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Abstract: Selective truncation of Fock-state expansion of an optical field can be achieved using
projection synthesis. The process removes predetermined Fock states from the input field by con-
ditional measurement and teleportation. We present a scheme based on multiport interferometry
to perform projection synthesis. This scheme can be used both as a generalized quantum scissors
device (QSD) which filters out Fock states with photon numbers higher than a predetermined value,
and also as a quantum punching device (QPD) which selectively removes specific Fock states making
holes in the Fock-state expansion of the input field.
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INTRODUCTION

Recent theoretical and experimental works have
caused an increasing interest in quantum state en-
gineering using linear optics. It has been shown
that linear optics can be used for efficient quantum
computation, entanglement manipulation and gen-
eration of nonclassical optical states [1–6]. Linear
optics schemes require single photon generation and
detection, beam splitters (BSs) and phase shifters
(PS). Parametric down conversion process is ex-
ploited to built triggered single photon source, and
avalanche photodiodes are used as photon counters
to discriminate between the absence and presence
of photons. Therefore, such schemes are experimen-
tally realizable with the present level of optics tech-
nology.

In this paper, we study a linear optics scheme for
quantum state engineering using projection synthe-
sis [7]. Our main interest is employing the scheme
to perform the following transformation

|ψ〉 =
∞∑

n=0

γn|n〉 −→ |φ(d)〉 = N
d−1∑
n=0

γn|n〉 (1)

where the unknown input optical state |ψ〉 is trun-
cated to obtain the state |φ(d)〉 which is a finite su-
perposition of d states. In Eq. (1), N is the nor-
malization constant, and will be dropped from the
equations in the following, and we will use ∼ instead
of equality to denote that the state should be nor-
malized. This transformation is achieved by condi-
tional measurement and teleportation process. This
process was originally proposed by Pegg, Phillips
and Barnett to obtain a superposition state of d = 2
of the form |φ(2)〉 ∼ γ0|0〉 + γ1|1〉 by truncating a
coherent state |ψ〉 = |α〉, and was named as the
Quantum Scissors Device (QSD) [7, 8]. Later we
have elaborated theoretical treatment of the QSD
by proposing an experimentally realizable scheme
and discussing how arbitrary superposition states of

d = 2 can be generated by this simple scheme [9, 10].
The first experiment was performed by Babichev et
al.[11]. An extension to d = 3 of the original QSD
scheme was proposed Koniorczyk et. al by a simple
modification of the original QSD scheme [12]. The
original QSD scheme is an interesting one because
it finds its direct application as a basic element of
single-rail version of the linear optical quantum com-
puter. Moreover, it is not only a truncation scheme
but also a transportation scheme for superposition
states of arbitrary d.

The drawback of the original QSD scheme is that
it is enables generation of truncated states up to
d = 3. In this paper, we propose to use a modified
version of the multiport interferometer of Zeilinger
et. al [13] which has been experimentally demon-
strated [14, 15]. The important difference between
the original multiport interferometer and the mod-
ified version discuss here is the elimination of the
apex BS so that the direct path from the input field
to the output field is eliminated. This is crucial for
the truncation scheme because we want the process
to be done via teleportation.

In the following, we will introduce the generalized
QSD scheme based on multiport interferometer and
give some examples of the possible truncated states.
Then we will discuss how the same scheme can be
used as a quantum punching device which eliminates
selectively some Fock states from the original super-
position state and opening holes in the Fock state
expansion by proper choices of conditional measure-
ment and input states.

MULTIPORT INTEREFEROMETER AS
QUANTUM SCISSORS DEVICE

A schematic diagram of the eight-port interfer-
ometer and the generalized QSD is given in Fig.
1, and the original QSD scheme which can be
considered as a six-port interferometer is given in



FIG. 1: Generalized eight-port quantum scissors device
(QSD). Key: |ψ〉- input state to be truncated, usually
a coherent state |α〉; |nj〉- input Fock states; |φ〉- out-
put state, selectively truncated or punched; Dj- pho-
ton counters; Bj- beam splitters; Pj- phase shifters; âj

and b̂j- input and output annihilation operators, respec-
tively. The beams reflected from the white surface of the
beam splitters are π phase shifted while the reflections
from the black surface are without any phase shift. The
beam splitter drawn with dotted lines and bounded by
the dotted box is the beam splitter to be removed to
obtain the QSD from the conventional multiport inter-
ferometer.

