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Generation and control of quantum entanglement are studied in an equivalent-neighbor system of
spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation
of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin
states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states
via cavity decay is briefly described.

I. INTRODUCTION

Among various proposals of scalable quantum comput-
ers [1], there has been an increasing interest in quantum-
information processing (QIP) with quantum dots (QDs)
[2] since the seminal work of Loss and DiVincenzo [3]. Re-
cently, the interest has further been stimulated by experi-
ments demonstrating the viability of the coherent manip-
ulation of charge states in a single QD [4] and a double
QD [5].

Quantum bits (qubits) can be implemented in nanos-
tructures in various ways including electron-spin states
(as, e.g., discussed in the next Section), excitonic states
[3] or nuclear-spin states [6, 7, 8]. The main advantage
of the spin qubits is the decoherence times that are a
few orders of magnitude longer than the other relevant
time scales. However, in a practical implementation of
the QD-based quantum computer, one should also be
able to (i) quickly induce and control the long-distance
couplings between selectively chosen QDs and to (ii)
scale such computer to hundreds of qubits, which seem-
ingly require fabrication of high-quality, regularly spaced,
uniform semiconductor QDs. A scheme of Imamoǧlu
et al. [9] offers a possible way to overcome the above-
mentioned problems by placing the QDs in a microcavity
and illuminating them by laser beams. The long-distance
QD interactions are mediated by a single-mode cavity
field, and their control is realized by addressing selec-

tively the chosen QDs by laser beams. The possible ir-
regularity of QD structures can be overcome by choosing
the proper frequencies and intensities of the laser fields.
It is worth noting that a crucial condition for a realiza-
tion of QIP in such models is a strong coupling of a single
QD to a single mode of microcavity (or nanocavity) of a
high quality factor (high-Q). Quite recently such random
couplings [10] or even deterministic couplings [11] have
been observed experimentally.

Quantum entanglement is a key resource for QIP [1].
Here, we extend our former results on bipartite entan-
glement generation in QDs [12, 13, 14, 15] by analysing
also generation of multipartite entanglement in the QD
systems. We also suggest a protocol for teleportation of
QD spin states between distant cavities via their decay.
It is a generalization of the scheme for teleportation of
atomic-qubit states via cavity decay [16, 17, 18, 19].

It is worth stressing that the present analysis is focused
on entanglement between electron spins of typical QDs,
i.e., of the size smaller than the Bohr radius. In Refs.
[13, 14, 15, 20], we studied quantum entanglement of ex-
citons in systems of QDs of the size larger than the Bohr
radius of an exciton in bulk semiconductor but smaller
than the relevant optical wavelengths. In particular, we
described realizations of the entangled webs of QD exci-
tons with symmetric sharing of entanglement, where each
QD is equally entangled to all others. The decoherence
of the generated maximally entangled states was studied
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in greater detail. In particular, we predicted decoherence
times as a function of the size of the GaAs and CdS large
QDs [20].

II. A MODEL OF QUANTUM DOTS IN A

MICROCAVITY

We are interested in quantum-information properties
of electron-spin states of semiconductor QDs within the
model of Imamoǧlu et al. [9], which can be described as
follows: The QDs are placed on a microdisk, put into
a microcavity tuned to frequency ωcav, and illuminated
selectively by laser fields of frequencies ωLn , where n la-
bels the QDs. Each of N QDs with a single electron in
the conduction band is modeled by a three-level atom as
shown in figure 1. The total Hamiltonian for the three-
level QDs interacting with quantized fields reads as fol-
lows [12]:

Ĥ = ĤQD + Ĥfields + Ĥint, (1)

ĤQD =
N

∑

n=1

[

E↓
nσ̂

↓↓
n + E↑

nσ̂
↑↑
n + Evnσ̂vvn

]

,

Ĥfields = h̄ωcavâ
†
cavâcav +

N
∑

n=1

h̄ωLn (âLn)†âLn ,

Ĥint =

N
∑

n=1

[

h̄gv↓n â
L
n σ̂

↓v
n + h̄gv↑n âcavσ̂

↑v
n + h.c.

]

,

where ĤQD and Ĥfields are the free Hamiltonians of the

QDs and the fields, respectively; Ĥint is the interac-
tion Hamiltonian; âcav and â†cav are the annihilation and
creation operators of the cavity mode, respectively; âLn
and (âLn)† are the corresponding operators for the laser

modes; σ̂xyn = |x〉nn〈y| is the nth QD operator; E(x)
n is

the energy of level |x〉n (x =↓, ↑, v); the nth QD levels
| ↓〉n and |v〉n are coupled by dipole interactions with a
strength of gv↓n ; analogously, gv↑n is the coupling strength
between levels | ↑〉n and |v〉n. There is no direct cou-
pling between levels | ↓〉n and | ↑〉m in either the same
(n = m) or different QDs (n 6= m). The Hamiltonian
(1) simply generalizes, to N QDs and N + 1 fields, the
standard quantum-optical models of a three-level system
interacting with two radiation modes (see e.g. [21]).

