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Nuclear Spins in a Nanoscale Device for Quantum Information Processing
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Coherent oscillations between any two levels from four nuclear spin states of I = 3/2 have
been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-
electrically controlled. Using this device, we discuss quantum logic operations on two fictitious
qubits of the I = 3/2 system, and propose a quantum state tomography scheme based on the
measurement of longitudinal magnetization, Mz.

INTRODUCTION

It has long been demonstrated that nuclear spins have
long relaxation times, thus longer coherence times, mak-
ing them suitable for quantum information processing
devices [1, 2] (for a review see [3] and references therein).
Most of the works on the manipulation and use of nuclear
spins are restricted to those in molecules of liquid solu-
tions. To date, liquid-state NMR is the leader among all
quantum computer implementations, both in the number
of qubits controlled and the number of gates performed
within the coherence lifetime. These successful demon-
strations inspired researches to investigate the possibility
to use NMR in solid-state systems for the same purpose
[4]. Coherent manipulation of nuclear spins in solid-state
systems became an exciting field of research which re-
sulted in interesting proposals on nuclear spin qubits,
where nuclear spins are individually manipulated [5, 6].

An advantage of solid-state NMR over the liquid NMR
is that the spins can be highly polarized by dynamic nu-
clear spin polarization techniques such as polarization
transfer from electronic spins. This strong polarization
allows a large population available for the preparation
of the system close to a pure state. However, only a few
quantum information processing experiments with single-
crystal solids have been reported [4, 7].

Most of the experiments up to date employ con-
ventional NMR technique, which uses metal coils for
excitation and detection of nuclear spin transverse-
magnetization Mxy. In order to obtain a detectable sig-
nal, a large number of nuclear spins (1011 − 1013) should
be involved in the process, which limits the sensitivity of
these schemes. Moreover, quantum multiple coherence is
not directly detected in conventional NMR as it does not
produce transverse magnetization.

In a recent study [8], Yusa et al. demonstrated an
all-electrical control and detection of nuclear spin mag-
netization in a nanometre-scale semiconductor device,
where longitudinal magnetization Mz of nuclear spins in

a point-contact channel are detected by the resistivity
change of the channel paving the way to the detection
of multiple quantum coherence. This device has an im-
proved sensitivity, which requires the involvement of only
∼ 108 or less nuclear spins.

In the following, we first describe this nanoscale NMR
device, the novel detection technique and the observed
multiple quantum coherence. Then, we show how one-
and two-qubit operations can be performed on this de-
vice, and give the pulse sequences. A method for per-
forming quantum state tomography using Mz-detection
in this device is also presented, and finally we give a brief
discussion and conclusion.

NANOSCALE SEMICONDUCTOR NMR DEVICE

Principle of the device: The nanoscale NMR de-
vice is fabricated as a monolithic semiconductor device
integrated with a point contact channel and an antenna
gate (see Fig. 1). The structure contains a 20-nm GaAs
quantum well with AlGaAs barrier layers grown on n-
GaAs(100) substrate. This substrate functions as back-
gate to control the electron density in the point contact
region, which is defined by split Schottky gates separated
by 600nm. The antenna gate locally irradiates the chan-
nel with an alternating rf field for selective and coherent
manipulation of the nuclear spins.

By controlling the static magnetic field perpendicular
to the grown device surface and the backgate voltage,
the point contact region was set to fractional quantum
Hall regime at the degenerate Landau-level filling fac-
tor ν = 2/3, where there is a strong coupling of nu-
clear spins to the conduction electrons [9, 10, 11]. At
ν = 2/3, the spin polarized and unpolarized states face
each other through a transition region with high resis-
tivity Rxx. When sufficient current is driven through
the system, the polarized nuclear spins interact with the
flowing electrons resulting in an gradual enhancement of
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FIG. 1: Schematic diagram illustrating the semiconductor de-
vice for coherent-control of nuclear spins in a nanometre-scale
region. The point contact channel, which is pointed with an
arrow, is defined by a Schottky gate pair.

Rxx. Thus, the current density becomes very high in the
constricted region so that nuclear spin polarization oc-
curs only in the point contact region. This enhancement
of Rxx implies that the polarization of the nuclear spins
in the point contact region can be detected by measur-
ing the resistance between the ends of the point contact.
It has already been shown that this resistance values is
proportional to the longitudinal magnetization of nuclear
spins, ∆Mz ∝ ∆Rxx [10].

