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Selective truncations of an optical state
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Selective truncation of the Fock-state expansion of an optical field can be achieved using projection synthesis.
The process removes the predetermined Fock states from the input field by conditional measurement and tele-
portation. We present a scheme to perform projection synthesis based on multiport interferometry. This
scheme can be used both as a generalized quantum scissors device that filters out Fock states with photon
numbers higher than a predetermined value, and as a quantum punching device that selectively removes spe-
cific Fock states, making holes in the Fock-state expansion of the input field. © 2007 Optical Society of
America
OCIS codes: 270.0270, 270.5290, 040.5160.
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. INTRODUCTION
ecent theoretical and experimental works have
rompted increasing interest in quantum-state engineer-
ng that uses linear optics. It has been shown that linear
ptics can be used for efficient quantum computations1,2

nd generation of arbitrary quantum states of traveling
ptical fields (see, for example, Refs. 3–15 and references
herein). Such schemes are based on linear-optical ele-
ents, including beam splitters (BSs) and phase shifters

PSs), together with nonlinear elements such as single-
hoton sources and photodetectors. Parametric downcon-
ersion process is exploited to build a triggered single-
hoton source, and avalanche photodiodes are used as
hoton counters to discriminate between the absence and
he presence of photons. Therefore, such schemes are ex-
erimentally realizable at the present level of optical
echnology.

In this paper, we study a linear-optical scheme for
uantum-state engineering using projection synthesis.8,9

ur main interest is to employ the scheme to perform the
ollowing transformation:
0740-3224/07/020379-5/$15.00 © 2
��� = �
n=0

�

�n�n� → ���d�� = N�
n=0

d−1

�n�n�, �1�

here the unknown input optical state ��� is truncated to
btain the state ���d��, which is a finite superposition of d
tates (for a review see Ref. 16). In Eq. (1), N is the nor-
alization constant, which will be dropped from equa-

ions hereafter; thus, the sign � will be used instead of
quality to denote that the state should be normalized.
his transformation is achieved by conditional measure-
ent and teleportation. This process was originally de-

cribed by Pegg, Phillips, and Barnett8,9 to obtain a super-
osition state of d=2 of the form ���2����0�0�+�1�1� by
runcating a coherent state ���= ���, and it was named as
he quantum scissors device (QSD). Later we worked out a
heoretical treatment of the QSD by proposing an experi-
entally realizable scheme and discussing how arbitrary

uperposition states of d=2 can be generated by this
imple scheme.17,18 The first experiment was performed
y Babichev et al.19 An extension of the original QSD
cheme to d=3 was proposed Koniorczyk et al.20 by a
007 Optical Society of America
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imple modification of the original QSD scheme. The
riginal QSD scheme is interesting because it finds its di-
ect application as a basic element of a single-rail version
f the linear-optical quantum computer. Moreover, it is
ot only a truncation scheme but also a communication
cheme for superposition states of arbitrary d.

The drawback of the original QSD scheme is that it en-
bles generation of truncated states up to d=3. In this pa-
er, we extend the results of Ref. 21 to describe an appli-
ation of a modified version of the multiport Mach–
ehnder interferometer in the configuration of Zeilinger
t al.,4,5 which has been experimentally demonstrated.6,7

he important difference between the original multiport
nterferometer and the modified version discussed here is
he elimination of the apex BS so that the direct path
rom the input field to the output field is eliminated. This
s crucial for the truncation scheme, as we want the pro-
ess to be realized via teleportation.

In the following section, we will introduce the general-
zed QSD scheme based on the multiport interferometer
nd give some examples of the possible truncated states.
hen we will discuss how the same scheme can be used as
quantum punching device, which selectively eliminates

ome Fock states from the original superposition state
nd makes holes in the Fock-state expansion provided the
roper choices are made regarding conditional measure-
ent and input states.

