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Abstract
The quantum scissors device of Pegg et al (1998 Phys. Rev. Lett. 81 1604)
enables truncation of the Fock-state expansion of an input optical field to
qubit and qutrit (three-dimensional) states only. Here, a generalized scissors
device is proposed using an eight-port optical interferometer. Upon
post-selection based on photon counting results, the interferometer
implements generation and teleportation of qudit (d-dimensional) states by
truncation of an input field at the (d − 1)th term of its Fock-state expansion
up to d = 6. Examples of selective truncations, which can be interpreted as
a Fock-state filtering and hole burning in the Fock space of an input optical
field, are discussed. Deterioration of the truncation due to imperfect photon
counting is discussed including inefficiency, dark counts and realistic
photon-number resolutions of photodetectors.

Keywords: linear optics, quantum state engineering, quantum teleportation,
projection synthesis, multiport interferometer, quantum scissors, positive
operator valued measure

1. Introduction

Quantum engineering of nonclassical light has attracted
remarkable interest in the last decade [1]. This interest has
been further stimulated by a recent theoretical demonstration
of Knill et al [2] that linear optical systems enable efficient
quantum computation. Such systems are experimentally
realizable with present-day technology [3, 4], since they are
based only on beam splitters (BSs) and phase shifters (PSs)
together with photodetectors and single-photon sources.

In this paper, linear systems are studied for the optical-
state truncation, which refers to truncation of the Fock-state
expansion of an input optical state

|ψ〉 =
∞∑

n=0

γn|n〉, (1)

with unknown superposition coefficients γn, into the following
finite superposition of d states:

|φ(d)trun〉 = N
d−1∑

n=0

γn|n〉, (2)

which is called the optical qudit state (d-dimensional
generalized qubit). Here N = (

∑d−1
n=0 |γn|2)−1/2 is the

renormalization constant. In the following, the similarity sign
will be used instead of writing explicitly N . The input state
|ψ〉 can be a coherent state |α〉, or any other infinite or finite-
dimensional state. Systems for the optical-state truncation are
referred to as quantum scissors devices (QSDs).

The first and simplest QSD was proposed by Pegg et al
[5, 6], then analysed theoretically in various contexts by
others [7–14], and experimentally realized by Babichev et al
[15] and Resch et al [16]. This device, schematically depicted
in figure 1, is composed of linear optical elements (two beam
splitters BS1 and BS2) and photodetectors D2 and D4 (label 4 is
used for consistency with the other schemes that are discussed
in the following). If a single-photon Fock state |1〉 is in one of
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Figure 1. Six-port quantum scissors device of Pegg, Phillips and
Barnett. Key: |ψ〉—input state which, in particular, can be a
coherent state |α〉; |n j 〉—input Fock states; |φ〉—output qubit or
qutrit state; D j —photon counters; B j —beam splitters; â j and
b̂ j —input and output annihilation operators, respectively.

the input modes â1 or â2 and the vacuum state is in the other
input, while the measurement has resulted in a single count in
one of the detectors and no count in the other, then the state
|ψ〉, given by (1), in the input mode â4 can be truncated to the
qubit state

|φ(2)trun〉 ∼ γ0|0〉 + γ1|1〉 (3)

in the output mode b̂1 , as a special case of (2). Detailed analysis
of the conditions to obtain the target state (3) as a function of
the BS parameters, input states and measurement outcomes
will be reviewed in section 3. The described optical state
truncation based on conditional measurements is referred to
as the projection synthesis [5], which is a powerful method
applied also for other purposes [17–21]. By analysing figure 1,
it is easy to observe that light from the input mode â4 cannot
reach the output mode b̂1. So, one can conclude that the
truncation is achieved via quantum teleportation (see [22], for a
review see [23]), though not of the entire input state but only of
the first two terms of its Fock-state expansion [5, 7, 8, 15, 24].
Thus, in a special case, if the input field is already prepared in a
qubit state, then the scissors become a conventional teleporting
device. However, contrary to the unconditional teleportation
scheme of Bennett et al [22], the teleportation (and truncation)
via the Pegg–Phillips–Barnett QSD is successful only in the
cases when the two detectors count one photon in total.

The concept of optical-state truncation is by no means
limited to the discussed truncation of the number-state
expansion of a given state. For instance, by considering
truncation of a coherent state, defined by the action of the
displacement operator on the vacuum state, one can truncate
the displacement operator and then apply it to the vacuum
state. Such a truncated state is essentially different (for d > 2)
from that given by (2) [25–27]. Nevertheless, it is physically
realizable, for example, in a pumped ring cavity with a Kerr
nonlinear medium as was demonstrated by Leoński et al [28–
31]. The QSD schemes can also be generalized for the
truncation of two-mode [32] or multi-mode fields.

The original Pegg–Phillips–Barnett QSD enables the
truncation of an input state only to qubit and qutrit (three-
dimensional qudit) states, as was shown by Koniorczyk et al
[8]. Here, we discuss a generalization of the QSD for
truncation and teleportation of d = 2, . . . , 6-dimensional
qudits and suggest a way to extend the scheme for an arbitrary
d. Our approach is essentially different from the other qudit
truncation schemes [8, 11, 29, 30] and we believe that it is
easier to be experimentally realized. The proposed scheme is
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Figure 2. Generalized eight-port quantum scissors device. The
notation is the same as in figure 1 but |φ〉 denotes the output qudit
state; phase shifters P6 and Pj , in front of the beam splitter B j , are
shown by small black bars, while the mirror is depicted by a large
bar.

based on an eight-port optical interferometer shown in figure 2.
The setup resembles a well-known multiport interferometer
of Zeilinger et al [33, 34], which has been theoretically
analysed [35–39] and experimentally applied [40–42] for
various purposes but, to our knowledge, has not yet been
used for optical-state truncation. An important difference
between the standard multiport and that proposed here lies in
the elimination of the apex BS of the triangle. This elimination
is important for the processes of truncation and teleportation.

