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Selective truncation of the Fock-state expansion of an optical field can be achieved using projection synthesis.
The process removes the predetermined Fock states from the input field by conditional measurement and tele-
portation. We present a scheme to perform projection synthesis based on multiport interferometry. This
scheme can be used both as a generalized quantum scissors device that filters out Fock states with photon
numbers higher than a predetermined value, and as a quantum punching device that selectively removes spe-
cific Fock states, making holes in the Fock-state expansion of the input field. © 2007 Optical Society of

America
OCIS codes: 270.0270, 270.5290, 040.5160.

1. INTRODUCTION

Recent theoretical and experimental works have
prompted increasing interest in quantum-state engineer-
ing that uses linear optics. It has been shown that linear
optics can be used for efficient quantum computations™?
and generation of arbitrary quantum states of traveling
optical fields (see, for example, Refs. 3—15 and references
therein). Such schemes are based on linear-optical ele-
ments, including beam splitters (BSs) and phase shifters
(PSs), together with nonlinear elements such as single-
photon sources and photodetectors. Parametric downcon-
version process is exploited to build a triggered single-
photon source, and avalanche photodiodes are used as
photon counters to discriminate between the absence and
the presence of photons. Therefore, such schemes are ex-
perimentally realizable at the present level of optical
technology.

In this paper, we study a linear-optical scheme for
quantum-state engineering using projection synthesis.&9
Our main interest is to employ the scheme to perform the
following transformation:
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d-1

)= >, yaln) — (6D = N y,[n), (1)
n=0 n=0

where the unknown input optical state |) is truncated to
obtain the state |¢?), which is a finite superposition of d
states (for a review see Ref. 16). In Eq. (1), AV is the nor-
malization constant, which will be dropped from equa-
tions hereafter; thus, the sign ~ will be used instead of
equality to denote that the state should be normalized.
This transformation is achieved by conditional measure-
ment and teleportation. This process was originally de-
scribed by Pegg, Phillips, and Barnett®? to obtain a super-
position state of d=2 of the form |¢®)~ v,|0)+v4|1) by
truncating a coherent state |/)=|a), and it was named as
the quantum scissors device (QSD). Later we worked out a
theoretical treatment of the QSD by proposing an experi-
mentally realizable scheme and discussing how arbitrary
superposition states of d=2 can be generated by this
simple scheme.'”!® The first experiment was performed
by Babichev et al.!® An extension of the original QSD
scheme to d=3 was proposed Koniorczyk et al.?® by a
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simple modification of the original QSD scheme. The
original QSD scheme is interesting because it finds its di-
rect application as a basic element of a single-rail version
of the linear-optical quantum computer. Moreover, it is
not only a truncation scheme but also a communication
scheme for superposition states of arbitrary d.

The drawback of the original QSD scheme is that it en-
ables generation of truncated states up to d=3. In this pa-
per, we extend the results of Ref. 21 to describe an appli-
cation of a modified version of the multiport Mach—
Zehnder interferometer in the configuration of Zeilinger
et al.,*> which has been experimentally demonstrated.®’
The important difference between the original multiport
interferometer and the modified version discussed here is
the elimination of the apex BS so that the direct path
from the input field to the output field is eliminated. This
is crucial for the truncation scheme, as we want the pro-
cess to be realized via teleportation.

In the following section, we will introduce the general-
ized QSD scheme based on the multiport interferometer
and give some examples of the possible truncated states.
Then we will discuss how the same scheme can be used as
a quantum punching device, which selectively eliminates
some Fock states from the original superposition state
and makes holes in the Fock-state expansion provided the
proper choices are made regarding conditional measure-
ment and input states.