By applying an adiabatic elimination method,
Imamoǧlu et al. [9] derived the effective interaction
Hamiltonian

Ĥeff =
h̄

2

∑

n6=m
κnm(t)

(

σ̂+
n σ̂

−
me

i(∆n−∆m)t + h.c.
)

(2)

describing the evolution of the conduction-band spins of
N QDs coupled by a microcavity field. This Hamilto-
nian is given in terms of the Pauli spin creation σ̂+

n and
annihilation σ̂−

n operators acting on the conduction-band
spin states of the nth QD. The effective strength of two-
QD coupling between the spins of the nth and mth QDs

valence band

conduction band

n
↑

n
↓

n
v

n∆

L
nω

cavω

nω↓∆nω↑∆

FIG. 1: Effective energy levels of the nth QD. Key: |v〉n –
the effective valence-band state of energy Ev

n; | ↑〉n (| ↓〉n) –
spin up (spin down) state of the conduction-band electron of
energy E↑

n (E↓
n); detunings are defined by h̄∆ω↑

n = E↑
n − Ev

n −
h̄ωcav, h̄∆ω↓

n = E↓
n − Ev

n − h̄ωL
n and ∆n = ∆ω↑

n − ∆ω↓
n.

is given by κnm(t) = gn(t)gm(t)/∆n, where the effective
single-QD coupling of the nth spin to the cavity field
is gn(t) = gv↓n g

v↑
n |ELn (t)|/∆ωn with ∆ωn being the har-

monic mean of ∆ω↑
n and ∆ω↓

n. For simplicity, the laser
fields are assumed to be strong and treated classically as
described by the complex amplitudes ELn (t). The Hamil-
tonian (2) was derived by applying adiabatic elimina-
tions of the valence-band states |v〉n and cavity mode
âcav, which are valid under the assumptions of negligible
coupling strength, cavity decay rate, and thermal fluctua-
tions in comparison to h̄∆n, h̄∆ω

↓
n, h̄∆ω

↑
n and the energy

difference E↑
n − E↓

n (see figure 1). Moreover, the valence-
band levels |v〉n were assumed to be far off resonance.
Although the Hamiltonian (2) describes apparently di-
rect spin-spin interactions, the real physical picture is
different as the quantum-QD spins are coupled only in-
directly via the cavity field as described by Hamiltonian
(1).

As discussed in Ref. [12], Eq. (2) can be reduced to
the effective equivalent-neighbor N -QD Hamiltonian

Ĥeff =
h̄κ

2

∑

n6=m

(

σ̂+
n σ̂

−
m + σ̂−

n σ̂
+
m

)

(3)

even for nonidentical QDs, which can be achieved by ad-
justing the laser-field frequencies ωLn to get the same de-
tuning ∆n = const, and by choosing the proper laser in-
tensities |ELn |2 to obtain the effective coupling constants
of gn(t) = g or, equivalently, κnm(t) ≡ κ independent of
subscripts n and m. Thus, in a special case, the model
of Imamoǧlu et al. offers a physical realization of the
equivalent-neighbor-QD interactions, where each QD in-
teracts with all others with the same strength regardless
of their positions or differences in their energetic levels.
Note that a system of equivalent-neighbor interactions of
up to only four particles can be realized by placing parti-
cles in a symmetric geometric configuration. But in the
discussed equivalent-neighbor model, the number of QDs
can practically be scaled up to N ∼ 100.

In order to write compactly a solution of the model,
it is convenient to introduce the (unnormalized) totally



3

symmetric state

|Φm,n〉 = {| ↑〉⊗m| ↓〉⊗n} (4)

as a sum of all (n +m)-QD states with m spins up and
n spins down. In particular, state (4) for m = 1, n = 1
corresponds to a Bell state (one of the triplet states),
|B〉 = 1√

2
|Φ1,1〉 = 1√

2
(| ↑↓〉+ | ↓↑〉), while for m = 1, n =

2 (and analogously for m = 2, n = 1) corresponds to the
W state, i.e.:

|W 〉 =
|Φ1,2〉√

3
=

1√
3
(| ↑↓↓〉+ | ↓↑↓〉 + | ↓↓↑〉). (5)

Let us assume that the initial state describing a sys-
tem of M (M = 0, . . . , N) QDs with spin up (of a
single conduction-band electron) and (N − M) QDs
with spin down is |ψNM (0)〉 = | ↑〉⊗M | ↓〉⊗(N−M) =
|ΦM,0〉|Φ0,N−M 〉. Then the solution of the Schrödinger
equation of motion for Hamiltonian (3) is given by [12]:

|ψNM (t)〉 =

M ′

∑

m=0

γNMm (t)|ΦM−m,m〉|Φm,N−M−m〉. (6)

The time-dependent superposition coefficients are given
by

γNMm (t) =
M ′

∑

n=0

bNMnm ei[n(N+1−n)−M(N−M)]κt, (7)

bNMnm =

m
∑

k=0

(−1)k
Cmk

CN−2k
M−k

(

CN+1−2k
n−k − 2CN−2k

n−k−1

)

,(8)

where M ′ = min(M,N −M) and Cxy are binomial co-

efficients. For N -QD systems initially in |ψN1(0)〉 =
| ↑〉| ↓〉⊗(N−1), solution (6) simplifies to:

|ψN1(t)〉 = γN1
0 (t)| ↑〉| ↓〉⊗(N−1) + γN1

1 (t)| ↓〉|Φ1,N−2〉.
(9)

We will apply and analyze quantum properties of these
solutions in the next section.

