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The long-standing problem of finding a closed formula for the relative entropy of entanglement �REE� for
two qubits is addressed. A compact-form solution to the inverse problem, which characterizes an entangled
state for a given closest separable state, is obtained. Analysis of the formula for a large class of entangled states
strongly suggests that a compact analytical solution of the original problem, which corresponds to finding the
closest separable state for a given entangled state, can be given only in some special cases. A few applications
of the compact-form formula are given to show additivity of the REE, to relate the REE with the Rains upper
bound for distillable entanglement, and to show that a Bell state does not have a unique closest separable state.
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I. INTRODUCTION

The relative entropy of entanglement �REE� is an en-
tanglement measure quantifying how much a given en-
tangled state can be distinguished operationally from the set
of separable states or those with positive partial transposition
�PPT� �1�:

ER��� = min
���D

S������ = S����� , �1�

where D denotes a set of separable states or PPT states, S is
a quasidistance measure usually chosen to be the quantum
relative entropy, S�� ����=tr�� ln �−� ln ���, an analog of
the classical Kullback-Leibler divergence. A state � on the
boundary of separable states is called the closest separable
state �CSS� or the closest PPT state. Various properties of the
REE have already been described �see, e.g., �1–16� and for a
review see �17��. But there is still an open fundamental prob-
lem �18�: the task of finding a closed explicit formula for the
REE for a given two-qubit state corresponding to a solution
of the convex optimization problem for the REE, or, briefly,
of finding the CSS � for a given entangled state �.

Here, we give a compact-form solution of the closely re-
lated problem of finding entangled states � and their REE for
a given CSS �. Our formula is derived from the results ob-
tained by one of us in Ref. �13�. We also demonstrate the
intrinsic difficulty in solving the original problem. In addi-
tion, we apply our formula to relate the REE with the Rains
upper bound for the distillable entanglement, and to show
additivity of the REE and nonuniqueness of the CSS for a
Bell state.

II. A CLOSED FORMULA FOR THE REE

Let us consider an entangled two-qubit state � with its
CSS �, and assume that � is full rank. Note that the case
includes the arbitrary full-rank entangled state �, since
rank���� rank��� must hold so that S�� ��� is finite, and
hence the CSS � for full-rank � is always full rank. Since �
is an edge state then its partial transposition �� is rank defi-
cient, i.e., rank ����=3. Let ��� be the kernel �or null space�

of ��, i.e., an eigenstate of �� corresponding to zero eigen-
value,

����� = 0. �2�

Moreover, let �i� and �i be eigenstates and eigenvalues of �,
respectively. Using the kernel ���, the formula in Ref. �13�
can be rewritten in the following simple form:

� = � − xG��� , �3�

where

G��� = �
ij

Gij�i�	i�����	�����j�	j� , �4�

Gij 
 � �i for �i = � j ,

�i − � j

ln �i − ln � j
for �i � � j , � �5�

and x�0. All � obtained from Eq. �3� for xmax�x�0 have �
as their CSS, where xmax is the threshold for ��0. This is a
unique solution of all extremal conditions in two qubits as
shown later. The same relation holds for entangled states and
the closest PPT state even in higher-dimensional systems as
long as the �PPT� entanglement witness �EW� Z such that
tr Z�=0 is uniquely determined as ����	����. Moreover,
from Eqs. �3�–�5� we have

	i���i� = �i�1 − x	i�����	�����i�� . �6�

Therefore, the REE can be rewritten as

ER��� = tr� ln � − tr� ln �

= tr� ln � − �
i

	i���i�ln �i

= tr� ln � − tr� ln � + x�
i

	i�����	�����i��i ln �i

= S��� − S��� + xtr�����	����� ln �� , �7�

where S�·� is the von Neumann entropy. In any case, how-
ever, Eq. �3� should be conversely solved with respect to � to
obtain the true closed formula for the REE as a solution to
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Eisert’s problem �18�. In the following we show that the
inversion is possible in some special cases but not in general.

Our formula can be derived from the results obtained in
Ref. �13� but the derivation is rather lengthy. Fortunately, we
can also derive it in a compact and elegant way using a
different approach based on the result shown in Ref. �19� that
the operator of

Z = I − 
0

� 1

� + z
�

1

� + z
dz �8�

must be an entanglement witness. Let us briefly repeat the
proof in Ref. �19� for our later convenience. Since � is the
CSS for �, the inequality

S„���1 − 	�� + 	��… − S����� � 0 �9�

must hold for every separable state �� and 0
	
1. Using
the expansion of

ln�X + 	Y� = ln�X� + 	
0

� 1

X + z
Y

1

X + z
dz + O�	2� ,

we have

S„���1 − 	�� + 	��… − S�����

= 	tr�
0

� 1

� + z
�� − ���

1

� + z
dz + O�	2�

= 	�tr� − tr��
0

� 1

� + z
�

1

� + z
dz� + O�	2�

= 	trZ�� + O�	2� , �10�

and hence 	 tr Z��+O�	2��0 must hold for arbitrary small
	�0 if �� is a separable state. This implies that tr Z���0
must hold for every separable state ��, and therefore Z must
be an EW �19�.