Observation of coherent oscillation with Rxx

measurement: The point contact channel in this device
consists of 69,71Ga and 75As isotopes each having total
spin I = 3/2. Thus, each nuclide splits into n = 2I+1 =
4 energy states, |m〉 = |3/2〉, |1/2〉, | − 1/2〉, | − 3/2〉, un-
der static magnetic field due to Zeeman effect. This
levels are spaced with equal energy separation of h̄ω0.
However, the quadrupolar interaction shifts the adjacent
states by 2∆q from h̄ω0 allowing three possible transi-
tions at resonances h̄ω0 − 2∆q, h̄ω0 and h̄ω0 + 2∆q (see
Fig. 3). While these transitions are between levels sep-
arated by one quantum angular momentum (∆m = 1),
energy and angular momentum conservation rules imply
that transitions between levels separated by ∆m = 2 and
∆m = 3 are also possible, resulting in a total of six pos-
sible coherent oscillations. We named those transitions
as one-photon, two-photon and three-photon transitions.
Therefore, in this NMR device it is possible to observe six
coherent transitions for each of the three nuclei (69,71Ga
and 75As) in the point contact channel.

In order to observe the coherent oscillations, first the
nuclear spin polarization is saturated and this is ob-
served by resistance measurement, which is also satu-
rated. Then pulsed rf magnetic field is applied by the

antenna gate. If the frequency of the applied pulse is in
resonance with the NMR frequency, oscillatory change in
Mz is observed implying that the superposition coher-
ently rotates between the two energy states. The oscil-
lations in Mz is finally detected by the change in the re-
sistance, ∆Rxx, before and after the application of the rf
pulse. In Fig.2, NMR spectrum for one- and two- photon
transitions are given only for 75As. Coherent oscillations
are observed for three-photon transitions, too (not shown
here). In the same way, all of the six possible oscillations
are observed for 69Ga and 71Ga [8].

The decoherence time T2 of the device is estimated
by curve fitting the coherent oscillation between | − 1/2〉
and | − 3/2〉 of 75As. The T2 was estimated as ∼ 0.6ms
without any decoupling process. However, it is enhanced
to 1.5ms when the nuclei-electron decoupling is applied
[12]. The relaxation time T1 in this device is longer than
100s.

STATE MANIPULATIONS IN THE NANOSCALE

NMR DEVICE

The four-level system in this device forms a quartit,
which is equivalent to two logical qubits. This becomes
clear if we identify |0〉 ≡ |00〉AB ≡ |3/2〉, |1〉 ≡ |01〉AB ≡
|1/2〉, |2〉 ≡ |10〉AB ≡ | − 1/2〉, and |3〉 ≡ |11〉AB ≡
| − 3/2〉 (see Fig. 2). Thus, the two-qubit state can
be written as |ψ〉 = c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉, where∑

i |ci|
2 = 1. In the following, we show how different

quantum gate operations can be performed on this two
fictitious qubit system by applying selective pulses at the
resonant frequency between two energy levels, say |m〉
and |n〉. Here, the free evolution of the coherent system
during the finite pulse duration and the time lag between
the pulses are ignored, however they can be compensated
during experimental realizations.

Rotations of logical qubit A in this quartit can be ob-
tained by applying rf pulses at frequencies ω0−∆q/h̄ and

ω0 + ∆q/h̄ two induce two-photon transitions: X̂A(θ) =

X̂02(θ)X̂13(θ), ŶA(θ) = Ŷ02(θ)Ŷ13(θ), and ẐA(θ) =
Ẑ02(θ)Ẑ13(θ), where X̂nm(θ), Ŷnm(θ) and Ẑnm(θ) corre-
sponds to rotations between levels |m〉 and |n〉 by an
angle θ along the corresponding axes. In the same way,
rotations on the logical qubit B can be obtained by apply-
ing pulses at frequencies ω0−2∆q/h̄ and ω0 +2∆q/h̄ two

induce one-photon transitions: X̂B(θ) = X̂01(θ)X̂23(θ),
ŶB(θ) = Ŷ01(θ)Ŷ23(θ), and ẐB(θ) = Ẑ01(θ)Ẑ23(θ).

NOT Gate: The transformation of this two-qubit sys-
tem when a NOT-gate is applied to the first (A) and
second (B) logical qubits is described by ÛA

NOT|ψ〉 =

c0|2〉 + c1|3〉 + c2|0〉 + c3|1〉 and ÛB
NOT|ψ〉 = c0|1〉 +

c1|0〉 + c2|3〉 + c3|2〉, which can be implemented by the
selective pulse sequences ÛA

NOT = iX̂02(π)X̂13(π) and

ÛB
NOT = iX̂01(π)X̂23(π). On the other hand, NOT-gate
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FIG. 2: Schematic energy level diagram of nuclear spin states
for I=3/2 with electric quadrupolar interactions (lower figure)
and coherent oscillations corresponding to single-photon and
two-photon transitions between the four spin states observed
for 75As (upper). A three-photon transition was also observed
for higher values of the alternating current through the an-
tenna gate (data not shown). Measurements were performed
at 100 mK with a magnetic field of 5.5T.

on both qubits can be obtained by a π-hard-pulse result-
ing in ÛAB

NOT|ψ〉 = c0|3〉 + c1|2〉 + c2|1〉 + c3|0〉. One can

easily see that ÛA
NOT, which is implemented by pulses at

two-photon transitions can be implemented by a hard-
pulse followed by ÛB

NOT.