Fig. 2. The beamsplitter shown with the dotted
lines corresponds to the apex BS that is to be re-
moved from the interferometer to obtain the gen-
eralized QSD scheme. If we define the N -mode
input state as |Ψ〉 then the N -mode output state
will be |Φ〉 = Û |Ψ〉 where Û is the unitary oper-
ator describing the evolution of the input state in
the interferometer. Denoting the annihilation oper-
ators at the input and output ports as column vec-
tors â ≡ [â1; â2; · · · ; âN ] and b̂ ≡ [b̂1; b̂2; · · · ; b̂N ],
respectively, we obtain b̂ = Û†âÛ = Sâ where
S = P6B5P5B4P4B3P3B2P2B1P1 is the scattering
matrix obtained by multiplying the scattering ma-
trices of the beamsplitters, Bi and phase shifters Pi

used in the scheme from the input to the output.
Now considering that at the input port we have the
Fock state |Ψ〉 = |n1, · · · , nN 〉 ≡ |n〉, the output
state is found as

|Φ〉 = Û |n〉 =
1√

n1! · · ·nN !

N∑

j=1

ν∏

l=1

Sjlxl
â†jl
|0〉 (2)

where Sjlxl
are the elements of the unitary scat-

tering matrix S, ν =
∑

i ni is the total number of
photons, and

∑
j stands for the multiple sum over

j1, j2, · · · , jν .
Selective State Truncation: In a truncation

scheme, what we are interested is to obtain a su-
perposition state by truncating an input coherent
state. Therefore, in the generalized QSD scheme
(multiport interferometer) we consider the state |ψ〉
as one of the inputs. In that case, for the eight-
port interferometer we can write the input state as
|Ψ〉 = |n1〉1|n2〉2|n3〉3|ψ〉4. Now assume that the de-

FIG. 2: Representation of the original QSD scheme
of Pegg-Phillips-Barnett as a six-port interferometer
scheme. Notation is the same as in Fig. 1

tectors at the output ports detects N2, N3 and N4

photons whose sum is the total number of photons
input into the interferometer, and satisfies the rela-
tion N2+N3+N4 = n1+n2+n3 = d−1. This means
that we project the total output state |Φ〉1,2,3,4 onto
the detected states |N2〉2|N3〉3|N4〉4. Then the state
at the first output mode becomes

|φ〉 ≡ N 2〈N2|3〈N3|4〈N4|Φ〉 = N
d−1∑
n=0

c(d)
n γn|n〉 (3)

where c
(d)
n = 〈nN2N3N4|Û |n1n2n3n〉 de-

pends on the beamsplitter transmittances
T ≡ [t21, t

2
2, t

2
3, t

2
4, t

2
5] and phase shifts

ξ ≡ [ξ1, ξ2, ξ3, ξ4, ξ5]. Then our task is to find
T and ξ according to the desired state at the
output in such a way that the fidelity of the output
state to the desired state is maximized.

It is seen from Figs. 1 and 2 that eliminat-
ing the third modes at the input and output, and
removing the components on the path from third
input to the third output, the eight-port interfer-
ometer becomes the original QSD (six-port) when
|n1〉1|n2〉2 = |1〉1|0〉2 and |N2〉2|N4〉4 = |1〉2|0〉4. In
this case the optimized solution with the highest
probability of successful truncation, that is to ob-
tain the output state |φ(2)〉 ∼ γ0|0〉+γ1|1〉, becomes
T = [t21 = 1/2, t24 = 1/2] and ξ = [ξ4 = π]. In the
same way Koniorczyk’s QSD is obtained in the same
six-port interferometer with |n1〉1|n2〉2 = |1〉1|1〉2
and |N2〉2|N4〉4 = |1〉2|1〉4. Then we find that there
are four solutions for the successful truncation with
the highest probability to obtain the state |φ(3)〉 ∼
γ0|0〉+γ1|1〉+γ2|2〉. These solutions are T1 = [t21 =
t24 = (3 − √

3)/6], T2 = [t21 = t24 = (3 +
√

3)/6]
if ξ = [ξ4 = 0], and T3 = [t21 = (3 − √

3)/6, t24 =
(3 +

√
3)/6], T4 = [t21(3 +

√
3)/6, t24 = (3−√3)/6] if

ξ = [ξ4 = π]. The first two solutions were given by
Koniorczyk et. al, but the rest are found by us.