Now suppose that � and � are two-qubit states. It was
shown in Ref. �20� that an EW in two qubits must be decom-
posable, since there are no PPT entangled states in two qu-
bits. Therefore, Z must be a decomposable EW, and hence
Z= P+Q�, where P and Q are positive operators �20�. More-
over,

trZ� = tr�� − �
0

� 1

� + z
�

1

� + z
dz� = tr�� − �� = 0,

�11�

and as a result tr Z�=tr P�+tr Q��=0 must hold. Since � is
full rank, and �� is positive and rank 3, the solution is
uniquely determined �leaving out the normalization of x�0�
as P=0 and Q=x���	��. As a result, x����	����=Z holds for
full rank �. The integral in Z can be performed using the
eigenstates �i� for � such that

x	i�����	�����j� = �ij − 
0

� 1

�i + z
	i���j�

1

� j + z
dz

= �ij − 	i���j�Gij
−1, �12�

and finally we have Eq. �3�. In this way, the satisfaction of all

extremal conditions in the optimization problem for the REE
is automatically ensured by the condition that Z is an EW
such that tr Z�=0. Note that ��� is always entangled for full
rank � �21� �if ��� is not entangled, the full rank � is not a
CSS for any entangled state�.

III. THE RAINS BOUND AND THE REE

An upper bound for distillable entanglement introduced
by Rains �6� is defined as

R��� = min
���0

�S������ + ln tr������ , �13�

where minimization is taken over all states including en-
tangled states, and hence R���
ER��� follows from the defi-
nition. Here, let us apply the technique as used in the previ-
ous section to the optimization problem for the Rains bound.
It was shown in Ref. �11� that the problem is reduced to

R��� = min
���0

S������ , �14�

where the minimization is taken over unnormalized states
subject to tr�����
1. This is a convex optimization problem
because tr��0

��
1 for �0= p�1+ �1− p��2 and tr��1
��, tr��2

��
1
�11�. Suppose that � is full rank and � is an optimal unnor-
malized state. Hence, � is full rank, tr����=1, and

S„���1 − 	�� + 	��… − S����� � 0 �15�

for every �� such that tr�����
1 and 0
	
1. Let �� be a
normalized separable state, i.e., ����0 and tr�����=tr ��=1.
Using the expansion of the logarithmic function for 	→ +0
as in the previous section, we have

S„���1 − 	�� + 	��… − S����� � 	tr�I − 
0

� 1

� + z
�

1

� + z
dz���


 	trZR�� � 0, �16�

and hence ZR must be again an EW. Note however that
tr ZR�=tr �−tr �
0 in this case, contrary to Eq. �11�, be-
cause � is unnormalized so that tr����=1.

Let us then consider the case where � is a two-qubit state,
and suppose that the optimal two-qubit state � is entangled.
Since the partial transposition of a two-qubit state has only
one negative eigenvalue �9�, �� is expressed such that

�� = �1 − �� − ���	�� , �17�

where ��0, ����=0, and �0. Moreover, tr �=1 so that
tr����=1. For a small deviation of → �1+��, we have

S����� → S����� − ��trZR��� + ����	����� − 2�

= S����� − ��trZR��� − �� − 2�

= S����� − �trZR��, �18�

where tr ZR�=tr �−1=−2 was used. Since � must satisfy
the extremal condition with respect to , tr ZR��=0 must
hold. Moreover, since � is a two-qubit entangled state, � is
rank 3 and �� is positive definite �14�, and as a result the
EW ZR is uniquely determined �including the normalization
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in this case� as ZR=2����	����, where tr ZR�=−2 and 
�0 were taken into account. This implies that

I − 2����	���� = 
0

� 1

� + z
�

1

� + z
dz , �19�

but this cannot be satisfied because the right-hand side is
positive definite for full-rank � and �, while the left-hand
side is not for any ���. Therefore, the optimal state � must
not be entangled, and the optimization in R��� is achieved by
a separable state. The same discussion also holds for low-
rank �, because R��� is a continuous function �11�. It is then
concluded that R���=ER��� for every two-qubit state, and
our compact-form formula also holds for the Rains bound.

Note that the Rains bound is strictly smaller than the REE
for the Werner state in higher-dimensional systems �5,6�, but
such a disagreement does not occur in two qubits as shown
above.

IV. ADDITIVITY OF THE REE

An asymptotic REE defined as

ER
���� = lim

n→�

1

n
ER���n� �20�

satisfies ER
����
ER��� from the definition. The equality

holds if ER��� is weakly additive, but this is not the case in
general �5�. Here, let us briefly investigate the additivity us-
ing our compact-form formula.