Hadamard Gate: This truly quantum gate trans-
forms the computational basis states into an equally
weighted superposition states. A Hadamard operation
on the first qubit makes the transformation ÛA

H |ψ〉 =
(c0 + c2)|0〉 + (c1 + c3)|1〉 + (c0 − c2)|2〉 + (c1 − c3)|3〉
and can be implemented by the pulse sequence ÛA

H =

iŶ12(π)X̂01(π)Ŷ01(π/2)X̂23(−π)Ŷ23(−π/2)Ŷ12(−π). In
the same way, Hadamard on the second qubit trans-
forms the initial state as ÛB

H |ψ〉 = (c0 + c1)|0〉 + (c0 −

c1)|1〉+(c2 + c3)|2〉+(c2− c3)|3〉 with the pulse sequence
ÛB

H = iX̂01(π)Ŷ01(π/2)X̂23(π)Ŷ23(π/2).

CNOT Gate: In order to realize quantum al-
gorithms on this NMR device, we should also show
that effective realization of two-qubit operations are
possible in this system. A CNOT gate with the
first qubit as the control qubit and the second one
as the target qubit is defined by the transformation
ÛAB

CNOT|ψ〉 = c0|0〉 + c1|1〉 + c3|2〉 + c2|3〉. On the
other hand, the CNOT with the first qubit as the
target and the second qubit as the control performs the
transformation ÛBA

CNOT|ψ〉 = c0|0〉+ c3|1〉+ c2|2〉+ c1|3〉.
One can easily see that in this NMR device CNOT-like
transformations can be implemented by just one pulse

as Û ′
AB

CNOT = Ŷ23(π) and Û ′
AB

CNOT = Ŷ13(π). These gates
differ from the ideal CNOT gate by an extra minus
sign in one of the off-diagonal terms of the transforma-
tion matrix of the corresponding gate operation, i.e.,

Û ′
AB

CNOT|ψ〉 = c0|0〉 + c1|1〉 − c3|2〉 + c2|3〉. One can
alternatively perform the same operations by applying
ÛAB

CNOT = X̂23(π) and ÛAB
CNOT = X̂13(π). On the

other hand, an ideal CNOT gate can be implemented
by allowing a more complex sequence of one-photon
transition pulses. As an example of this, we give
the pulse sequence for ÛAB

CNOT, which is ÛAB
CNOT =

ÛB
H Ẑ23(π)Ŷ12(−π)Ẑ23(π/2)Ẑ01(π/2)Ŷ12(π)ÛB

H , where

ÛB
H is defined as above. One may further simplify

this pulse sequence by using combination of one- and
two-photon transition pulses.

SWAP Gate: In principle, a swap gate, which em-
ploys the transformation ÛAB

swap|ψ〉 = c0|0〉+c1|2〉+c2|1〉+
c3|3〉, can be implemented by a sequence of CNOT op-
erations as follows ÛAB

swap = ÛAB
CNOTÛ

BA
CNOTÛ

AB
CNOT. On

the other hand, for this device we can obtain SWAP-
like gates by a single pulse ÛAB

swap = Ŷ12(π) or ÛAB
swap =

X̂12(π). This, too, differs from the ideal operation with a
minus sign, which can be compensated by applying more
complex pulse sequences.

Effective pure state preparation: For the cor-
rect working of the gate operations and consequently the
quantum computer, NMR quantum computer should be
properly prepared in an effective pure initial state of the
nucleus ensemble. Contrary the conventional NMR, in
our semiconductor NMR device we can prepare a large
population available as the pure state. We owe this
to the strongly polarized situation created due to dy-
namic nuclear spin polarization induced by the current
flow. The initial state of the device is far from a pure
state as schematically shown in 4. Note that due to dy-
namic polarization the population becomes larger for the
higher spin states. From this initial state, one can ap-
ply X̂01(π/2)X̂12(π) to prepare the |11〉. Once this state
is prepared then we can prepare the pure state |ij〉 by
applying the pulse X̂2i+j,3(π) (see Fig. 4). More com-
plicated pulse sequences allows us to prepare effective

3
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FIG. 3: Illustration of pulse sequences to realize (a) NOT gate on the first qubit A, (b) NOT gate on the second qubit B,
(c) Hadamard gate on the second qubit B, (d) CNOT-like gate, and (e) ideal CNOT gate. In (d) the dotted (straight) arrow

corresponds to the case when first (second) qubit is control and the second (first) qubit is target. In (e) ĤB is the Hadamard
gate illustrated in (c).

pure state from any arbitrary distribution. The designed
population can be maintained up to T1, which is longer
than 100s for this device. Experimental results showing
effective pure state preparation can be found in Ref. [12].