For the generalized QSD with the modified eight-
port interferometer, we are more interested in the
device to act as a QSD with a simple solution than
the optimality of the solutions. We find that an in-
put coherent state at the fourth-mode of the input
can be truncated to give the output state |φ(4)〉 ∼
γ0|0〉+γ1|1〉+γ2|2〉+γ3|3〉 by inputting single photon



states at |n1〉1|n2〉2|n3〉3 = |1〉1|1〉2|1〉3 and by the
conditional measurement N2 = N3 = N4 = 1. In
order for this to perform as a QSD we find a num-
ber of solutions. One simple solution is given by
T = [1/3, 1/4, 1, 1/3, 1/2] with ξ = [0, 0, 0, 0, π/2].
Consequently, different output states with arbitrary
coefficients can be obtained by proper choices of T
and ξ provided that the total number of photons
detected at the output detectors equal to the to-
tal number of input photons. For example, by in-
putting |n1〉1|n2〉2|n3〉3 = |1〉1|2〉2|1〉3 and detecting
|N2〉2|N3〉3|N4〉4 = |1〉2|2〉3|1〉4, a truncated output
state in the form |φ(5)〉 ∼ γ0|0〉 + γ1|1〉 + γ2|2〉 +
γ3|3〉+γ4|4〉 can be obtained by choosing the BS and
PS parameters as T = [0.305, 0.388, 1, 0.817, 0.184]
with ξ = [0, 0, 0, 0, π]. For larger dimensional output
states, it is difficult to obtain analytical solutions
therefore solutions are found by numerical analysis
with the condition that the fidelity of the output
state to the desired one is the highest.

Quantum Punching Device: Here, we con-
sider the cases where the output state obtained by
truncating the input state |ψ〉 has some of its Fock
states removed. Let us assume that |k1〉 and |k2〉
are removed, then the output state is written as

|φ(d)
punched k1,k2,···〉 = N

d−1∑
n=0

n 6=k1,k2

γn|n〉. (4)

We call this kind of process which opens holes in
the Fock state expansion as the quantum punching
device (QPD). We observed that by choosing proper
BSs and PSs we can achieve this kind of state en-
gieering using multiport interferometer. For exam-
ple in the state |φ(4)〉 ∼ γ0|0〉+γ1|1〉+γ2|2〉+γ3|3〉,
we can punch out (or remove) the γ2|2〉 state by
choosing T = [(7+

√
21)/14, 1/3, 1, 1/2, (5−√5)/10]

with ξ = [0, 0, 0, 0, 0]. In the same way, we can ob-
tain the state |φ(4)

punched 0〉 ∼ γ1|1〉 + γ2|2〉 + γ3|3〉
with T = [(7+

√
21)/14, 1/3, 1, 1/2, (2−√2)/4] with

ξ = [0, 0, 0, 0, 0]. We have observed that superposi-
tions of any two Fock states

|φpunched kι〉 ∼ γk|k〉+ γι|ι〉 (5)

can be obtained as special cases of the truncation
process, e.g., for ξ = [0, 0, 0, 0, 0] and the transmit-
tances given by

|φpunch. 02〉 : T = [1, 1/2, 1, 1, 1/2],

|φpunch. 13〉 : T = [
1
2
,
3−√3

3
, 1,

3−√3
3

,
1
2
]. (6)

It is interesting to see that one can synthesize two
and three photon states in the |φ(4)〉 process by
choosing

|2〉 : T = [1, 1/2, 1/3, 1/2, 1],
|3〉 : T = [1/2, 1/2, 1, 1/2, 1/2]. (7)

It must be noted we have given only some specific
examples which guarantees the desired output state,
and the solutions are usually not optimized.

CONCLUSION

We have shown that the original QSD scheme of
Pegg-Phillips-Barnett can be generalized using mul-
tiport intereferometers. The original QSD scheme
can be represented as a six-port interferometer. The
multiport interferometer approach not only can help
us to truncate a coherent state to obtain a superpo-
sition state up to an arbitrary Fock state but it also
enables selective truncation of a given state and se-
lective removal of Fock state components from it.
As it was the case in the original QSD, the general-
ized one also produces the desired output state with
very high fidelity when the input state to be trun-
cated is a weak coherent state. A hard problem we
face in this scheme is the optimization of the solu-
tions to obtain the highest probability of truncation
when d is high. In the present study, we did not fo-
cus in optimizing our solutions but in showing that
the scheme is working as a truncation or punching
device. Effects of imperfections (such as non-ideal
photon counting and non-ideal single photon source)
in the scheme are currently being investigated.

The authors thank Steve Barnett, Andrzej
Grudka, Wieslaw Leonski, Yu-xi Liu and Takashi
Yamamoto for discussions and collaborations on op-
tical state engineering and truncation.
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