. MULTIPORT INTERFEROMETER AS
UANTUM SCISSORS DEVICE
schematic diagram of the eight-port Mach–Zehnder in-

erferometer in the configuration of Zeilinger et al.4 and
he generalized QSD is given in Fig. 1. As a special case,
he original Pegg–Phillips–Barnett scheme of QSD can be
onsidered as a six-port interferometer presented in Fig.
. The beam splitter shown with the dotted lines corre-
ponds to the apex BS that is to be removed from the in-
erferometer in order to obtain the generalized QSD
cheme. If we define the N-mode input state as ���, then
he N-mode output state will be ���=Û���, where Û is the

ig. 1. Generalized eight-port QSD. Notation: ��� is the input
tate to be truncated, usually a coherent state ���; �nj�—input
ock states; ���—output state, selectively truncated or punched;
j—photon counters; Bj—beam splitters; Pj—phase shifters; and

ˆ j and b̂j—input and output annihilation operators, respectively.
he beams reflected from the white surface of the beam splitters
re  phase shifted, while the reflections from the black surface
re without any phase shift. The beam splitter drawn with a dot-
ed line and bounded by the dotted box is the one to be removed
n order to obtain the QSD from the conventional multiport
nterferometer.
nitary operator describing the evolution of the input
tate in the interferometer. Denoting the annihilation
perators at the input and output ports as column
ectors â��â1 ; â2 ; . . . ; âN	 and b̂��b̂1 ; b̂2 ; . . . ; b̂N	,
espectively, we obtain b̂=Û†âÛ=Sâ, where S
P6B5P5B4P4B3P3B2P2B1P1 is the scattering matrix ob-

ained by multiplying the scattering matrices of the BSs,
i, and PSs, Pi, used in the scheme from the input to the
utput. We assume Bi �i=1, . . . , 5� to be described by a
eal 2�2 matrix �ti ,ri ;−ri , ti	 embedded in a 4�4 matrix,
here ti

2 and ri
2=1− ti

2 are the BS transmittance and re-
ectance, respectively. Internal phase shifts of BSs can
ormally be included by using external PSs described by
arameters 	i. For simplicity, we analyze the system with-
ut P6, i.e., assuming 	6=0.

Now, considering that at the input port we have the
ock state ���= �n1 , . . . , nN���n�, the output state is

ound as

��� = Û�n� =
1


n1! ¯ nN!
�
j=1

N

�
l=1




Sjlxl
âjl

† �0�, �2�

here Sjlxl
are the elements of the unitary scattering ma-

rix S, 
=�ini is the total number of photons, and �j
tands for the multiple sum over j1 , j2 , . . . , j
. Moreover,
l= j for �i=1

j−1ni� l��i=1
j ni and j=1, . . . , N.

. SELECTIVE-STATE TRUNCATIONS
. Quantum Scissors Device

n a truncation scheme, we are interested in obtaining a
uperposition state by truncating the input optical state,
hich is usually a coherent state. Therefore, in the gen-
ralized QSD scheme, based on the multiport interferom-
ter shown in Fig. 1, we consider the state ��� as one of
he inputs. In that case, for the eight-port interferometer
e can write the total input state as ���
�n1�1�n2�2�n3�3���4. Now assume that the detectors at the
utput ports detect N2, N3, and N4 photons whose sum is
he total number of photons input into the interferometer
nd satisfies the relation

N2 + N3 + N4 = n1 + n2 + n3 = d − 1. �3�

his means that we project the total output state ���1,2,3,4
nto the detected states �N2�2�N3�3�N4�4. Then the state at
he first output mode becomes

ig. 2. Representation of the original Pegg–Phillips–Barnett
cheme of QSD as a six-port interferometer scheme. Notation is
he same as in Fig. 1, where i=4 (or equivalently i=3).
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��� � 2�N2�3�N3�4�N4��� = �
n=0

d−1

cn
�d��n�n�, �4�

here cn
�d�= �n ,N2 ,N3 ,N4�Û�n1 ,n2 ,n3 ,n� depends on the

eam-splitter transmittances T��t1
2 , t2

2 , t3
2 , t4

2 , t5
2	 and

hase shifts ���	1 ,	2 ,	3 ,	4 ,	5	. Then our task is to find T
nd � according to the desired state at the output in such
way that the fidelity of the output state to the desired

tate is maximized.
It is seen from Figs. 1 and 2 that by eliminating the

hird modes at the input and output and removing the
omponents on the path from the third input to the third
utput, the eight-port interferometer becomes the original
ix-port QSD when �n1�1�n2�2= �1�1�0�2 and �N2�2�N4�4
�1�2�0�4. In this case, the optimized solution with the
ighest probability of successful truncation, that is, corre-
ponding to the output state