2. MULTIPORT INTERFEROMETER AS
QUANTUM SCISSORS DEVICE

A schematic diagram of the eight-port Mach—Zehnder in-
terferometer in the configuration of Zeilinger et al.* and
the generalized QSD is given in Fig. 1. As a special case,
the original Pegg—Phillips—Barnett scheme of QSD can be
considered as a six-port interferometer presented in Fig.
2. The beam splitter shown with the dotted lines corre-
sponds to the apex BS that is to be removed from the in-
terferometer in order to obtain the generalized QSD
scheme. If we define the N-mode input state as |V), then

the N-mode output state will be |®)=U|¥), where U is the

v) |9)

Fig. 1. Generalized eight-port QSD. Notation: |¢) is the input
state to be truncated, usually a coherent state |a); |n;)—input
Fock states; |p)—output state, selectively truncated or punched;
D—photon counters; B/—beam splitters; P—phase shifters; and

a; and éj—input and output annihilation operators, respectively.
The beams reflected from the white surface of the beam splitters
are 7 phase shifted, while the reflections from the black surface
are without any phase shift. The beam splitter drawn with a dot-
ted line and bounded by the dotted box is the one to be removed
in order to obtain the QSD from the conventional multiport
interferometer.
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Fig. 2. Representation of the original Pegg—Phillips—Barnett
scheme of QSD as a six-port interferometer scheme. Notation is
the same as in Fig. 1, where =4 (or equivalently i=3).

unitary operator describing the evolution of the input
state in the interferometer. Denoting the annihilation
operators at the input and output ports as column
;ay]  and 65[31;32; ;BN],
respectively, we obtain b= fﬂﬁf]:Sé, where S
ZPGB5P5B4P4B3P332PQBIP1 is the scattering matrix ob-
tained by multiplying the scattering matrices of the BSs,
B;, and PSs, P;, used in the scheme from the input to the
output. We assume B; (i=1,..., 5) to be described by a
real 2 X 2 matrix [¢;,r;;-r;,t;] embedded in a 4 X 4 matrix,
where ¢? and r?=1-¢? are the BS transmittance and re-
flectance, respectively. Internal phase shifts of BSs can
formally be included by using external PSs described by
parameters ¢;. For simplicity, we analyze the system with-
out Pg, i.e., assuming &=0.

Now, considering that at the input port we have the
Fock state |[¥)=|nq,..., ny)=/n), the output state is
found as

vectors a=[a;as;...

v

M =

|®)=TUln)= S;,010), 2)

=1

[ .
anl nN!J

I
—
~

where S, are the elements of the unitary scattering ma-
trix S, v=2;n; is the total number of photons, and 3;
stands for the multiple sum over ji,jg, ..., j,- Moreover,
x;=j for ¥2in;<I<3/_in; and j=1,..., N.

3. SELECTIVE-STATE TRUNCATIONS

A. Quantum Scissors Device

In a truncation scheme, we are interested in obtaining a
superposition state by truncating the input optical state,
which is usually a coherent state. Therefore, in the gen-
eralized QSD scheme, based on the multiport interferom-
eter shown in Fig. 1, we consider the state |/) as one of
the inputs. In that case, for the eight-port interferometer
we can write the total input state as |¥)
=|n1)1/n9)alns)s| 4. Now assume that the detectors at the
output ports detect Ny, N3, and N, photons whose sum is
the total number of photons input into the interferometer
and satisfies the relation

N2+N3+N4=n1+n2+n3=d—1. (3)
This means that we project the total output state [®); 954

onto the detected states |[No)o|N3)5|Ny)4. Then the state at
the first output mode becomes
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d-1

) ~ o(No| (N3 (N4 |®) = X, ¢ @y, [n), (4)
n=0

where cﬁf”:(n,N2,N3,N4|f]|n1,n2,n3,n> depends on the
beam-splitter transmittances TE[t%,t%,t%,tZ,t?] and
phase shifts £=[&1,&,&3,&4, ). Then our task is to find T
and £ according to the desired state at the output in such
a way that the fidelity of the output state to the desired
state is maximized.