III. ENTANGLEMENT OF ELECTRON-SPIN

STATES

Here, we analyze generation of quantum entanglement
of electron-spin states of semiconductor QDs within the
discussed equivalent-neighbor model. We will describe
various kinds of entanglement as depicted schematically
in figure 2 including pure- and mixed-state bipartite en-
tanglement, as well as pure-state genuine multipartite
entanglement.

In the analysis of the pure-state bipartite entangle-
ment, it is useful to decompose the solution (6) as follows

|ψNM (t)〉 =

M ′

∑

m=0

√

PNMm (t)|φm(t)〉A|ϕm(t)〉B (10)

A

B

BA

BA

A

B

A

B

A

B

(a) (b) (c)

(d) (e) (f)

FIG. 2: Schematic representation of various bipartite en-
tanglements between subsystems A and B in a system of
N equivalent-neighbor QDs: (a) pure-state entanglement
between M QDs initially with spin up and the remaining
(N − M) QDs with spin down as described by the von Neu-
mann entropy ENM (t); (b,c) pure-state entanglement be-
tween a given QD (initially either with spin up or down)
and the rest of the system being described by tangle τNM

↑↑̃
(t)

or τNM

↓↓̃
(t) respectively; (d,e,f) three types of mixed-state

pairwise entanglement described by concurrences CNM
↑↑ (t),

CNM
↑↓ (t), and CNM

↓↓ (t), respectively. Analysis of bipartite en-
tanglement shown in figures (b)–(f) enables extraction of in-
formation about intrinsic multipartite entanglement.

in terms of the orthonormal-basis states |φm(t)〉A and
|ϕm(t)〉B for subsystems A and B, respectively, and the
Schmidt coefficients given by

PNMm (t) = CMm CN−M
m |γNMm (t)|2. (11)

Eq. (11) directly enables us calculation of the von Neu-
mann entropy

ENM (t) = −
M ′

∑

m=0

PNMm (t) log2 P
NM
m (t), (12)

as the Shannon entropy of the Schmidt coefficients. This
formula determines bipartite entanglement between the
QDs initially with spin up (subsystem A) and the re-
maining QDs (subsystem B), as shown in figure 2(a). It
is easy to see that it holds the following symmetry of
the Schmidt coefficients PN,Mm (t) = PN,N−M

m (t), which
implies that the entanglements for systems with M and
(N −M) QDs initially with spin up are the same for any
evolution times.

In Ref. [12], we addressed the question of generation of
maximum entanglement between two subsystems A and
B consisting of M and (N −M) QDs, respectively. The
simplest nontrivial evolution of our system occurs for two
QDs with one of them initially with spin up given by

|ψ21(t)〉 = γ21
0 (t)| ↑↓〉 + γ21

1 (t)| ↓↑〉
= cos(κt)| ↑↓〉 − i sin(κt)| ↓↑〉, (13)
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as a special case of (9). The state periodically evolves
into Bell-like states |ψ21(t′)〉 = 1√

2
(| ↑↓〉 ± i| ↓↑〉)

at times κt′ = (2n + 1)π4 (n = 0, 1, . . .). In gen-
eral, from the Bennett et al. theorem [22] follows that
the maximally entangled states has the entanglement
of log2{min(M,N − M) + 1} ebits. For our systems
under interactions described by (3) with a single spin
up (M = 1), the Schmidt coefficients (11) reduce to
PN1

1 (t) = 4(N − 1)N−2 sin2(N2 κt) and PN1
0 (t) = 1 −

PN1
1 (t), which enable a direct calculation of the entan-

glement EN1(t) and its maximum values from Eq. (12).
One can find [12] that the maxima can be observed

at the times κt′ = ± 2
N arccsc( 2

N

√

2(N − 1)) + nT and
κt′′ = π

N + nT with n = 0, 1, · · · multiples of the pe-

riod T ≡ TN1 = 2π
N . Then it is easy to prove that the

maximally entangled state (EPR state) with EN1(t′) = 1
ebit, can be achieved at the evolution times t′ for N ≤ 6
only. For N > 6, any real solution for t′ does not exist,
and the entanglement reaches its maximum at the evo-
lution times t′′ but EN1(t′′) = maxtE

N1(t) is less than
one ebit, thus the EPR state cannot be generated exactly
in the systems having more than six QDs, where one of
them has initially spin opposite to the spin of the other
QDs. A numerical analysis shows that if the number M
of initial spins up is 1 < M < N − 1 of any number N
of QDs then our system will not arrive at the exact EPR
states either. A sudden decrease of entanglement is ob-
served on increasing the total number of QDs in a system
with a fixed number of QDs with spin up. Nevertheless,
very good approximations of the EPR states with almost
log2([N/2]+1) ebits of entanglement can be achieved pe-
riodically if the system has half (or almost half) spins up,
M = [N/2] [12].

