
Section 4. The relativity of the entanglement meassiwas first observed by Eisert and Plegjiip]. They showed
numerically, using Monte Carlo simulation, that the condition

C(p1) < C(p2) & N(p1) < N(p2) (3

can be violated by some two-qubit mixed states, although it is satisfi@daihd p, are the Werner states or pure
states. Virmani and Plenid 3] demonstrated that all good asymptotic entanglement measures are either identical
or impose different orderings of quantum states. The problem of relativity of the entanglement measures was also
studied in Refs[8,14—17] Here, in particular, we present analytieedlamples of different orderings imposed by
the concurrence and negativity for two-qubit statesich violate the Bell inquality to the same degree.

The Letter is organized as follows. Bection 2 we discuss a dissipative model and give a general solution
for two decaying qubitsnitially in the Werner states. A comparatigtudy of the Bell-inequality violation and
entanglement of various decaying states are give8eistions 3 and ,4respectively. A final comparison and
conclusions are given i8ection 5

2. Model for loss mechanism

We analyze evolution of two initiallgorrelated qubits subjected to dissipation modelled by their coupling to
thermal reservoirs (phonon baths) asa&ed by the following Hamiltonian

H=Hs+1Y 2000) 50 +1 3 [¢Was® +hel, (4)
k,n k,n

which is the sum of Hamiltonians for the systeHy, reservoirs and the coupling peten them, respectively. It is
a prototype model, where qubits can be implemented in various ways, e.g., by single-cavity modes restricted in the
Hilbert space spanned by the two lowest Fock states (see[l&8).,In (4), a; is the annihilation operator for the
kth (k = 1, 2) qubit at the frequencyy; b is the annihilation operator for theh oscillator in thekth reservoir at
the frequencﬂ,ﬁk), andg,ik) are the coupling constants of the reservoir oscillators. We assume no direct interaction
between the qubits, thus the system Hamiltonian is simply giveHHy- /i Z,le a)kazak. The standard master
equation for the model reads as

2
0 1 Vi (- _
5P = Hs. pl+ > E{nk(ZaZpak —aralp — paal) + (i + 1) (2arpal — alarp — palar)},  (5)

k=1
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wherep is the reduced density operator for the qubjtsis the damping constant ang is the mean number
of thermal photons of théth reservoir. The exact solution &) for arbitrary initial @nditions and arbitrary-

dimensional systems is well-knowBy confining our analysis to the itfal qubit states coupled to the quiet
reservoirs §1 = n2 = 0), the solution in the computational ba§j80), |01), |10), |11)} in the interaction picture

can compactly be given as

h s 15 /8182p03
bl h1 /8182012 /8182013

pt) = (6)

/2 /8182021 ha 81./82023
8182030 /8182031 &1./82P32  £182P33

where the elements of the initial density matpi0) are denoted byy; 11 2;41 = (i, k|p(0)] ], 1); gk = eXP(—ykt)
and

fi =83k [(1— g0)p3.3-k + pro] hi = g3 k[ (1 — gu)p33+ pri) ]
h=1— (h1+h2+ g182p33). (7)

We will apply solution(6) to analyze the effect of dissipation on the Bell-inequality violation and entanglement of
the initial Werner states.

3. Béll-ineguality violation

We will study violation of the Bell inequality due to Clauser, Horne, Shimony and Holt (CHZHIn a special
case of two qubits in an arbitrary mixed stateone can apply an effective criterion for violating the Bell inequality:

|Tr(pBchsh| < 2, (8)
whereBchsh is the Bell operator given by
Beush=a-0 @ (b+b)-o+a -0 @b -b)- 0, (9)

with its mean value maximized over unit vectasa’, b, b’ in %3. Moreover,s is the vector of the Pauli spin
matriceso1, o2, o3, and scalar produet- o stands foer-’=l ajo;. By noting that any can be represented in the
Hilbert—Schmidt basis as