The paper is organized as follows. In section 2, the
generalized quantum scissors device is proposed including
a description of the setup (2.1), a short review of multiport
unitary transformations (2.2), and an explanation of the
projection synthesis (2.3), which enables the qudit state
truncation. Reductions of the generalized QSD to the
Pegg–Phillips–Barnett QSD are demonstrated in section 3.
Detailed analyses of the generalized QSD for the truncation
up to three, four and five photon-number states are given
in sections 4, 6, and 7, respectively. Selective truncations,
which can be interpreted as a Fock-state filtering [43] or
a hole burning in Fock space [44, 45], are discussed in
section 5. How imperfect photon counting deteriorates the
truncation processes is discussed in section 8 by including
realistic photon-number resolutions, inefficiency, and dark
counts of photodetectors. Final conclusions with a discussion
of open problems including a generalization of the scheme for
truncations of an arbitrary qudit state are presented in section 9.

2. Generalized QSD

2.1. The setup

We analyse a generalized quantum scissors device (GQSD)
based on an eight-port optical interferometer, also referred
to as a multiport mixer or multiport beam splitter, which is
assembled in a pyramid-like configuration of ordinary beam
splitters (BSs) and phase shifters (PSs) as shown in figure 2.
The most general four-port beam-splitter scattering matrix
reads as (see, e.g., [46, 47])

B′ = eiθ0

[
t exp(iθt) r exp(iθr )

−r exp(−iθr ) t exp(−iθt)

]
(4)

where T = t2 describes the transmittance, and R = r2 = 1−T
is the reflectance of the BS. The associated phase factors θt and
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θr can be realized by the external phase shifters, described by
P± = diag[exp(iθt ± iθr ), 1], which are placed in front of and
behind the beam splitter described by real scattering matrix

B =
[

t r
−r t

]
(5)

as comes from the decomposition

B′ = exp(iθ ′
0)P+BP− (6)

where θ ′
0 = θ0 − θt . Without loss of generality the global

phase factors exp(iθ ′
0) and exp(iθ0) can be omitted. Note

that (5) describes an asymmetric BS, as marked in all figures
by bars with distinct surfaces. We use the same convention as
in [48, 49] that beams reflected from the white surface are π
phase shifted so, according to (5), the reflection from the black
surface and transmissions from any side are without phase shift.

The total scattering matrix S of the GQSD, shown in
figure 2, can be given by

S = P6B5P5B4P4B3P3B2P2B1P1 (7)

which is the sequence of two-mode ‘real’ beam splitters
described explicitly by

B1 =



t1 r1 0 0
−r1 t1 0 0

0 0 1 0
0 0 0 1


 , B2 =




t2 0 r2 0
0 1 0 0

−r2 0 t2 0
0 0 0 1


 ,

B3 =



1 0 0 0
0 t3 r3 0
0 −r3 t3 0
0 0 0 1


 , B4 =




1 0 0 0
0 t4 0 r4

0 0 1 0
0 −r4 0 t4


 ,

B5 =




1 0 0 0
0 1 0 0
0 0 t5 r5

0 0 −r5 t5





(8)
and phase shifters represented by

Pk = diag[exp(iξk), 1, 1, 1] for k = 1, 2, 6,

Pk = diag[1, exp(iξk), 1, 1] for k = 3, 4,

P5 = diag[1, 1, exp(iξ5), 1].

(9)

Similarly, the diagonal matrix

Mk = diag[exp(iζδ1k), exp(iζδ2k), exp(iζδ3k), exp(iζδ4k)]
(10)

describes the kth mode reflection phase shift caused by the
mirror (see figure 2), where δ jk is the Kronecker delta. We
have not explicitly written Mk in the sequence (7), since
the reflection phase shifts ζ for modes 1, 2 and 3 can be
incorporated in ξ1, ξ3 and ξ5, respectively. Besides, the
reflection phase shift in mode 4 does not affect photodetection
in D4, and thus can be neglected.

The described setup resembles a well-known multiport
interferometer in triangle configuration of the beam splitters
as studied in various contexts since its theoretical proposal
and experimental realizations by Zeilinger et al [33–35, 40].
However, an important difference between the standard

multiport interferometer and that analysed here is the
elimination of the apex BS of the triangle, which is usually
placed at the crossing of beams 1 and 4 in figure 2. In particular,
the setup for the Pegg–Phillips–Barnett QSD resembles the
Zeilinger six-port interferometer with one BS removed. This
elimination is essential for the processes of truncation and
teleportation of qudits as will be shown in the following.

2.2. Multiport unitary transformation

The annihilation operators âi at the N inputs to multiport linear
interferometer are related to the annihilation operators b̂i at the
N outputs as follows (see, e.g., [47, 49]):

b̂i = Û †âi Û =
N∑

j=1

Si j â j (11)

where Si j are the elements of the unitary scattering matrix S,
and Û is the unitary operator describing the evolution of the
N -mode input state, say |
〉, into the N -mode output state,
say |�〉:

|�〉 = Û |
〉. (12)

By introducing the column vectors â ≡ [â1; â2; . . . ; âN ] and
b̂ ≡ [b̂1; b̂2; . . . ; b̂N ], the set of equations (11) can compactly
be rewritten as

b̂ = Û †âÛ = Sâ (13)

from which follow the inverse relations for the creation
operators

â† = Û b̂†Û † = ST b̂†. (14)

Then, one can observe that

Û â†
i Û † = Û

(∑

j

S j i b̂
†
j

)
Û † =

∑

j

S j i Û b̂†
j Û

† =
∑

j

S j i â
†
j .