To analyze a genuine multipartite entanglement, we
apply the approach proposed by Coffman, Kundu and
Wootters (CKW) [23] via the so-called tangles and
monogamy inequality. Let us define the tangle τ(ρ̂nñ)
as the entanglement measure between the nth qubit and
all the remaining ones (denoted by ñ), which corresponds
to entanglement schematically depicted in figures 2(b,c).
The tangle for arbitrary mixed state ρ̂ = ρ̂nñ of the 2×d
system is defined as the convex roof [24]:

τ(ρ̂nñ) = inf
{pi,|ψi〉}

∑

i

piS[trñ(|ψi〉〈ψi|)] (14)

of the single-qubit linear entropy

S(ρ̂) = 2[1 − tr(ρ̂2)] = 4 det(ρ̂), (15)

where the infimum is taken over all pure-state decom-
positions {pi, |ψi〉} of ρ̂ = pi|ψi〉〈ψi|. For pure states, as
analyzed in our paper, the tangle is simply defined as
τ(ρ̂nñ) = S[trñ(ρ̂nñ)].

A pairwise entanglement between any two QDs, as de-
picted schematically in figures 2(d,e,f), can be described
by the concurrence, defined by [25]

C(ρ̂) = max{0, 2 max
i
λi −

4
∑

i=1

λi} (16)

for a reduced two-qubit mixed state ρ̂. In definition
(16), λi are the square roots of the eigenvalues of the
matrix ρ̂(σ̂y ⊗ σ̂y)ρ̂

∗(σ̂y ⊗ σ̂y), where σ̂y is the Pauli
spin matrix and the asterisk denotes complex conjuga-
tion. The concurrence is related to the entanglement
of formation, EF (ρ̂), defined as the minimum mean en-
tanglement of an ensemble of pure states |ψi〉 that rep-
resents ρ̂ [26]: EF (ρ̂) = min{pi,|ψi〉}

∑

i piE(|ψi〉〈ψi|),
where ρ̂ =

∑

i pi|ψi〉〈ψi| and E(|ψi〉〈ψi|) is the entropy of
entanglement of pure state |ψi〉 defined by the von Neu-
mann entropy. As shown by Wootters [25], the entangle-
ment of formation for two qubits in an arbitrary mixed
state ρ̂ can explicitly be given in terms of the concurrence
as follows EF (ρ̂) = H(1

2 [1+
√

1 − C(ρ̂)2]), where H(x) is
the Shannon binary entropy. Note that EF (ρ̂) and C(ρ̂)
are monotonic functions of one another and both range
from 0 (for a separable state) to 1 (for a maximally en-
tangled state).

CKW conjectured that the bipartite entanglement
of multipartite qubit states satisfies the following
monogamy inequality [23]

∆(ρ̂n) = τ(ρ̂nñ) −
∑

m(m 6=n)

C2(ρ̂nm) ≥ 0 (17)

as quantified by the squared concurrence C2(ρ̂nm) and
the tangle τ(ρ̂nñ). The conjecture was first proved by
CKW for 3 qubits in pure state [23], but a general proof
for arbitrary number of qubits in arbitrary states has
been given only recently by Osborne and Verstraete [24].
We use the quantity ∆(ρ̂n), which is called the residual

tangle, as a criterion for genuine (or intrinsic) multipar-
tite entanglement of qubit states, i.e. for correlations
not stored in two-qubit entanglement. In particular, the
residual tangle for N = 3 qubits is referred as the 3-
tangle and describes genuine 3-partite (3-way) entangle-
ment. In general, for N > 3 qubits, ∆(ρ̂n) contains infor-
mation about not solely N -way entanglement, but rather
all kinds of 3, 4, ..., N -partite entanglements.

As the main new result of this paper, we analyze a pos-
sibility to generate an intrinsic multipartite entanglement
in our model as being described by the CKW inequality.
For our equivalent-neighbor system, there are only three
different types of evolution of the concurrence depend-
ing on the choice of a pair of QDs as described by the
reduced density matrices: (i) ρ̂NM↑↑ = tr3,4,...,N(ρ̂NM ) for
both QDs initially with spin up corresponding, in par-
ticular, to two qubits shown in figure 2(d), (ii) ρ̂NM↑↓ =

tr1,2,...,M−1,M+2,...,N(ρ̂NM ) for a pair of QDs when ini-
tially one of them has spin up and the other has spin
down (see figure 2(e)), and (iii) ρ̂NM↓↓ = tr1,2,...,N−2(ρ̂

NM )

for both QDs initially with spin down (see figure 2(f)),
where ρ̂NM = |ψNM 〉〈ψNM |. By properly grouping
terms of Eq. (6) and applying partial trace, we find the
following general solutions for the three kinds of the re-
duced density matrices:

ρ̂NM↑↓ (t) = α↑↓0(t)| ↓↓〉〈↓↓ | + α↑↓1(t)| ↑↑〉〈↑↑ |
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FIG. 3: Evolution of concurrence for systems of N QDs with
only a single QD initially with spin up (M = 1): CN1

↑↓ (t)

(thick curves) and CN1

↓↓ (t) (thin curves). Note that the resid-

ual tangles are vanishing, ∆N1

↑ (t) = ∆N1

↓ (t) = 0.