It is seen from Figs. 1 and 2 that by eliminating the
third modes at the input and output and removing the
components on the path from the third input to the third
output, the eight-port interferometer becomes the original
six-port QSD when |n)1n5)9=|1)1/0)2 and [Ng)o|Ng)y
=[1)9|0)4. In this case, the optimized solution with the
highest probability of successful truncation, that is, corre-
sponding to the output state

|#®) ~ 7|0y + y|1), (5)

becomes T=[t%=1/2,ti=1/2] and &=[¢,=7]. In the same
way the QSD of Koniorezyk et al.?’ is obtained in this six-
port interferometer with |n{){/n9)e=|1)1|1)y and
IN9)a|Ny)4=|1)9|1)4. Then we find that there are four solu-
tions for the successful truncation with the highest prob-
ability to obtain the state

|$) ~ 0|0) + 1] 1) + 75/2). (6)

These solutions are T;=[t?=t2=(3-3)/6]; Ty=[t?=t2
=(3+13)/6] if £=[£,=0]; Ty=[¢}=(3-3)/6,15=(3+3)/6];
and T4=[t%=(3+ \35)/6,t‘21= (3-43)/6] if &=[£=m]. The
first two solutions were given by Koniorczyk et al.,” but
the rest have been found by us.

For the generalized QSD with the modified eight-port
interferometer, we are more interested in the device in its
capacity to act as a QSD with a simple solution rather
than in the optimality of the solutions. We find that an in-
put coherent state at the fourth mode of the input can be
truncated to give the output state

|¢™) ~ /0y + y1|1) + 72[2) + 73/3) (7)

by inputting single-photon states at |nq)i|ng)ons)s
=|1)1]1)9|1); and by the conditional measurement N,
=N3=N,=1. We find a number of solutions for transmit-
tances and phase shifts in the QSD, for which the input
state is truncated to form relation (7). One simple solution
is given by T=[1/3,1/4,1,1/3,1/2] with £
=[0,0,0,0,w/2].

Consequently, various output states with desired coef-
ficients can be obtained by making the proper choices for
T and & provided that the total number of photons de-
tected at the output detectors is equal to the total number
of input photons. For example, by inputting
[n1lngdelns)s=[1)112)s|1)3 and detecting |Ng)o|N3)slNg)y
=|1)5|2)3|1)4, we can obtain a truncated output state in
the form

|6 ~ %0/0) + y1|1) + ¥2[2) + ¥5[3) + y4|4) (8)

by choosing the BS and PS parameters as T
=[0.305,0.388,1,0.817,0.184] with &=[0,0,0,,0]. For
larger-dimensional output states, it is difficult to obtain
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analytical solutions; therefore, solutions are found by nu-
merical analysis on condition that the fidelity of the out-
put state to the desired (ideally truncated) state is equal
to one.

B. Quantum Punching Device

Here we consider cases where the output state obtained
by truncating the input state |¢) has some of its Fock
states removed. Let us assume that |ry),|rs),... are re-
moved. Then the output state is written as

d-1
d
|Gune) ~ 2 Yaln)- )
n=0
n#ri,ro,. ..
This process can be referred to as hole burning*** or

quantum punching in the Fock-state expansion of a given
state of light. Thus we refer to our system as a quantum
punching device (QPD).

We have applied the following procedure to find a de-
sired selective superposition, given by relation (9). In par-
ticular, the procedure can also be applied for the standard
truncation without punching. The QPD should perform a
desired selective truncation for any input state |) to be
engineered for given auxiliary input states |n1);, |n2)s,
and |ng)3 and for measured states [Ng)s, [N3)3, and |Ny)4
that satisfy Eq. (3). The amplitudes should fulfill the con-
dition c;d)zconst>0 if n#r; for i=1,2,... and vanish for
the other n. So the problem is to find such transmittances
T and phase shifts & for which an auxiliary function

A= e -+ 2 lef?) (10)
r;

n#r;

vanishes, where n' is one of n # r;. We have performed nu-
merical minimalization (specifically, based on a simplex
search method) of A for randomly chosen T and & to get
zero up to double precision.

The total number N, of selective truncations of a given
state |¢'?) for arbitrary d is given by

¢ (d
Ny=>, n>=2d—1, (11)

n=1

where (%) stands for binomial coefficient. Note that trivial
cases like |0) and state |¢@)) are also taken into account in
Eq. (11). By choosing proper BSs and PSs, we can achieve
this kind of state engineering using the multiport inter-
ferometer. To demonstrate explicitly the capabilities of
our scheme, let us analyze all N;=15 selective trunca-
tions in the state |¢®), given by relation (7). We can
punch out (or remove) the state |0), denoted by a filled
circle, to get

i) cnei2s) ~ 71|1) + 722) + %(3), (12)

by choosing T=[(7+121)/14,1/3,1,1/2,(2—-2)/4]. Here-
after, we assume the input Fock states |n;);=|1);(i
=1,2,3), all measurement results equal to one, and all
phase shifts equal to zero, i.e., £=0 except generation of
state |3).