(15)
By applying (15) and noting that neither BSs nor PSs change
the vacuum state, Û |0〉 = |0〉, one can calculate the output state
|�〉 of the multiport interferometer described by the scattering
matrix S for the input Fock states |
〉 = |n1, . . . , nN 〉 ≡ |n〉
as follows (for detailed examples see [47, 49]):

Û |n〉 = Û
N∏

i=1

(â†
i )

ni

√
ni !

|0〉

=
N∏

i=1

1√
ni !
(Û â†

i Û †)ni |0〉

=
N∏

i=1

1√
ni !

( N∑

j=1

S ji â
†
j

)ni

|0〉

= 1√
n1! · · · nN !

N∑

j=1

M∏

l=1

S jl xl â
†
jl
|0〉 (16)

where M = ∑
i ni is the total number of photons;

{x j } ≡ (1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , N, . . . , N︸ ︷︷ ︸
nN

) labelled by l =

1, . . . ,M;∑j stands for the multiple sum over j1, j2, . . . , jM .
We apply the last equation of (16) in our analytical approach,
and the second last equation in our numerical analysis.
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Figure 3. Special cases of the GQSD, shown in figure 2, corresponding to (a) the Pegg–Phillips–Barnett QSD in figure 1, and (b) the
scheme analysed in sections 4 and 6.

2.3. Projection synthesis and teleportation

We are interested in optical truncation schemes based on the
generalized QSD, shown in figure 2, or its simplified versions
depicted in figures 3(a), (b). The input mode â4, being in an
arbitrary pure state, given by (1), is truncated to a qudit state,
given by (2), in mode b̂1. To achieve the truncation desired, we
assume that modes â1, â2, and â3 are in the Fock states |n1〉,
|n2〉, and |n3〉, respectively. Thus, the total four-mode input
state is

|
〉 = |n1〉1|n2〉2|n3〉3|ψ〉4 ≡ |n1n2n3ψ〉 (17)

which is transformed into the output state |�〉, according
to (12). Now, photon-counting of the output modes b̂2, b̂3, and
b̂4 is performed yielding N2, N3 and N4 photons, respectively.
If the total number of detected photons is equal to the sum of
photons in modes â1, â2, â3, i.e., N2 + N3 + N4 = n1 +n2 +n3 ≡
d − 1, then the total four-mode output state |�〉 is reduced to
the following single-mode state:

|φ〉 ≡ |φN2 N3 N4
n1n2n3

〉 = N 2〈N2| 3〈N3| 4〈N4|�〉

= N
d−1∑

n=0

〈nN2 N3 N4|�〉|n〉 = N
d−1∑

n=0

c(d)n γn|n〉 (18)

with the amplitudes c(d)n defined as

c(d)n (T, ξ) = 〈nN2 N3 N4|Û |n1n2n3n〉 (19)

depending, in particular, on the beam splitter transmittances
T ≡ [t2

1 , t2
2 , t2

3 , t2
4 , t2

5 ] and phase shifts ξ ≡ [ξ1, ξ2, ξ3, ξ4, ξ5]
and ξ6. In the following, we present solutions for c(d)n assuming
ξ6 = 0. Nevertheless, since the action of the phase shifter P6

with ξ6 simply corresponds to the transformation of c(d)n into
c(d)n exp(nξ6), one can readily obtain the general solutions for
any ξ6.

Perfect truncation is achieved independently of the form
of the input state |ψ〉 if the amplitudes c(d)n are equal to each
other for all n � d − 1 or, equivalently,

�(T, ξ) ≡
d−1∑

n=1

|c(d)n (T, ξ)− c(d)0 (T, ξ)| = 0 (20)

for some properly chosen values of the BS transmittances T and
phase shiftsξ. So, the problem is to find such T andξ , for which

the amplitudes c(d)n satisfy condition (20). It is worth noting
that, for a possible experimental realization of the scheme, it is
essential to have BSs with variable transmittance. A possible
solution is to replace each of the BSs by a Mach–Zehnder
interferometer composed of two symmetric 50:50 BSs, two
mirrors and two PSs [9, 35, 41].

Our numerical minimalization of � reveals that perfect
truncation using the generalized QSD can be realized for
various values of the BS transmittances and phase shifts,
which, however, correspond to different probabilities of
successful truncation. Here, we focus on very simple analytical
solutions rather than numerically optimized approximate ones.
In the following, we will analyse in detail truncations up to six-
dimensional qudits.

The described truncation process via the GQSD can be
considered as a kind of form-limited quantum teleportation
of the first d terms of the Fock-state expansion of the incident
light in analogy to the qutrit-limited teleportation via the Pegg–
Phillips–Barnett QSD discussed in [5, 7, 8, 15, 23]. Even
a brief analysis of figure 2 shows that no light from input
port 4 can reach output port 1. In fact, this transformation
is based on the same principles of quantum entanglement
and Bell-state measurement (the projection postulate) as the
original Bennett et al teleportation scheme [22]. The multi-
photon entangled state is created by the beam splitters and,
as required, the original state |ψ〉 is destroyed by the Bell-
state measurement implemented by BSs 3–5 and detectors 2–
4. Thus, by assuming that an incident light is already prepared
in a d-dimensional (up to d = 6) qudit state |ψ(d)〉 and the
conditional measurement is successfully performed, then the
state is teleported from mode â4 to |φ(d)〉 = |ψ(d)〉 in mode b̂1.