0 1.57 3.14
0

0.5

1

κ t

en
ta

ng
le

m
en

t

N=4  M=2

0 1.57 3.14
0

0.5

1

κ t

en
ta

ng
le

m
en

t

N=6  M=3

0 1.57 3.14
0

0.5

1

κ t

en
ta

ng
le

m
en

t

N=10  M=5

0 1.57 3.14
0

0.5

1

κ t

en
ta

ng
le

m
en

t

N=20  M=10

FIG. 4: Evolution of the residual tangles ∆NM
↑ (t) = ∆NM

↓ (t)

(solid curves) and the concurrence CNM
↑↓ (t) (broken curves)

for systems of N QDs with half of them with spin up. Note
that CNM

↓↓ (t) = CNM
↑↑ (t) = 0.
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FIG. 5: Evolution of the residual tangles ∆NM
↑ (t) (thick

solid curves) and ∆NM
↓ (t) (thin solid) as well the concurrences

CNM
↑↓ (t) (thick broken curves) and CNM

↓↓ (t) (thin broken) for
systems of N = 2M + 1 QDs. For clarity we omit curves for
CNM

↑↑ (t).

+

M ′−1
∑

m=0

CM−1
m CN−M−1

m |βm(t)〉〈βm(t)|, (18)

where (j = 0, 1)

α↑↓j(t) =
M ′

∑

m=0

|γNMm (t)|2CM−1
m−1+jC

N−M−1
m−j , (19)

|βm(t)〉 = γNMm (t)| ↑↓〉 + γNMm+1(t)| ↓↑〉, (20)

and for k =↑↑, ↓↓:

ρ̂NMk (t) = αk0(t)| ↓↓〉〈↓↓ | + 2αk1(t)|B〉〈B|
+αk2(t)| ↑↑〉〈↑↑ |, (21)

where (j = 0, 1, 2)

α↑↑j(t) =
M ′

∑

m=0

|γNMm (t)|2CN−M
m CM−2

m−2+j ,

α↓↓j(t) =

M ′

∑

m=0

|γNMm (t)|2CMm CN−M−2
m−j . (22)

For simplicity, we dropped superscripts NM in αkj and
|βm(t)〉. In the following we use the following shorthand
notation: CNM↑↑ (t) ≡ C(ρ̂NM↑↑ (t)), τNM↑↑̃ (t) ≡ τ(ρ̂NM↑↑̃ (t)),

∆NM
↑ (t) ≡ ∆(ρ̂NM↑ (t)), etc.
In figures 3-5, we present examples of the concurrence

evolution according to solutions for the reduced density
matrices, given by (18) and (21), assuming M = 1 and
M = [N/2]. Note that CN1

↑↑ (t) = 0 as the system has only
single spin up during the whole evolution. Analogously,

one can find that C2M,M
↑↑ (t) = C2M,M

↓↓ (t) = 0 for any
M . By analyzing the figures, one can clearly see that the
maximum of concurrences decreases but the maximum
of residual tangles increases with increasing number N
of QDs for M > 1.

In our equivalent-neighbor model, we find only two
kinds of tangles τNM

kk̃
corresponding to a QD initially

with spin up (k =↑) or spin down (k =↓) as given by

τNM
kk̃

(t) = 4αk(t)[1 − αk(t)], (23)

which corresponds to the reduced density matrices
ρNM
kk̃

(t) = αk(t)| ↓〉〈↓ | + [1 − αk(t)]| ↑〉〈↑ |, where co-

efficients αk(t) = αk0(t) + αk1(t) = 1 − αk1(t) − αk2(t)
are given in terms of (22). The tangle, given by (23),
describes entanglement between the kth QD and all the
remaining QDs (denoted by subscript k̃). The residual
tangles ∆NM

k are then given by

∆NM
↑ (t) = τNM↑↑̃ (t) − (M − 1)[CNM↑↑ (t)]2

−(N −M)[CNM↑↓ (t)]2,

∆NM
↓ (t) = τNM↓↓̃ (t) − (N −M − 1)[CNM↓↓ (t)]2

−M [CNM↑↓ (t)]2. (24)
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Let us analyze a few examples of the general solutions
to describe generation of N -partite entanglement. The
evolution, given by the solution (9), of the initial state
|ψ31(0)〉 = | ↑↓↓〉 for three QDs with a single spin up can
explicitly be given by

|ψ31(t)〉 = γ31
0 (t)| ↑↓↓〉+

√
2γ31

1 (t)| ↓〉|B〉, (25)

where γ31
0 (t) = (e−i2κt + 2eiκt)/3 and γ31

1 (t) = (e−i2κt −
eiκt)/3. The state periodically arrives at, e.g., times
κt′ = (9n+ 1)2π

9 into a W state:

|ψ31(t′)〉 =
1√
3

(

eiθ0 | ↑↓↓〉+ eiθ1 | ↓↑↓〉+ eiθ1 | ↓↓↑〉
)

(26)

deviating from the standard W state by the phases

θ0 = arctan
(√

3s−c√
3c+s

)

and θ1 = arctan
(√

3s+c√
3c−s

)

− π,

where s = sin(2π/9) and c = cos(2π/9). For the W state
one finds from our general solution that the concurrences
are the same and equal to C31