3
1
p:Z<I®I+I’-O’®I+I®S-O’+ Ztnman@)on,), (10)
n,m=1

wherer, sare vectors imi2. Horodecki et al[19,20]proved that the maximum possible average value of the Bell
operator in the state is given by

max Tr(pBchsH) = 2y M (p) (11)

Berish

in terms of M (p) = max; < {u; + ui}, whereu; (j =1, 2, 3) are the eigenvalues of the real symmetric matrix
U, = TPTT,); T, is the real matrix formed by the coefficiens, = Tr(po, ® 0,,), and TpT is the transposition
of T,,. Thus, the necessary and sufficient condition for violation of inequéBiypy the density matriX10) and
Bell operator(9) for some choice o0&, &, b, b’ reads asV/(p) > 1[19,20] To quantify the degree of the Bell-
inequality violation one can usé (p), 2/ M (p) (see, e.g.[7,21]), or max0, M (p) — 1} (see, e.9.[22]). But we
propose to use the following quantity

B(p) = v/max0, M (p) — 1}, (12)
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Fig. 1. Decays of different measures for a given initial state in each sub-figure: the Bell-inequality violationtdg’d(e)a concurrence?f/,”)(t)

and negativitnyb”)(t) for qubits initially in the Werner statesff)(O), wherey = X, Y, Z and p = 1 (left panel) orp = 0.8 (right panel),
coupled to the same reservoir with the damping constaat y» = 0.1.

which has a useful property that for any two-qubit pure state it is equal to the entanglement measures such as
concurrence and negativity, defined in the next sectionMX®) < 2, it holds B(p) € (0, 1), whereB(p) = 1
corresponds to the maximal violation of inequali8)j and B(p) = 0 for states admitting the local hidden variable
model. The larger value @#(p) > 0 the greater violation of the Bell inequality. Thug,p) can be used to quantify
the degree of the Bell-inequality violation (BIV), and for short it will be referred to aBtivedegree.

The BIV degrees for the initial Werner state%’) (0) andp(yp) (0) are the same and equal to

B 0) = B (0) = max{0, 2p? — 1}/ (13)

implying that the states violate the Bell inequality ifff\f2 < p < 1. By changing the parameter into
¢ =(1—3p)/2,(13)goes into another well-known form (see, €[89,20)). The BIV degree of the maximally
entangled stategp(= 1) is also maximal and equal to one as shown in the left pandigsf 1, 2 and 4tr = 0.
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Fig. 2. Decays of a given measure for different states in each sub-figure. Notation and parameters are the $agnéd.as in

By applying the solutiorf6) one observes that the initial Werner staﬁé) (0) decays as follows

A+ 0 0 2p/z12

1 o n? o0 0
P () =7 S : (14)
4 0 0 0

2pJgig2 O 0 (1+plgige
whereh ™) = (2— g1)(2— g2) + pgig2 andh,(f) = g3_«[2— (1+ p)gx]. By applying the Horodecki criterion one

finds the eigenvalues @f to beus » = pg1g2 anduy 2 > uz = [(1 — g1)(1 — g2) + pg1g21%, which implies that
the BIV degree evolves as

1/2
B\ (1) =max{0, 2p?g1g2 — 1}/, (15)

Examples of decays cB)((”) (1) for p =1 and 08 are presented graphically by assuming that the damping constants
are the same, for, = y2» = 0.1 in Figs. 1(a), (b) and 2(a), (bdr different, fory; = 0.1 andy2 = 0, inFig. 4. If the
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qubits are initially in the Werner statfﬁ,”) (0) then the evolution of the density matrix is described by

h) 0 0 0
hy” —2p./8182 0
(p)(t) — A ! (=) 5 (16)
0 -2p/gig hs 0
0 0 0 (1-plgige

whereh(™) = (2 — g1)(2— g2) — pgi1g> andh,(;) = g3 x[2— (1— p)gi]. Applying the same procedure as for the
statepx (7), one can find the following eigenvalues Gf u1 2 = p2g19o anduio>uz=[1—(g1+g2) + 1A —
p)g1g212. Although the third eigenvalue differs from that fog (1), the BIV degreesx (r) and By () decay in the
same manner:

B (1) = max{0, 2p2g1g2 — 1}1/2 =B () (17)

as shown, e.g., by solid curveshigs. 2(a), (b) and 40bviously, by changing the sign in the definitions of the
Bell states|X) and|Y), one finds the same decay of the BIV degreleud, one could conjumare that all MESs
decay in the same way. We will show that this is not true by analyzing the following initial state

1
— (10, +) + 11, =), 18
S0P +IL-) (18)
where|+) = (]0) & |1))/+/2. State| Z) is another MES, which has the BIV degree (and also the concurrence and
negativity) equal to one, and can be obtained fidfh by applying locally the Hadamard transformation to the
second qubit. One can also define another Werner-like state as a mixture of theZM&®l the maximally mixed
state given by ® I as follows (0< p < 1):

1Z) = 5(100) +101) + [10) — |11)) =

I\)ll—‘

1_
pP(0) = p|Z)(Z|+TpI®I (19)

for which the BIV degree is given b{13) as for the standard Werner state. For this and other reasons concerning
the entanglement properties (s®ection 4 being the same as for the stdtg, we shall simply refer t¢19) as the

Werner state despite the fact tfa®)is notU ® U invariant. The thermal reservoirs cause the decanfz%ff(O) as
follows

W P81/82  Py/8182  —Pp./8182
(p) ) = rg1/82 82(2—g1) py/8182 —Dp./8182 ’ (20)
4| pyziee  pyEiEz 812—g2) —psiyae
—py/8182 —P/8182 —p8iJ/& 8182

whereh’ = 4+ g1g2—2(g1+g2). The eigenvalues; are{p?g1g2, %(v:l:,/ —4pt glgz)} implying the following
decay of the BIV degree

) 1 1/2
B (1) =max{0, p?g182 + §<v+‘/ —4p glgz) 1} , (21)

wherev = (1 — g1)2(1 — g2)° + p?g1g82(g1 + g2). For more explicit comparison of expressions ij)y (r) and
B(Z”) (1), we find their short-time approximations up to linear terms in timegfor 1/+/2 as follows:

2
B (1) =BY (1) = max{o, 0- 01+ yz)%t +0(r%) } (22)
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2
B (1) = max{o, 0—[501+r2) —ly1— Vzl]—Q +O(r )} (23)

whereQ = ,/2p? — 1. By attentively comparin¢L7) and(21), we find that it holds
BY (1) =8 1) > BY (1) (24)

for any evolution times. In a special case of ghimnes, this result immediately follows frof22) and(23). So, for

both the qubits coupled to the reservoir(g),(> > 0), the evolution ofB(”)(z) > 0 differs from that ofB(” 10)
as shown, e.g., by solid and broken curve§ig. 2(a), (b) However, by assuming that only one of the qublts is

coupled to the reservoir, sgy # 0 andy, = 0, the BIV degree ofo(z”) (t) decreases at the same rate as that of
(")(z) andp(”)(t) and all the three the BIV degrees are given by

BY (y2=0.0)= B’ (y2=0.1) = BY (y2 = 0.1) = max{0, 2p?g; — 1}"/?, (25)
which is a special case ¢£7)and(21). Clearly fory> = 0, (23) goes over intd22) as expected. The decays of the
BIV degrees for one of the damping constants equal to zero are presented graphically by solid deigies in

4. Entanglement

To study the entanglement, we apply the concurremak reegativity being related to the entanglement of
formation and entanglement cost, respectively.