3. Reductions to the Pegg–Phillips–Barnett QSD

First, we show how the eight-port QSD can truncate the
input state |ψ〉, given by (1), to a qubit state, given by (3),
as expected by the original Pegg–Phillips–Barnett scissors
device [5, 6]. The system shown in figure 1 is a special
case of that shown in figure 2 by assuming, for example, that
BSs 1, 3 and 5 are perfectly reflecting, thus a complete set
of transmittances is T = [0, t2

2 , 0, t2
4 , 0]. Note that, in this

configuration, input port 1 and output port 4 are unimportant,
and so can be neglected. Another way to generate the truncated
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state (3) is to remove BSs 2, 3 and 5 as shown in figure 3(a).
Thus, the simplified version of the GQSD is described by the
transmittances

T = [t2
1 , 1, 1, t2

4 , 1], (21)

and we can also set that the only nonzero phase shift is ξ4. In
this configuration, the input mode â3 is only reflected from the
large mirror and leaves the system without interfering with the
other modes. Thus, the truncation occurs independently of the
input state |n3〉 and the photon counting result in detector D3.
Let |φN2 N4

n1n2
〉 denote the output state |φ〉 in mode b̂1 for the input

states |n1〉, |n2〉, |ψ〉 in modes â1, â2, â4, together with detection
of N2 and N4 photons in detectors D2 and D4, respectively.
Note that equivalently one can analyse T = [1, t2

2 , 1, 1, t2
5 ]

instead of (21) to reduce the system to the Pegg–Phillips–
Barnett QSD. By applying (7) to (16) with transmittances given
by (21), one readily finds the output states:

|φ01
10〉 ∼ eiξ4r1r4γ0|0〉 + t1t4γ1|1〉,

|φ10
01〉 ∼ eiξ4 t1t4γ0|0〉 + r1r4γ1|1〉,

|φ01
01〉 ∼ −eiξ4 t1r4γ0|0〉 + r1t4γ1|1〉,

|φ10
10〉 ∼ −eiξ4r1t4γ0|0〉 + t1r4γ1|1〉.

(22)

As follows from (22), the states |φ01
10〉 and |φ10

01〉 become
perfectly truncated qubit states if t1 = r4 and ξ4 = 0. On
the other hand, |φ01

01〉 and |φ10
10〉 become (3) for the same

transmittances of BSs 1 and 4 and phase shift ξ4 = π . The
optimized solution, giving the highest probability of successful
truncation, is found for the 50:50 BSs (t2

1 = t2
4 = 1/2) in all

four cases. It is worth noting that in [5, 6], the internal phases
of both BSs are chosen as θt = 0 and θr = π/2, so to obtain
the exact equivalence of the original scheme with ours, it is
enough to set the phase shift ξ4 = π .

As shown by Koniorczyk et al [8], the Pegg–Phillips–
Barnett scissors device enables also the truncation of an
arbitrary incident state to the qutrit state

|φ(3)trun〉 ∼ γ0|0〉 + γ1|1〉 + γ2|2〉 (23)

which can be obtained in our setup by assuming the single-
photon Fock states in the input modes â1 and â2, together with
the single-photon counts in detectors D2 and D4. Under these
assumptions and by denoting f ′

i ≡ r 2
i − t2

i , the output state in
mode b̂1 becomes

|φ11
11〉 ∼ 2r1t1r4t4(e

2iξ4γ0|0〉 + γ2|2〉) + eiξ4 f ′
1 f ′

4γ1|1〉 (24)

which is the desired truncated state if the parameters of BS1
and BS4 are related as follows:

t2
4 = 1

2

(
1 ± r1t1√

1 − 3(r1t1)2

)
(25)

and the phase shift ξ4 is equal to π or zero, respectively.
By inspection of (25) one readily finds that the optimum
solutions occur for t2

1 equal either to (3 − √
3)/6 ≈ 0.21 or to

(3 +
√

3)/6 ≈ 0.79 and t2
4 = t2

1 if ξ4 = 0, in agreement with
the results of [8], but also for t2

4 = 1 − t2
1 if ξ4 = π .

4. Truncation to quartit states

In this section, we demonstrate how to realize truncation of an
input state |ψ〉, given by (1), to the four-dimensional qudit

|φ(4)trun〉 ∼ γ0|0〉 + γ1|1〉 + γ2|2〉 + γ3|3〉 (26)

referred to as the quartit. We apply the GQSD shown in
figure 2, assuming that modes â1, â2, and â3 are the in single-
photon Fock states, and single photons have been measured
in all detectors, N2 = N3 = N4 = 1. If the light to be
truncated enters the interferometer in mode â4, then the output
state |φ〉 = |φ111

111〉 obtained via the projection synthesis is given
by (17) for d = 4 and the amplitudes

c(4)n ≡ 〈n111|Û |111n〉 (27)

depend on the BS and PS parameters. By applying the
procedure described in section 2, we find that the simplest
solution is for n = d − 1:

c(4)3 = 6e2iξ2r1t1r2t2
2 r4t2

4 r5t5. (28)

It is seen that c(4)3 is independent of the BS3 parameters, so for
simplicity let us assume that BS3 is removed (t3 = 1, ξ3 = 0).
Thus, instead of a general setup, shown in figure 2, we first
analyse its simplified version shown in figure 3(b). Under the
assumption, the solutions for the other amplitudes are found
to be

c(4)0 = −2ei(ξ4+ξ5)t2t4(ei(ξ2+ξ5) f ′
1r2r5t5 + eiξ4 f ′

5r1t1r4),

c(4)1 = −2r1t1r2r4r5t5(e2i(ξ2+ξ5) f ′′
2 + e2iξ4 f ′′

4 )