↑↓(t′) = C31
↓↓(t′) = 2/3, and

the tangles are τ31
↑↑̃ (t′) = τ31

↓↓̃ (t′) = 8/9, while the residual

tangles are vanishing, ∆31
↑ (t′) = ∆31

↓ (t′) = 0. Thus, it is
clear the state does not exhibit intrinsic 3-particle en-
tanglement in agreement with the CKW result [23]. For
other evolution times, it is impossible to get higher value
of the mutually equal concurrences (and the tangles) as
the W state reaches the upper bound of 2/N for symmet-
ric sharing of entanglement [27, 28]. Nevertheless one of
the tangles or the concurrences can be larger, at a given
moment, than those for the W state. On the other hand,
the residual tangles are always vanishing. These conclu-
sions can be drawn by analyzing the explicit solutions:

τ31
↓↓̃ (t) = [C31

↑↓(t)]2 + [C31
↓↓(t)]2 = τ ′[7 + 2 cos(3κt)],

τ31
↑↑̃ (t) = 2[C31

↑↓(t)]2 = 2τ ′[5 + 4 cos(3κt)], (27)

where τ ′ = (16/81) sin2(3κt/2). Thus, one can observe
that the maximum of concurrence maxt C

31
↑↓(t) = C31

↑↓(t′′)

is 8/9 and the maximum of the tangle maxt τ
31
↑↑̃ (t) =

τ31
↑↑̃ (t′′) reaches 80/81 for the moments κt′′ = ±0.565 · · ·+
n2π/3 (n = 0, 1, ...). On the other hand, maxt C

31
↓↓(t) =

C31
↓↓(t′′′) = 8/9 and maxt τ

31
↓↓̃ (t) = τ31

↓↓̃ (t′′′) = 0.9877 for

the moments κt′′′ = (2n+1)π/3. It is seen that these val-
ues of the entanglement measures are much higher than
those for the W state.

Similarly for N = 4, the state |ψ41(0)〉 evolves at times
κt′ = (2n+1)π4 into a four-particle (generalized) W state

|ψ41(t′)〉 ∼ 1

2

(

| ↑↓↓↓〉− | ↓↑↓↓〉− | ↓↓↑↓〉− | ↓↓↓↑〉
)

. (28)

Due to the symmetry of the system, W states are also
generated for |ψ32(t)〉 and |ψ43(t)〉. However, as can
be shown semi-analytically and numerically, the states
|ψNM (0)〉 forN = 4,M = 2 as well as forN > 4 with any
M do not evolve into the exact W states under the inter-
action described by Hamiltonian (2). The concurrences

TABLE I: Maxima of the concurrences CNM
↑↑ (t), CNM

↑↓ (t)

and CNM
↓↓ (t), the tangles τNM

↓↓̃
(t) as well as the residual tan-

gles ∆NM
↑ (t) and ∆NM

↑ (t) for equivalent-neighbor system of
N QDs with M of them initially with spin up. Addition-
ally, maxt τNM

↑↑̃
(t) = 1.000 for all presented cases except

maxt τ
10,2

↑↑̃
(t) = 0.991. Note that for other values of M , the

maxima of the tangles τNM

↑↑̃
(t) also decrease with increasing

N if N > 10.

N M maxC↑↑ maxC↑↓ maxC↓↓ maxτ↓↓̃ max∆↑ max∆↓

4 2 0 0.412 0 1.000 0.889 0.889

5 2 0.576 0.338 0.347 1.000 0.967 0.922

6 2 0.372 0.295 0.225 0.919 0.877 0.789

7 2 0.408 0.266 0.182 0.784 0.884 0.632

8 2 0.364 0.244 0.141 0.610 0.849 0.495

9 2 0.307 0.226 0.109 0.502 0.803 0.393

10 2 0.253 0.211 0.084 0.401 0.755 0.311

6 3 0 0.275 0 1.000 0.960 0.960

7 3 0.129 0.240 0.191 1.000 0.995 0.987

8 3 0.111 0.216 0.115 0.973 0.950 0.928

9 3 0.236 0.199 0.135 0.906 0.955 0.811

10 3 0.205 0.174 0.092 0.643 0.886 0.560

8 4 0 0.209 0 1.000 0.980 0.980

9 4 0.001 0.188 0.111 1.000 0.999 0.994

10 4 0.000 0.173 0.034 0.993 0.983 0.967

11 4 0.136 0.161 0.097 0.966 0.977 0.898

C41
↑↓(t′) = C41

↓↓(t′) reach the value 1/2, which is the up-
per bound of symmetric sharing of entanglement for four
qubits [27, 28]. Additionally, the tangles are found to be
τ41
↑↑̃ (t′) = τ41

↓↓̃ (t′) = 3/4. As in the former example, we

want to get higher-values of the tangles and concurrences
by resigning from the condition that C41

↑↓(t′) = C41
↓↓(t′).

From the general solutions, one gets

τ41
↓↓̃ (t) = [C41

↑↓(t)]2 + 2[C41
↓↓(t)]2 = τ ′[7 + cos(4κt)],

τ41
↑↑̃ (t) = 3[C41

↑↓(t)]2 = 3τ ′[5 + 3 cos(4κt)], (29)

where τ ′ = (1/8) sin2(2κt). Thus, one can find that max-
imum of concurrence C41

↑↓(t) (equal to 0.577) and maxi-

mum of tangle τ41
↑↑̃ (t) (equal to 1) are higher than those

for the W state. However, the maximum of the other
concurrence C41

↓↓(t) and tangle τ41
↑↑̃ (t) is already reached

by the W state. Moreover, the residual tangles are zero
during the whole evolution.