���2�� � �0�0� + �1�1�, �5�

ecomes T= �t1
2=1/2, t4

2=1/2	 and �= �	4=	. In the same
ay the QSD of Koniorczyk et al.20 is obtained in this six-
ort interferometer with �n1�1�n2�2= �1�1�1�2 and

N2�2�N4�4= �1�2�1�4. Then we find that there are four solu-
ions for the successful truncation with the highest prob-
bility to obtain the state

���3�� � �0�0� + �1�1� + �2�2�. �6�

hese solutions are T1= �t1
2= t4

2= �3−
3� /6	; T2= �t1
2= t4

2

�3+
3� /6	 if �= �	4=0	; T3= �t1
2= �3−
3� /6 , t4

2= �3+
3� /6	;
nd T4= �t1

2= �3+
3� /6 , t4
2= �3−
3� /6	 if �= �	4=	. The

rst two solutions were given by Koniorczyk et al.,20 but
he rest have been found by us.

For the generalized QSD with the modified eight-port
nterferometer, we are more interested in the device in its
apacity to act as a QSD with a simple solution rather
han in the optimality of the solutions. We find that an in-
ut coherent state at the fourth mode of the input can be
runcated to give the output state

���4�� � �0�0� + �1�1� + �2�2� + �3�3� �7�

y inputting single-photon states at �n1�1�n2�2�n3�3
�1�1�1�2�1�3 and by the conditional measurement N2
N3=N4=1. We find a number of solutions for transmit-

ances and phase shifts in the QSD, for which the input
tate is truncated to form relation (7). One simple solution
s given by T= �1/3,1/4,1,1/3,1/2	 with �
�0,0,0,0, /2	.
Consequently, various output states with desired coef-

cients can be obtained by making the proper choices for
and � provided that the total number of photons de-

ected at the output detectors is equal to the total number
f input photons. For example, by inputting
n1�1�n2�2�n3�3= �1�1�2�2�1�3 and detecting �N2�2�N3�3�N4�4
�1�2�2�3�1�4, we can obtain a truncated output state in

he form

���5�� � �0�0� + �1�1� + �2�2� + �3�3� + �4�4� �8�

y choosing the BS and PS parameters as T
�0.305,0.388,1,0.817,0.184	 with �= �0,0,0, ,0	. For

arger-dimensional output states, it is difficult to obtain
nalytical solutions; therefore, solutions are found by nu-
erical analysis on condition that the fidelity of the out-

ut state to the desired (ideally truncated) state is equal
o one.

. Quantum Punching Device
ere we consider cases where the output state obtained
y truncating the input state ��� has some of its Fock
tates removed. Let us assume that �r1� , �r2� , . . . are re-
oved. Then the output state is written as

��punch
�d� � � �

n=0
n�r1,r2,. . .

d−1

�n�n�. �9�

his process can be referred to as hole burning22–24 or
uantum punching in the Fock-state expansion of a given
tate of light. Thus we refer to our system as a quantum
unching device (QPD).
We have applied the following procedure to find a de-

ired selective superposition, given by relation (9). In par-
icular, the procedure can also be applied for the standard
runcation without punching. The QPD should perform a
esired selective truncation for any input state ��� to be
ngineered for given auxiliary input states �n1�1, �n2�2,
nd �n3�3 and for measured states �N2�2, �N3�3, and �N4�4
hat satisfy Eq. (3). The amplitudes should fulfill the con-
ition cn

�d�=const�0 if n�ri for i=1,2, . . . and vanish for
he other n. So the problem is to find such transmittances

and phase shifts � for which an auxiliary function

� � �
n�ri

�cn
�d� − cn�

�d�� + �
ri

�cri

�d�� �10�

anishes, where n� is one of n�ri. We have performed nu-
erical minimalization (specifically, based on a simplex

earch method) of � for randomly chosen T and � to get
ero up to double precision.

The total number Nd of selective truncations of a given
tate ���d�� for arbitrary d is given by

Nd = �
n=1

d d

n� = 2d − 1, �11�

here � d
n � stands for binomial coefficient. Note that trivial

ases like �0� and state ���d�� are also taken into account in
q. (11). By choosing proper BSs and PSs, we can achieve

his kind of state engineering using the multiport inter-
erometer. To demonstrate explicitly the capabilities of
ur scheme, let us analyze all Nd=15 selective trunca-
ions in the state ���4��, given by relation (7). We can
unch out (or remove) the state �0�, denoted by a filled
ircle, to get

��punch�123
�4� � � �1�1� + �2�2� + �3�3�, �12�

y choosing T= ��7+
21� /14,1/3,1,1/2, �2−
2� /4	. Here-
fter, we assume the input Fock states �ni�i= �1�i�i
1,2,3�, all measurement results equal to one, and all
hase shifts equal to zero, i.e., �=0 except generation of
tate �3�.