+ ei(ξ2+ξ4+ξ5) f ′
1 f ′

2 f ′
4 f ′

5,

c(4)2 = 2eiξ2 t2t4(e
i(ξ2+ξ5)r1t1g2r4 f ′

5 + eiξ4 f ′
1r2g4r5t5)

(29)

where, for brevity, the n-primed f denotes r2
k − nt2

k , gk ≡
2r 2

k − t2
k , and the global phase factor exp(iξ1), the same for all

c(4)n , was omitted as it cancels out during the renormalization
with N . Our multiport interferometer can act as a good
quantum scissors device if there exist parameters T and ξ such
that condition (20) is satisfied. As explained in section 2.3, we
focus on the simplicity of the solutions, although we realize that
they are not optimal as implied by the results of our numerical
experiments. For example, a simple solution is found for the
transmittances equal to

T = [
1
3 ,

1
4 , 1, 1

3 ,
1
2

]
(30)

and zero phase shifts ξ except ξ5 = π/2. By applying
these values to (29), one readily finds that c(4)n = 1/12 for
n = 0, 1, 2, 3. Another solution of (20) is found for the
transmittances

T = [
1

26 (13 − 3
√

13), 1
2 , 1, 1

3 ,
1
4 (2 +

√
3)
]

(31)

and ξ = 0, which results in a constant amplitude c(4)n =
1/(4

√
39), although this is much lower than that found

for the first solution. Numerically it is easy to find
solutions which correspond to higher c(4)n than those given
by our analytical solutions. For example, by choosing
T = [0.784 94, 0.690 01, 1, 0.874 51, 0.701 85] and zero
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phase shifts ξ except ξ5 = π , then the amplitudes c(4)n for
the output state |φ〉 = |φ111

111〉 are constant at the value of 0.134.
A closer look at the amplitudes (29) reveals that they

remain unchanged by some permutations of transmittances
accompanied by a proper change in the phase shifts, or by
replacement of t2

k by 1−t2
k . In particular, we find the following

relations:

c(4)n (T, ξ) = c(4)n ([t2
5 , t2

4 , 1, t2
2 , t2

1 ], ξ) (32)

if ξ1 = 0, ξ4 = ξ2 + ξ5, and

c(4)n (T, ξ) = c(4)n ([1 − t2
1 , t2

2 , 1, t2
4 , t2

5 ], ξ′)
= c(4)n ([t2

1 , t2
2 , 1, t2

4 , 1 − t2
5 ]ξ′′) (33)

if ξ = ξ′ = ξ′′ except for ξ ′
2 = ξ2 + π or, equivalently,

ξ ′
4 = ξ4 + π , and ξ ′′

5 = ξ5 + π . Thus, by transforming
solutions (30) and (31) according to (32) and (33) one can
find new solutions.

5. Selective truncations

Here, we focus on generalized truncations of the input state
|ψ〉 into a finite superposition of the form |φ(d)trun〉, albeit with
some states (say |k1〉, |k2〉, . . .) removed, i.e.,

|ψ〉 → |φ(d)holesk1,k2,...
〉 = N

d−1∑

n=0
(n 
=k1,k2,...)

γn|n〉 (34)

corresponding to the case when the amplitudes c(d)n vanish
for n = k1, k2, . . . and are constant but nonzero for the
other n. This kind of quantum state engineering can be
interpreted as truncation with hole burning. In general,
hole burning in the Fock space of a given state of light,
according to Baseia et al (see [44] and references therein)
and Gerry and Benmoussa [45], means selective removal of
one or more specific Fock states from the field. Although,
originally, hole burning was applied to infinite-dimensional
states, given by (1), this concept can also be used in the case
of finite-dimensional states |φ(d)trun〉. Alternatively, following
the interpretation of D’Ariano et al [43], one can refer to the
above quantum state engineering, especially when the number
of holes exceeds (d − 1)/2, as a kind of Fock-state filtering,
which enables selection of some Fock states (say | j1〉, | j2〉, . . .)
from a given input state |ψ〉, i.e.,

|ψ〉 → |φfilter j1, j2,...〉 = N (γ j1 | j1〉 + γ j2 | j2〉 + · · ·). (35)

Here, we show how the GQSD can be used for Fock-state
filtering and hole burning in the case of d = 4. As the first
example, we analyse truncation to |φ(4)trun〉 with the two-photon
Fock state removed which results in

|φ(4)hole 2〉 ∼ γ0|0〉 + γ1|1〉 + γ3|3〉. (36)

We find that state |φ111
111〉, with amplitudes given by (29), is

reduced to (36) for various transmittances T and phase shifts
ξ, including the following:

T = [
1
14(7 +

√
21), 1

3 , 1, 1
2 ,

1
10 (5 − √

5)
]

(37)

and ξ = 0. Similarly, the other truncated states with a single
hole,

|φ(4)hole 0〉 ∼ γ1|1〉 + γ2|2〉 + γ3|3〉, (38a)

|φ(4)hole 1〉 ∼ γ0|0〉 + γ2|2〉 + γ3|3〉, (38b)

can be generated by the GQSD from |φ111
111〉 if, for example,

ξ = 0 and the transmittances are as follows:

T = [
1

14 (7 +
√

21), 1
3 , 1, 1

2 ,
1
4 (2 − √

2)
]
, (39a)

T =
[

1
2 − 3

2

√
5

173 ,
1
2 , 1, 1

6 ,
1
2 + 5

2

√
3

203

]
, (39b)

respectively. One can check that superpositions of any two
Fock states |k〉 and |l〉 for k, l = 0, . . . , 3, i.e.,

|φfilter kl〉 ∼ γk |k〉 + γl|l〉, (40)

can be obtained as special cases of |φ111
111〉, for example, for

ξ = 0, and the transmittances given by

|φfilter 02〉 : T = [1, 1
2 , 1, 1, 1

2 ],

|φfilter 03〉 : T =
[

1
2

(
1 −

√
5

133

)
, 1

2 , 1, 1
6 ,

1
2 + 3

2

√
3

155

]
,

|φfilter 13〉 : T = [
1
2 ,

1
3 (3 − √

3), 1, 1
3 (3 − √

3), 1
2

]
,

|φfilter 23〉 : T =
[

1
2

(
1 −

√
5

37

)
, 1

2 , 1, 1
6 ,

1
2

(
1 +

√
3
35

)]
.