In general, for the equivalent-neighbor system with ar-
bitrary number N of QDs and only one of them having
initially spin opposite to the others, we find that

∆N1
↑ (t) = ∆N1

↓ (t) = 0, (30)

which implies that the genuine multipartite entanglement
is not generated for M = 1.

For systems with M > 1, evolution becomes more com-
plicated as seen in figures 4 and 5. In the present study,
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the most interesting for us are the maximum values of the
concurrences and tangles as shown in table I for various
numbers N of QDs and their initial states as described
by number M . For example, for any N and M = 2, we
have

|ψN2(t)〉 = γN2
0 (t)| ↑↑↓↓〉+ 2γN2

1 (t)|BB〉
+γN2

2 (t)| ↓↓↑↑〉, (31)

where γ42
0,2(t) = (e−i4κt + 2ei2κt)/6 ± 1/2 and γ42

1 (t) =

(e−i4κt − ei2κt)/6. Such states exhibit genuine multipar-
tite entanglement as clearly shown in table I and figure
4. Let us analyze explicitly the simplest state among
them, i.e., for N=4 and M=2. For evolution moment
κt′ = π/2, the QD system evolves into the state

|ψN2(t′)〉 =
1

3
(| ↑↑↓↓〉+ 2|B〉|B〉 − 2| ↓↓↑↑〉), (32)

which does not exhibit pairwise entanglement, C42
↑↑(t′) =

C42
↑↓(t′) = C42

↓↓(t′) = 0, but exhibits the genuine multipar-
tite entanglement, as described by the residual tangles
∆42

↑ (t′) = ∆42
↓ (t′) = 8/9. This value is the highest dur-

ing the whole evolution of |ψ42(t)〉. Nevertheless higher
degree of genuine multipartite entanglement can be ob-
served by increasing number of QDs to N = 5 for a fixed
M = 2 or by increasing both N and M . A closer look at
the data shown in table I, enables us to draw a conclusion
that the highest degree of genuine multipartite entangle-
ment, as quantified by the residual tangle, is generated
in the discussed model for odd number N = 2M + 1 of
QDs and by initially preparing M of them in the state
with spin up (or spin down).

IV. TELEPORTATION OF ELECTRON-SPIN

STATES

Quantum teleportation of Bennett et al. [29] is a
method to transfer (information about) unknown quan-
tum states over large distances via entangled particles
and transmission of some classical information. Quantum
teleportation is not just a curious effect but a fundamen-
tal protocol which enables universal quantum computa-
tion [30] as any quantum circuit can be realized using
only quantum teleportation and single-qubit operations.

Here, we describe a protocol for quantum teleportation
of electron-spin states of semiconductor QDs based on
the protocol of Bose et al. [16] (see also [17]) for telepor-
tation of atomic states. The cavity spontaneous photon
leakage plays a crucial role in this teleportation proto-
col. It is a well accepted fact that spontaneous decay
of excited quantum systems is a mechanism of their de-
coherence and therefore usually plays a destructive role
in QIP. However, Bose et al. have shown how detection
of decay can be used constructively not only for estab-
lishment of entanglement but also for the complete QIP

Alice Bob

LA

BS

D1

D2

LB

CA

CB

FIG. 6: Teleportation without insurance of electron-spin
states via cavity decay based on the protocol of Bose et
al. [16]. Key: CA, CB - microcavities, DA, DB - photon
counters, LA, LB - lasers, BS - beam splitter.

Alice Bob

LA

BS

D1

D2

L'B

CA

CB

L'A

LB

FIG. 7: Teleportation with insurance of entangled electron-
spin states via cavity decay in our generalized scheme.

such as teleportation. This surprising result can be un-
derstood by recalling the fact that a detected decay is a
measurement on the state of the system from which the
decay ensues.

Although, the original protocol of Bose et al. was de-
scribed for trapped atoms, it can, as well, be applied to
teleportation of conduction-band electron-spin states of
QDs with levels shown in figure 1. In the original scheme
[16], it has been assumed that ∆ω↑

n = ∆ω↓
n for n = 1, 2

but one can resign from this condition. An outline of the
modified scheme is shown in figure 6. The setup con-
sists of two optical cavities: Alice’s CA and Bob’s CB
tuned to the same frequency ωcav. Each cavity contains
a single three-level QD, which is illuminated within a
proper period of time by classical laser field (LA or LB).
By illuminating the QDs with the classical laser field of
frequency ωLn , Alice (designated by subscript n = A)
and Bob (n = B) can drive the transition between | ↓〉n
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and |v〉n. The other transition between | ↑〉n and |v〉n
is driven by the quantized cavity field of frequency ωcav.
It is important to assume that detunings ∆ω↑