The entanglement of formation of a mixed states the minimum mean entanglement of an ensemble of pure
stateq;) that represents [23]:

Er(p)= min Zp, (1) (i (26)

where p = Y. pilvi)(yi| and E(|y;)(¥;]) is the entropy of entanglement of pure stafg) defined by the
von Neumann entropy. As shown by Woott¢2d], the entanglement of formation for two qubits in an arbitrary
mixed statep can explicitly be given as

EF(p>=H(%[1+,/1—C(p)2]), (27)

whereH (x) is the binary entropy and(p) is the Wootters concurrence defined by

4
C(p) = max{ 0,2 maxi; — ZA,- } (28)
! i=1
wherel; are the square roots of the eigenvalues of the maliéx ® o,)p* (0, ® 0,), Whereo, is the Pauli spin
matrix and the asterisk denotes complex conjugatin(e) and C(p) are monotonic functions of one another
and both range from O (for a separable state) to 1 (for a maximally entangled state), so that “one can take the
concurrence as a measure of entanglement in its own right”
The negativity is another measure of bipartite entanglement being related to the Peres—Horodecki[@%terion
26] and defined by12,27,29]

N(p) = max{ 0,-2) uj } (29)
J
wherep = p 45 is the density matrix of two subsystems (sayand B with d4 anddp levels, respectively), and the
sum is taken over the negative eigenvaluef the partial transpose’ of p with respect to one of subsystems
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(sayA) in the basiq|0), [1), ..., [da)}:

dpa—1ldp—1

p™ =" > i klplj, D k)i, 1. (30)

i,j=0k,l=0

For two-qubit ¢4 = dp = 2) states, the sum i(29) can be skipped as’# has at most one negative eigenvalue
[30]. The negativity, especially in low-dimensional system&@and 28 3), is a useful measure of entanglement
satisfying the standard conditiof8,29] The negativity29) ranges from 0 (for a separable state) to 1 (for a MES)
similarly to the concurrence and the BIV degree. It is worth noting that the logarithmic negativityVio® + 1],
has a simple operational interpretation as a measure of the entanglement cost for the exact preparation of a two-
qubit statep under quantum operations preserving the positivity of the partial transpose [FAR32]

The concurrences and negativities for all the three initial Werner scbé’fé@) (v =X,Y, Z) are the same and
equal to

Cff)(O)szf)(O) max{ ~@3p — 1)} (31)

but different from their BIV degreé?f/’)(O), given by (13). For the Bell states, all the entanglement measures

and the BIV degree are equal to one. However, by decreasing pargméher BIV degree of the Werner states

decreases faster than themtanglement. For example ¢f = 0.8, the initial values of the concurrences and

negativities are equal to 0.7 while the BIV degree is 0.529 as shown in the right parfigsofl, 2, and 4

By comparing(13)and(31)it is seen that the Werner states are entangled/8f<d p < 1. Thus, the Werner states

for p € (1/3,1/+/2) are entangled although admitting a local hiddesdel, i.e., satisfying the Bell inequalif§].
Qubits initially in the Werner state»(”)(O) coupled to the thermal reservoirs exhibit dissipation described

by (14). We find with the help of the Wootters formula that the concurrencmfﬁ)r(t) exhibits the following
decay

c ) = max{o, VB op @ a5 @ 452) } (32)

with ¢ = 1+ p. While the negativity, acading to Peres—Horodecki criterion applied @{’) (1), decays as

1
NY (1) = maX{ 0.5 [—gl —g2+ 1+ plgiga+ \/(81 —82)%+ 4p2g1g2] } (33)

By assuming that both qubits are coupled to the same reservoir described the damping goastaat y», we
observe that the concurrence and negativity are the same for all evolution times as described by

P ) = N””m—max{ la+pg-2a- p>]} (34)

whereg = exp(—y1), as clearly depicted iRig. 1(a), (b) In another special case, for the initial Bell states{1),
the solutions for the concurrence and negativity simplify to

P =ee2(l-vVa—-gnl—g2), NP =g1g, (35)
respectively.