Analogously, we can punch out state |1) to get
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| choe2s) ~ Y0l0) + ¥2I2) + 3[3), (13)

by setting 2T=[1-35/173,1,2,1/3,1+5\3/203], and
punch out |2) to get

|t chores) ~ Y0l0) + ¥11) + 3[3), (14)

by choosing T=[(7+21)/14,1/3,1,1/2,(5-5)/10]. Note
that |¢;i1)nch o12e)=|¢?) and is given by relation (6).

Moreover, all six superpositions of two Fock states can
be obtained in the scheme, e.g., for £&=0. In a simplified
system with the BS B3 removed (¢3=1), one can get the
following states:

1 1
‘¢£)At1)nch002.> for T = [1’5’1;1’5],

4 1,92 2 1
| $ouncho103) fOYT:[gat 1.t ,5],

|¢gﬂnch0..3> for T= [(t,)zaéyl’%y(t”)z], (15)

where #2=(3-13)/3, (t')2=(1-\5/133)/2, and (#")%2=(1
+3\3/155)/2, and

‘¢§)ﬂnch..23> fOI‘ T = [t27%717%7(t’)2]> (16)

assuming t2=(1-+5/37)/2 and (¢')?=(1++3/35)/2. One
can also generate state

| bpuncherze) for T = [t2,§,§,t2,1], (17)

with t2=1/2+1/ \s‘g. We note that this state can also be ob-
tained for a system with £3=1, assuming that one of the
inputs is in vacuum state and that no photons are mea-
sured in one of the outputs. The remaining sixth state is
trivial as corresponds to |¢gﬂnchm..)=|¢(2)>, given by rela-
tion (5).

It is interesting to see that one can synthesize two- and
three-photon Fock states in the |¢®) process by choosing
T=[1,1/2,1/3,1/2,1] and T=[1/2,1/2,1,1/2,1/2], re-
spectively, and by assuming £=0 except &5=7/2 in the lat-
ter case.

It must be noted that we have given only some specific
examples, which guarantee the desired output state, but
the solutions are usually not optimized for the success
probability.

We have tested our scheme for selective truncations up
to d=6. We have found solutions for many but not all pos-
sible N;=63 superpositions. Nevertheless, the system is
easily scalable, so by increasing the number of BSs, aux-
iliary input states, and measured output states, we can in
principle generate an arbitrary superposition state via
teleportation.

4. CONCLUSION

We have shown that the original Pegg—Phillips—Barnett
scheme of QSD can be generalized by using multiport
Mach-Zehnder interferometers in the configuration of
Zeilinger et al.* The original QSD scheme can be repre-
sented as a six-port interferometer. The multiport inter-
ferometer approach can help us not only to truncate a co-
herent state in order to obtain a superposition state up to
an arbitrary Fock state but also to enable selective trun-
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cation of a given state and selective removal of Fock-state
components from it—a process referred to as quantum
punching or hole burning in the Fock space of optical
fields. It should be noted that several schemes for hole
burning have already been proposed based on conditional
measurements on linear (Refs. 22 and 23 and references
therein) and nonlinear’® systems. Nevertheless, the
present scheme is the first that enables state truncation
and hole burning simultaneously. Moreover, contrary to
former schemes, the process is achieved via teleportation.
As was the case in the original QSD, the generalized
one also produces the desired output state with very high
fidelity when the input state to be truncated is a weak co-
herent state. A difficult problem we face in this scheme
entails optimization of the solutions to obtain the highest
probability of truncation when d is high. In the present
study, we did not focus on optimization of our solutions
but on showing that the scheme works as a truncation or
punching device. The effects of imperfections (such as
nonideal photon counting and nonideal single-photon
source) in the scheme are currently being investigated.
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