n,∆ω
↓
n are

large enough such that the lower levels |v〉n can effec-
tively be decoupled (so neglected) from the evolution of
the lower levels. Thus, we can assume that the quantum
information is stored only in two levels | ↓〉n and | ↑〉n.
Both Alice’s and Bob’s cavities initially have no photons
being described by vacuum state |0〉n, and Bob’s QD is
initially in state | ↓〉. Alice does not know her QD state,
which is of the form |ψ〉A = c| ↓〉A + c′| ↑〉A (with the
unknown coefficients c and c′ such that |c|2 + |c′|2 = 1).
The main task is to teleport the state |ψ〉A to Bob. First,
as a preparation of the state, Alice maps the QD state
|ψ〉A on her cavity mode by illuminating her QD with the
laser LA for a proper period of time. In the meantime,
Bob illuminates his QD with the laser LB for another
appropriate time period to generate a QD–cavity-field
entangled state |Ψ〉B = 2−1/2(| ↓〉B|1〉B + i| ↑〉B|0〉B),
where |1〉B and |0〉B stand for the cavity state in vac-
uum or single-photon state, respectively. Alice and Bob
should synchronize their actions to finish simultaneously
the preparations of their states since photons are leaking
out from both of the cavities. Those photons are mixed
on the 50-50 beam splitter BS. Cavities are assumed to
be single-sided so that the only leakage of photons occur
through the sides of the cavities facing BS. The next step
is the detection of the photons, when Alice just waits for
a finite time period for click of the photon counter ei-
ther D1 or D2. This detection of photons leaking from
distinct cavities CA or CB constitutes a measurement
that enables a transfer of quantum information from Al-
ice’s QD to Bob’s QD. The cases, when Alice registers
no clicks or two clicks, are rejected as the failure of the
teleportation. At the post detection stage, Bob applies
to the transferred state a proper phase shift depending
on whether detector D1 or D2 clicked. This step cor-
responds to the correcting unitary transformation and
completes the teleportation protocol. It is worth not-
ing that the presented scheme, contrary to the original
Bennett et al. scheme [29], is probabilistic in the sense
that the original state is destroyed even if the telepor-
tation fails, which is the case when photon counters do
not register one photon. Nevertheless, the scheme can
be modified to a teleportation protocol with insurance
by entangling the initial Alice’s QD with a reserve QD
also placed in her cavity CA to increase the probability
of success. In Ref. [18], we have proposed a generalized
scheme, depicted in figure 7, that allows the teleporta-
tion of an entangled state of two atoms with insurance.
Numerical calculations in Refs. [18, 19] showed that the
average probability of success of our protocol is about
0.94, while the average probability of successful telepor-
tation without the insurance does not exceed 0.5. Our
proposal for teleportation of QD spin states is a gener-
alization of the scheme for teleportation of atomic-qubit
states via cavity decay [16, 17, 18, 19]. It is a multi-stage
protocol and it is full description would exceed the rec-

ommended number of pages for the proceedings. Thus,
the details will be presented elsewhere [31].

V. DISCUSSION AND CONCLUSION

Decoherence seriously limits the feasibility of the
schemes especially by comparing decoherence rates in re-
lation to the gate-operation times. But for simplicity in
section III, we neglected decoherence effects in the analy-
sis of quantum entanglement in the generalized models of
Imamoǧlu et al. [9]. After Ref. [9], let us give a few esti-
mations: The spin decoherence times of the conduction-
band electrons are relatively long and it is reasonable to
assume to be ∼ 1µs. There are a few mechanisms of de-
coherence including spin-orbit coupling and cavity decay.
The first decoherence mechanism is due to the coupling
of the conduction-band electron spins to valence-band
holes, which can result in decoherence of ∼ 1ns and ef-
fective decoherence of ∼ 100ns. A more deteriorating
effect is due to a short cavity lifetime Γ−1

cav ∼ 10ps, which
can result in the effective decoherence of ∼ 1ns [9]. By
contrast, we discussed in section IV how to utilize this
cavity decay in a constructive way for QIP. More details
about decoherence of three-level systems in leaky cavi-
ties can be found in our papers [17, 18, 19]. Also our
estimations of the size-dependent decoherence of large
semiconductor QDs can be found [20]. Another serious
obstacle to implement the discussed schemes is the re-
quirement of strong coupling of a QD with a single pho-
ton. It seems that photonic-crystal microcavities could
be a good solution, as they simultaneously exhibit a high
quality factor (Q) in excess of 10,000 [32] and they are
of an ultra-small, wavelength-scale modal volume. Al-
though our results might appear highly theoretical, it
should be noted that quantum entanglement of excitons
in a single QD [33] and a QD molecule [34] has already
been observed.

In this communication, we studied possibilities of gen-
eration of maximum pure-state bipartite and multipar-
tite entanglement as well as mixed-state pairwise entan-
glement of electron spins in systems of QDs interact-
ing via a microcavity field within the generalized mod-
els of Imamoǧlu et al. [9]. Conditions for generation of
genuine multipartite entangled states of the conduction-
band electron spins of QDs were discussed based on the
Coffman-Kundu-Wootters inequality. Such problems are
important in the context of possible solid-state imple-
mentations of QIP including quantum teleportation. In
particular, we briefly described a generalized protocol
[31] of Bose et al. [16] for teleportation (without and with
insurance) of entangled spin-states of QDs between dis-
tant microcavities via their decay.
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