On the other hand, for qubits decaying from the initial Werner sﬁfﬁfé(O), as described by16), the
concurrence decays in time as

1
) = max{o, E\/glgz(ZP —V1-pJ/R2-g1)2—g2) - Pglgz)} (36)
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while the negativity vanishes as follows

1
N)(/p)(t) = max{o, > (—2 +g1+g2—A—plgiga+ \/(2 —g1—82)%+ 4P2g1g2> } (37)
Note that decays of all the entanglent measures, similarly to the BIV degree, are independent of the sign in

definitions of | X) and|Y). In a special case for qubits coupled to the same reserypi=(y2), (36) and (37)
simplify, respectively, to

o) = maX{O, g(p - \/r(l— g+ %rzgz) }

NP (1) = max{o, J (@ = g)2 + p2g? — %rg2 —(1- g)}, (38)

with r =1 — p. In another special case for the initial Bell stage=t 1), the entanglement measu(88) and(37)
reduce to

1
V(1) = ez, NP @) = > <\/(2 — g1+ 82?4+ 48182+ 81+ g2 — 2), (39)

respectively. It is worth meioning that, in contrast tcC;”)(z) = N,((”)(t) for y1 = y», the evolutionsC(Y”)(t)

and Nf,”)(t) are different. Finally, let us briefly discuss the effect of dissipation of the initial Werner;s}?t(é)),
described by20), on the entangled measures. The general analytical formulas fprdieeendent concurrence and
negativity are quite lengthy thus are not presented kgplicitly although were used for plotting the corresponding
curves inFigs. 1(e), (f), 2(e), (f) and.3However, in a special case for the initial Bell-like stape=£ 1) the decays

of the entanglement measures are simply given by:

1
cP) = «/—glgz(l -5V =g gz>),

1
NP ) = 51826+ g1g2— 26) + 41— G)2+ G — 1. (40)

with G = (g1 + g2)/2. By assuming the same damping constaats: y», e.g., the concurrence formula reduces
to C(Zl)(t) = g(1+ g)/2. A graphical comparison of the decays of all the measures is showigir2 and of
the negativities irFig. 3 and Table 1for y; = y» = 0.1. Since the differences between the negativiﬂ/#) (1)
are not clear enough irig. 2(f), the curves were redrawn irig. 3 for the rescaled negativitieAN&f’)(z) =
NP (1) = N (1) with v = X, ¥, Z.

For clear analysis of the entanglement meas we will now focus on the special case foe 1. A comparison
of Egs. (35), (39), and (40inplies that the following inequalities are satisfied

cPo=cPuy=cP (41)

for any evolution times. In the short time approximation, we find that the concurrenceél)fc(np =X,Y,272)
decay up to linear terms in time as follows

1
Cy 0 =1=S(n+r2+ fyyrra)i + (). (42)

where fxy = 2, fy = 0, and fz = 1, which confirms the validity o{41). Contrary to the concurrences, the
negativities in the short-time limit decay as follows

1
NP0 =1=(n+ 1+ 574+ fyre +73)2 + 0(). (43)
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time

281

Fig. 3. NegativitiesAN;f”)(t) = Nl(f)(t) - N;”)(t) (¥ = X, Y, Z) corresponding to those presentedFiig. 2(f) and Table 1for the same
y1=y2=0.1andp =0.8.
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Fig. 4. Same as iRig. 1but for one qubit coupled to the reservoir with the damping constaat 0.1, and the second qubit undampegd & 0).

Table 1

Comparison of the negativities for the three initial Werner stateg fer0.8, y; = y» = 0.1 as inFigs. 2(f) and 3The characteristic evolution
times arey ~ 7.4745,1p ~ 9.1613,13 ~ 9.5209. The corresponding inequalities for the BIV degrees’;éfé(t) = B)(,”)(t) > B(Z”)(t), and for
the concurrences a(éy’)(t) > C(Z”)(t) > Cg(p)(t)

Time

Negativities

t€(0,17)
t=n

1€ (t1,12)
t=1ty

1€ (12,13)
=13

t € (13,100

NP @ > NP @) > NP
NP @) > NP @)= NP (@)
NP @) > NP @0y > NP (@)
NP =N 0> NP
NP0 =N 0 >N
NP0 > NP @ =N @)
NP @) > NP @0y > NP (1)
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where fy, =2, f; =1, andf;, =5/4, which implies that at short evolution times the inequalities hold

NP6 =NP@) = NP (44)