QUANTUM-STATE TOMOGRAPHY BASED ON

Mz DETECTION

Quantum state tomography (QST) is a method for
complete reconstruction of a given density matrix ρ̂ in a
serious of measurements. In general, to reconstruct com-
pletely a density matrix ρ̂ for a quartit or two qubits, we
need to determine 15 real parameters (The 16th element
can be found from the normalization condition). Single
NMR read-out can only give some of the either diagonal
or off-diagonal elements of the given density matrix ρ̂.

In case of the conventional NMR systems, where an
Mxy measurement is performed, a single measurement
gives directly some of the off-diagonal elements of the
density matrix. However, in our NMR device, where an
Mz measurement is employed, a single measurement de-
termines only the population differences ρnn − ρmm be-
tween the levels |n〉 and |m〉. This quantity is related
to the diagonal elements of the density matrix, where
ρmn ≡ 〈m|ρ̂|n〉. In a typical NMR spectrum of our de-
vice peaks located at ω01, ω12, and ω23 give, respectively,
ρ11 − ρ00, ρ22 − ρ11, and ρ33 − ρ22. By imposing the nor-
malization condition, we can easily obtain the diagonal

elements ρii of the density matrix. The remaining ele-
ments of the density matrix can be obtained by rotating
the original density matrix by properly chosen rotation
operations R̂k, which transform the original matrix into
ρ̂k = R̂kρR̂

†
k. These rotations move the off-diagonal el-

ements of the original density matrix to the diagonal of
the rotated density matrix so that Mz measurement pro-
vides information on them. By application of a number
of such rotations, the off-diagonal elements of the den-
sity matrix can be brought into the measurable ones in
Mz detection. The set of R̂k operations is not unique,
one can find many different sets of rotations for complete
reconstruction of the density matrix using Mz detection.
We found that the following set of 12 rotations is suit-
able for the reconstruction of the density matrix using
Mz detection based state tomography for our device

R̂1 = X̂01(π/2), R̂2 = Ŷ01(π/2), R̂3 = X̂12(π/2),

R̂4 = Ŷ12(π/2), R̂5 = X̂23(π/2), R̂6 = Ŷ23(π/2),

R̂7 = X̂02(π/2), R̂8 = Ŷ02(π/2), R̂9 = X̂13(π/2),

R̂10 = Ŷ13(π/2), R̂11 = X̂03(π/2), R̂12 = Ŷ03(π/2).

(1)

One can optimize the rotation set to decrease the number
of rotations and/or increase the reconstruction sensitiv-
ity. The following is one of such a set composed only of
six operations and still exhibiting high scheme sensitivity
parameter. The rotations in this set are

R̂1 = X̂01(π/2)X̂23(π/2),

4



Initial stateInitial state

FIG. 4: A schematic illustration of pulse sequences for effective pure state preparation starting from the initial state of the
semiconductor NMR device. Note that two-photon and three-photon transitions can be decomposed into one-photon transitions
using more complicated pulse sequences, i.e, X02(π/2) = X01(π/2)X12(π).

R̂2 = Ŷ01(π/2)Ŷ23(π/2),

R̂3 = X̂01(π/2)Ŷ13(π)X̂12(π/2),

R̂4 = Ŷ01(π/2)Ŷ13(π)Ŷ12(π/2),

R̂5 = X̂02(π/2)X̂13(π/2),

R̂6 = Ŷ02(π/2)Ŷ13(π/2)

(2)

CONCLUSIONS

All-electrical coherent control of nuclear spins in a
nanoscale NMR chip has been demonstrated. Clear co-
herent oscillations reflect all possible transitions among
the four nuclear spin states of each of the nuclide (69,71Ga
and 75As) in the point contact channel. Since arbitrary
control of superpositions among the four spin levels can
be performed in this device, one and two qubit opera-
tions are possible. We have theoretically shown how to
utilize this four-level system as a fictitious two-qubit sys-
tem, and designed the pulse sequences for the realization
of one- and two-qubit quantum operations. Moreover,
we proposed an NMR state tomography scheme based
on the detection of longitudinal magnetization of the nu-
clear spins.

Although we have not shown in this manuscript, we
performed preliminary experiments [12] for the prepara-
tion of effective pure states, which are important for the
initialization of the NMR quantum computer. Dynamic
nuclear spin polarization induced by the current flow al-
lowed us to prepare a large population to use for the
preparation of effective pure states.

The results shown in this paper suggest that this
nanometre-scale NMR device is a good candidate for

quantum-information processing based on solid-state sys-
tems.
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