Analogously, we can punch out state �1� to get
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��punch0�23
�4� � � �0�0� + �2�2� + �3�3�, �13�

y setting 2T= �1−3
5/173,1,2,1/3,1+5
3/203	, and
unch out �2� to get

��punch01�3
�4� � � �0�0� + �1�1� + �3�3�, �14�

y choosing T= ��7+
21� /14,1/3,1,1/2, �5−
5� /10	. Note
hat ��punch 012�

�4� �= ���3�� and is given by relation (6).
Moreover, all six superpositions of two Fock states can

e obtained in the scheme, e.g., for �=0. In a simplified
ystem with the BS B3 removed �t3=1�, one can get the
ollowing states:

��punch0�2�
�4� � for T = �1, 1

2 ,1,1, 1
2	 ,

��punch�1�3
�4� � for T = � 1

2 ,t2,1,t2, 1
2	 ,

��punch0��3
�4� � for T = ��t��2, 1

2 ,1, 1
6 ,�t��2	 , �15�

here t2= �3−
3� /3, �t��2= �1−
5/133� /2, and �t��2= �1
3
3/155� /2, and

��punch��23
�4� � for T = �t2, 1

2 ,1, 1
6 ,�t��2	 , �16�

ssuming t2= �1−
5/37� /2 and �t��2= �1+
3/35� /2. One
an also generate state

��punch�12�
�4� � for T = �t2, 8

9 , 1
2 ,t2,1	 , �17�

ith t2=1/2+1/
5. We note that this state can also be ob-
ained for a system with t3=1, assuming that one of the
nputs is in vacuum state and that no photons are mea-
ured in one of the outputs. The remaining sixth state is
rivial as corresponds to ��punch01��

�4� �= ���2��, given by rela-
ion (5).

It is interesting to see that one can synthesize two- and
hree-photon Fock states in the ���4�� process by choosing
= �1,1/2,1/3,1/2,1	 and T= �1/2,1/2,1,1/2,1/2	, re-

pectively, and by assuming �=0 except 	5= /2 in the lat-
er case.

It must be noted that we have given only some specific
xamples, which guarantee the desired output state, but
he solutions are usually not optimized for the success
robability.
We have tested our scheme for selective truncations up

o d=6. We have found solutions for many but not all pos-
ible Nd=63 superpositions. Nevertheless, the system is
asily scalable, so by increasing the number of BSs, aux-
liary input states, and measured output states, we can in
rinciple generate an arbitrary superposition state via
eleportation.

. CONCLUSION
e have shown that the original Pegg–Phillips–Barnett

cheme of QSD can be generalized by using multiport
ach–Zehnder interferometers in the configuration of

eilinger et al.4 The original QSD scheme can be repre-
ented as a six-port interferometer. The multiport inter-
erometer approach can help us not only to truncate a co-
erent state in order to obtain a superposition state up to
n arbitrary Fock state but also to enable selective trun-
ation of a given state and selective removal of Fock-state
omponents from it—a process referred to as quantum
unching or hole burning in the Fock space of optical
elds. It should be noted that several schemes for hole
urning have already been proposed based on conditional
easurements on linear (Refs. 22 and 23 and references

herein) and nonlinear24 systems. Nevertheless, the
resent scheme is the first that enables state truncation
nd hole burning simultaneously. Moreover, contrary to
ormer schemes, the process is achieved via teleportation.

As was the case in the original QSD, the generalized
ne also produces the desired output state with very high
delity when the input state to be truncated is a weak co-
erent state. A difficult problem we face in this scheme
ntails optimization of the solutions to obtain the highest
robability of truncation when d is high. In the present
tudy, we did not focus on optimization of our solutions
ut on showing that the scheme works as a truncation or
unching device. The effects of imperfections (such as
onideal photon counting and nonideal single-photon
ource) in the scheme are currently being investigated.
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