(41)

Note that our exemplary state |φfilter 02〉, given in (41), can
be realized in the Pegg–Phillips–Barnett scheme, since the
chosen transmittances are a special case of (21). All the
above examples were found for t3 = 1. But we have not
found solutions |φfilter 12〉 by assuming t3 = 1, together with
the single-photon states in the input modes â1, â2, â3 and the
single-photon counts in detectors D2, D3, and D4. While
keeping the latter two requirements, one can change only the
transmittance of BS3. Then, we find a solution

|φfilter 12〉 : T = [
1
2 + 1√

5
, 8

9 ,
1
2 ,

1
2 + 1√

5
, 1
]

(42)

and ξ = 0. On the other hand, the state |φfilter 12〉 can be realized
in the QSD with t3 = 1, for example, as a special case of the
output state |φ101

110〉 for

|φfilter 12〉 : T = [
1

10 (5 − √
15), 2

3 , 1, 1
2 ,

1
2

]
(43)

and ξ = 0. The scheme also enables a synthesis of Fock states
via teleportation. From |φ111

111〉, one can synthesize the two- and
three-photon Fock states for the following transmittances:

|2〉 : T = [
1, 1

2 ,
1
3 ,

1
2 , 1

]
, (44a)

|3〉 : T = [
1
2 ,

1
2 , 1, 1

2 ,
1
2

]
(44b)

and, for example, ξ = 0 except ξ5 = π/2 in the latter case.
Actually, with the choice (44a), the state |2〉 is generated for
arbitrary phase shifts. The two-photon Fock state cannot be
obtained from |φ111

111〉 assuming t3 = 1, which can be shown
analytically. However, the state |2〉 can easily be obtained even
for t3 = 1 but from other states e.g. |φ101

110〉. It is worth noting
that by applying the transformations given by (32) and (33) to
the above solutions for T, one can easily obtain new analytical
solutions for the generation of states |φ(4)hole k〉 and |φfilter kl〉. We

147



A Miranowicz

have given only some specific examples of T, which guarantee
the desired truncation. Although it is outside the main goal
of this paper, it is possible to give more general conditions
for T, for example: (i) for any T = [t2

1 , t2
2 , 1, 1, 1/2] with

t2
1 
= 1/2 and t2 
= 0, 1, the output state is |φfilter 02〉, (ii) for

any T = [1/2, t2
2 , 1, 1 − 1/(3r2

2 ), 1/2] with t2 ∈ (0, 2/3) the
output state is |φfilter 13〉, assuming in both cases ξ = 0. As
already emphasized, the solutions presented here are usually
not optimized, but they are simple enough to show analytically
that the specific truncations can be realized by the GQSD.

6. Truncation to five-dimensional qudit states

A question arises whether the GQSD, shown in figure 3(b) with
the removed BS3, can be used for truncation of the input state
up to more than quartits. So, first we analyse possibilities of
the truncation of an input state |ψ〉, given by (1), to the qudit
state |φ(5)trun〉 being a special case of (2) for d = 5. As usual, we
assume that the light to be truncated is in mode â4 , and the input
modes â1 and â3 are in single-photon states, but, in contrast
to the former sections, we choose mode â2 to be in the two-
photon state. So, the total input state is |
〉 = |121ψ〉. We
assume that the conditional measurement yields single-photon
counts in detectors D2 and D4, but a two-photon count in D3,
thus the resulting output state |φ〉 = |φ121

121〉 is given by (18) for
d = 5 and the amplitudes

c(5)n ≡ 〈n121|Û |121n〉 (45)

equal to

c(5)0 = ei(ξ4+ξ5)t2t4(3e2i(ξ2+ξ5) f ′′
1 r1r 2

2r5t2
5

+ 2ei(ξ2+ξ4+ξ5)g1t1r2r4g5t5 + 3e2iξ4r1t2
1 r 2

4r5 f ′′
5 ),

c(5)1 = 3r1t1r2r4r5t5(e3i(ξ2+ξ5)r1 f ′′′
2 r2t5 + e3iξ4 t1 f ′′′

4 r4r5)

− ei(ξ2+ξ4+ξ5)(ei(ξ2+ξ5) f ′′
1 r1 f ′′

2 r2 f ′
4g5t5

+ eiξ4 g1t1 f ′
2 f ′′

4 r4 f ′′
5 r5),

c(5)2 = eiξ2 t2t4{2t1r2r4t5[3e2iξ4(r 2
1 t2

4 − r 2
1 g4 + t2

1 f ′
4)r

2
5

− e2i(ξ2+ξ5)r 2
1 ( f ′′

2 g5 + g2 f ′
5 + g2r 2

5 )]

+ ei(ξ2+ξ4+ξ5)r1r5[2r 2
1 g2r 2

4 f ′
5 − 2t2

1 ( f ′
2 + r 2

2 )g4 f ′′
5

− r 2
1 g2(t

2
4 f ′′

5 + 2r 2
4 t2

5 )]},
c(5)3 = 3e2iξ2r1t2

2 t2
4 r5
[
ei(ξ2+ξ5)r1t1(3r 2

2 − t2
2 )r4 f ′′

5

+ eiξ4 f ′′
1 r2(3r 2

4 − t2
4 )r5t5

]
,

c(5)4 = 12e3iξ2r 2
1 t1r2t3

2r4t3
4 t5r 2

5 .