A closer look at the inequalitie®4), (41)and(44) enables us to conclude that there exist states of two qubits
(e.9., 0\ () and p” (1) at some short evolution timg) exhibiting the same BIV degree&\” () = B\" (1),
but different entanglement measures in such a way that the concun@éﬁ@e) is smaller tharC(yl)(t), while

the negativityN)((l)(z) is greater thaer,l)(t). Obviously, the inequalitie41) for the concurrences correspond

to those for the entanglement of formation, while the inequali@y for the negativities correspond to those
for the PPT-entanglement cost. We stres# flor longer times inequalities different fro(d4) are satisfied for

p < 1 as presented iffable 1 By analyzing this table, other states differently ordered by the entanglement
measures are readily recognized, including those at timae,, for which B)((‘s) (1) = B(Y'B) (1), N,((‘s) () = Nf,‘s) (1)

butc(® @) < ci® ).

By comparing the series expansiqd®) and(43)for y1, y2 > 0, we can conclude that all the three negativities
evolve in a more similar way (precisely they are the same up to linear terms in time) in comparison to more
distinct evolutions of the corresponding concurrences. Also by analy2ijand (43) for p = 1, one observes
that the negativities)lj((l’)y’z(z) and the BIV degreegg(%)y(z) decay in the same manner up to linear terms in time
for arbitrary values of andy». Other similarities of the decays of the entanglement and/or the BIV degree can be
found for some special choices of the damping constants. In parti¢8ddris valid for y; = y». In another special
case of only one of the qubits coupled to the reservoir, @.g4 0 andy, = 0, the BIV degrees of all the three
states decrease, as given(2p), but also the entanglement measures decrease at the same rate as expressed by
their concurrence

1
c§{’)(y2 —0.1) = C)(/w(yz =0,1) = C(zp)(VZ =0,1)= max{o, E\/g_l(Zp —J/A-pr2-a+ p)g]_])}

(45)
and negativity

1
N)((p)(yz =0,1)= N;”)(Vz =0,1)= Nép)(yz =01 = max{o, E(Pgl + \/(1 —g1)%2+4pg1— 1) } (46)
By restricting to the case of the initial MESg & 1), the above equations reduce to£ X, Y, Z):

CHPr=0n=yz1. NP (r=01=¢g. (47)
These conclusions are confirmed numerically on the examplgs-610.1, p = 0.8 andp = 1 as shown irFig. 4.

5. Conclusions

We have analyzed quantum-information propertiesaaf tlecaying optical qubits ppared initially in Werner
or Werner-like states and coupled to thermal reservoirs within the master equation approach. We have studied
in detail a degree of violation of the Bell inequality due to Clauser, Horne, Shimony andHlddy applying
a parameteB related to the maximum possible mean valuehs Bell operator in a given state according to
the Horodecki criteriof19]. On the other hand, the degree of the entanglement was expressed by the Wootters
concurrence [24], as a measure of the entanglement of formation, and by the negatiagsed on the Peres—
Horodecki criterion25,26]and related to the PPT-entanglement ¢84{. We have observed, as manifestations
of the symmetry of our particular decoherence mechantiseifollowing properties oftte decaying Werner states
in relation to the Bell-inequality violation degré®eand the entanglement measuéeand N if only one qubit is
coupled to the thermal reservoir than those decays ar@émttent of the initial Werner or Werner-like state for a
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given p. However, if both qubits are coupled to the reservoir(s) then the decaysnti N, and in some casd?,
depend on the initial Werner or Werner-like state. By analyzing these decays, we have found states(kayof
two qubits exhibiting the same degree the Bell-inequality violat®yn= B, , but different entanglement measures
in such a way that the concurren€g is smaller tharC, , while the negativityV,, is greater thawv,,. We have also
found other statep ando, for which either (i)B, = B,, C, < C, andN, < Ny, or (ii) B, = B;, N, = N, and

C, < Cs. Thus, the analysis of the decaying Werner states/siubearly the relativity of two-qubit entanglement
measures.
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