(46)

As in (29), the irrelevant global phase factor exp(iξ1) was
cancelled out from all c(5)n in (46). We have not found
analytical solutions for the BS and PS parameters satisfying
condition (20) with d = 5 for the amplitudes given
by (46), as the problem requires finding roots of sixth-order
equations. Thus, we have applied a numerical procedure
for finding the BS parameters for which � = 0 with
precision of the order of 10−16. We have found various
solutions including that for transmittances equal to T =
[0.304 64, 0.387 75, 1, 0.817 40, 0.184 38], ξ4 = π and the

other phase shifts set to zero, which results in the constant
amplitude c(5)n for n = 0, . . . , 4. By placing BS3 in the setup
with t3 
= 1 one can find other solutions with larger constant
c(5)n . However, since we are not interested in the optimalization
but rather the simplicity of the scheme, we do not present these
solutions here.

7. Truncation to six-dimensional qudit states

The eight-port QSD, shown in figure 2, enables truncation of
the incident light |ψ〉 even to the six-dimensional qudit state
|φ(6)trun〉 as a special case of (2) for d = 6. To achieve perfect
truncation, we assume a single-photon Fock state in mode â2,
two-photon states in modes â1, â3, and that the conditional
measurement yields N2 = N4 = 2 and N3 = 1 photon counts.
Then, the output state |φ〉 = |φ212

212〉 is given by (18) for d = 6
and the amplitudes

c(6)n ≡ 〈n212|Û |212n〉. (47)

The simplest-form amplitude is for n = d − 1, which reads as

c(6)5 = 30e2iξ1+3iξ2r1t2
1 r 2

2 t3
2r 2

4 t3
4 r5t2

5 . (48)

As in the former cases for the truncation to qudits with d < 6,
the amplitude c(d)d−1 is independent of the BS3 parameters.
Unfortunately, contrary to the former cases, we have not
found numerically any solutions satisfying c(6)n = const for
n = 0, . . . , d − 1 for the simplified scheme with removed
BS3, shown in figure 3(b). Thus, we analyse again the general
scheme shown in figure 2 with t3 
= 0, 1. As an example, we
give a solution for c(6)4 to be as follows:

c(6)4 = 6e2i(ξ1+ξ2)t1r2t2
2 r4t2

4 t5{(3r 2
4 − 2t2

4 )

× eiξ4 [eiξ2r1t1(3r 2
2 − 2t2

2 )r3 + eiξ3 g1r2t3]r5t5
+ eiξ5 [eiξ2r1t1(3r 2

2 − 2t2
2 )t3 − eiξ3 g1r2r3]r4g5}. (49)

Solutions for c(6)n with n = 0, . . . , 3 are quite lengthy, so
we do not present them explicitly here. Nevertheless, they
have been used in our numerical search of the BS and PS
parameters satisfying condition (20) for d = 6. Thus, we
have found various solutions for which � ∼ 10−16. We
just mention a solution for the BS transmittances equal to
T = [0.755 72, 0.417 83, 0.325 03, 0.832 74, 0.503 38], ξ4 =
π and the other phase shifts equal to zero, which results in
the constant nonzero amplitude c(6)n for n = 0, . . . , 5, and is
obviously vanishing for n > 5. Another solution is found
for the same phase shifts but transmittances equal to T =
[0.581 54, 0.285 19, 0.467 53, 0.685 58, 0.498 36], which also
results in a constant c(6)n but one that is slightly lower than that
in the former case.

8. Imperfect photon counting

Now, we address an important problem from an experimental
point of view that concerns the deterioration effects of system
imperfections on the fidelity of truncation and teleportation.
To analyse such effects one can follow the approaches of,
for example, [6, 7, 12–14, 50] applied to the Pegg–Phillips–
Barnett QSD. Here, we focus on imperfect photodetection.
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Photon counting in mode b̂i by an imperfect detector with
a finite efficiency ηi and a mean dark count rate νi can be
described by a positive-operator-valued measure (POVM) [51]
with the following elements [50]:

�̂
(bi )
Ni

=
Ni∑

n=0

∞∑

m=n

e−νi ν
Ni −n
i

(Ni − n)!
ηn

i (1 − ηi )
m−nCm

n |m〉i i 〈m| (50)

summing up to the identity operator Î . In (50), Ni is the
number of registered photocounts in detector Di , n is the
actual number of photons entering the detector, Ni − n is the
number of dark counts, and Cm

n are binomial coefficients. The
mean dark count rate ν in (50) is related to the standard dark
count rate Rdark by the relation ν = τres Rdark , where τres is
the detector resolution time. In analogy to the analysis of
the Pegg–Phillips–Barnett QSD given in [12], we compare
the fidelities for the states truncated by the generalized
scissors in relation to three types of applied detectors. (i)
Conventional photodetectors (e.g., avalanche photo-diodes,
APDs) providing only a binary answer to the question whether
any photons have been registered or not, thus described by a
POVM with the two elements:

�̂
(bi)
c0 = �̂

(bi )
0 , �̂

(bi)
c1 = Î − �̂

(bi)
0 . (51)

(ii) Single-photon resolving photodetectors (e.g., visual light
photon counters, VLPCs [52]) providing a trinary answer to
the question whether zero, one or more than one photons have
been registered, so given by a POVM with the following three
elements:

�̂
(bi)
s0 = �̂

(bi)
0 , �̂

(bi )
s1 = �̂

(bi)
1 ,

�̂
(bi )
s2 = Î − �̂

(bi)
0 − �̂

(bi)
1

(52)

where �̂
(bi )

0,1 in (51) and (52) are given by (50). (iii)
Unrealistic detectors (labelled by r ) resolving any number
of simultaneously absorbed photons described by the POVM
elements �̂(bi)

r Ni
≡ �̂

(bi )
Ni

, given by (50) for any Ni . Such
detectors are not available, although some methods (including
the so-called photon chopping [53]) have been proposed to
measure photon statistics with conventional devices. By
including the imperfect photon counting by detectors D2, D3

and D4, the output state at mode b̂1 can be described by the
following density matrix:

ρ̂x = N Tr(b2,b3,b4)

(
�̂
(b2)
x N2
�̂
(b3)
x N3
�̂
(b4)
x N4

|�〉〈�|
)
, (53)

where the partial trace is taken over the detected modes b̂2,
b̂3, and b̂4; �̂(bi)

x Ni
are the POVM elements for a given type

of detector x = c, s, r ; |�〉 is the four-mode output state,
given by (12), and N is the normalization. For simplicity,
we can assume identical detectors with η ≡ η2 = η3 = η4

and ν ≡ ν2 = ν3 = ν4. Deviation of the realistically truncated
state ρ̂x from the ideally truncated state |φ〉 is usually described
by the fidelity

Fx = 〈φ|ρ̂x |φ〉. (54)

In our numerical analysis we assume:

(i) η = 0.7 and Rdark ∼ 100 s−1 for conventional detectors
(see e.g. [12]),

(ii) η = 0.88 and Rdark = 104 s−1 for single-photon detectors
(VLPCs) as experimentally achieved by Takeuchi et al
[52],

(iii) for theoretic photon-number resolving detectors we
choose the same η and Rdark as in (ii).

Moreover, we put τres ∼ 10 ns. We observe that the truncation
fidelity in the system with imperfect photodetection depends on
the chosen transmittances. In particular, the different solutions
described in section 4 for perfect truncation (with F = 1) in the
lossless system correspond not only to different probabilities
of success but also to different fidelities of truncation in
the lossy system. For α = 0.4, we find that the fidelity
for truncation up to quartit states in the system described
by the transmittances given below equation (31) drop from
one to Fc ≈ 0.91 for the conventional detectors and to
Fs = Fr ≈ 0.98 for the VLPCs and the photon-number
resolving detectors. The fidelities of truncation up to five-
dimensional states in the system described in section 6 are
estimated to be Fc ≈ 0.67 for the conventional detectors,
Fs ≈ 0.95 for the VLPCs, and Fr ≈ 0.96 for the photon-
number resolving detectors if α = 0.4. These estimations
show that conventional photodetectors can effectively be used
for the low-intensity-field truncations described in sections 3–
5, where at most single-photon detections are required. In the
schemes described in sections 6 and 7, where detections of
two-photons are important, one has to apply at least single-
photon resolving detectors even in the low-intensity limit. It
is worth noting that by increasing the number of detectors and
beam splitters in the discussed pyramid configuration, one can
achieve truncations to higher-dimensional states by detecting
no or single photons only [54]. In our estimation we have
assumed, based on [52], relatively high values of the dark
count rates. However, it has recently been experimentally
demonstrated by Babichev et al, by rigorously synchronizing
the photon count events, that the dark counts can be reduced
to a negligible level [15]. As multiport optical interferometers
have already been experimentally realized [40–42], it seems
that the proposed GQSD for the truncation and teleportation of
at least quartit states is accessible to experiments with present-
day technology for low-intensity incident fields.

9. Discussion and conclusions

We are aware that our analysis of quantum state truncation via
a GQSD is not yet complete. Among open problems to be
analysed in greater detail we should mention:

(i) A generalization of the scheme for the truncation of an
arbitrary d-dimensional qudit state based on the 2N -port
interferometer in the triangle configuration with the top BS
removed. By symmetry of the scheme, shown in figure 2,
such a generalization is straightforward, for example,
along the lines of [35]. However, it would be desirable to
find the minimum number of detections in the multiport
QSD, which enables the state truncation to a qudit state of
a given dimensionality.

(ii) An analysis of other kinds of losses (including mode
mismatch in addition to imperfect photon-counting) in the
generalized optical state truncation.
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(iii) A detailed experimental proposal of the scheme for
truncation at least to qutrit and quartit states.

(iv) A hard problem is the optimalization of solutions for
the BS parameters to obtain the highest probability of
truncation for d � 4.

These problems are currently under our investigation [54].
In conclusion, we have proposed a generalization of the

Pegg–Phillips–Barnett six-port QSD (shown in figure 1) to the
eight-port optical interferometer, depicted in figure 2. The
analysed system enables, upon post-selection based on photon
counting results, generation and teleportation of qudit states
(for d = 2, . . . , 6) by truncation of an input optical field at the
(d − 1)th term of its Fock-state expansion. We have discussed
examples of selective truncations, which enable Fock-state
filtering and hole burning in the Fock space of an input
optical field. We have also analysed the deterioration of the
truncation fidelity due to realistic photon counting including
finite photon-number resolution, inefficiency and dark counts
of photodetectors. Our estimations suggest that the scheme
is experimentally feasible at least for the generation and
teleportation of quartit states of low-intensity incident fields.
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[53] Paul H, Törmä P, Kiss T and Jex I 1996 Phys. Rev. Lett. 76

2464
[54] Miranowicz A, Özdemir Ş K, Bajer J, Koashi M and
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