In Ref. �26�, it was shown that ER��� for � such that
�� ,��=0 is weakly additive if ���−1���−1. From Eq. �3�,

	i��ln �i� − � ln � j��j� = − x	i���i����	���� − ����	����� j��j�
�21�

must hold for all i and j, and hence we have �ln � ,��
=−x�� , ����	�����. This implies that �� ,��=0 if and only if
�� , ����	�����=0. Therefore, ����	���� must be diagonalized
in terms of the eigenstates of � so that �� ,��=0, and the
compact-form formula in this case is much simplified as

� = � − x����	����� . �22�

Let p0�1 /2 be the maximal Schmidt coefficient of ���.
Since the largest eigenvalue of ����	���� is p0, the range of x
must satisfy 0
x
1 / p0
2, so that ��0. As a result,
���−1��= I−x���	���−1 always holds. Therefore, it is con-
cluded that ER��� is weakly additive and ER

����=ER��� for
every two-qubit state such that �� ,��=0.

Moreover, it was shown in Ref. �26� that ER��� for � such
that �� ,��=0 is strongly additive, namely, ER�� � ��=ER���
+ER��� for an arbitrary �, if ���−1���0. In the same way as
above, it is found that the condition is satisfied if x
1, and
therefore ER��� is strongly additive for every two-qubit state
such that �� ,��=0 and x
1.

V. FORMULA APPLICATIONS FOR FULL-RANK CSS

All the examples of arbitrary rank states � with their CSS
� found by us in the literature �1,2,8–11,15,16� can easily be

explained using our formula. The procedure can be summa-
rized as follows: choose a full-rank-matrix �, calculate its
partial transposition to get ��, find a condition on its ele-
ments for which �� is rank deficient �and so becomes a
CSS�, calculate �=�−xG���, if required take a limit of some
elements to diminish the rank of � and �, and finally find an
inverse relation to express the elements of � in terms of
those of �.

For example, let us analyze a full-rank state �
=�i=1

4 Ri��i�	�i� diagonal in the Bell basis ���i��. The eigen-
values of �� are �i=

1
2 −Ri. Thus, e.g., by setting �1=0, �

becomes a CSS. By noting that the kernel ��� is a Bell state
and applying it to Eq. �3�, one gets a Bell-diagonal entangled
state �BD=�iri��i�	�i�, where r1= �2+x� /4 and otherwise ri
=Ri�1−x /2�. By inverting the latter equation, one gets the
well-known formula �1�

�BD =
1

2
��1�	�1� +

1

2�1 − r1��i=2

4

ri��i�	�i� . �23�

This is the CSS of an arbitrary Bell-diagonal state �BD
=�i=1

4 ri��i�	�i� assuming r1�1 /2.
As another example which, to our knowledge, has not

been discussed in the literature, let us analyze a two-qubit
state of the following form:

�Z =�
R1 0 0 0

0 R2 Y 0

0 Y R3 0

0 0 0 R4

� . �24�

This state is the CSS if its partial transposition �Z
� is rank 3,

which implies that Y =�R1R4ei� �in the following we set �
=0�, while the requirement of positivity of the density opera-
tor �Z implies that R2R3�Y2. Thus, �Z satisfies the condition
R2R3�R1R4, and �24� can compactly be given by

�Z = N����	���� + R2�01�	01� + R3�10�	10� , �25�

where ���=N−1/2��R1�00�+�R4�11�� and N=R1+R4. The ei-
genvalues of �Z are ��i�i= �R1 ,R4 ,�+ ,�−�, where ��= 1

2 �R2

+R3�z� with the auxiliary function z=��R2−R3�2+4Y2. The
corresponding eigenvectors are ��1�= �00�, ��2�= �11�, and
����=N�����−R3��01�+Y�10�� with normalizations N�

= ����−R3�2+Y2�−1/2. One finds the kernel ��� of �Z
� and

then

����	���� = �R1 + R4�−1�R4�00�	00� − Y�01�	10� − Y�10�	01�

+ R1�11�	11�� . �26�

Thus, according to �4�, we find that

G��Z� =�
R̄1 0 0 0

0 R̄2 Ȳ 0

0 Ȳ R̄3 0

0 0 0 R̄4

� , �27�

where
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R̄1 = R̄4 =
Y2

R1 + R4
,

R̄2 = − 2Y2d��R2 − R3��z + R2L� + 2Y2L� ,

R̄3 = − 2R̄1 − R̄2,

Ȳ = Yd�2Y2�R2 + R3�L − �R2 − R3�2z� �28�

are given in terms of

z = ��R2 − R3�2 + 4R1R4,

L = ln�R2 + R3 − z� − ln�R2 + R3 + z� , �29�

and 1 /d= �R1+R4�z2L.
Thus, according to �3�, the entangled states

�Z = �Z − xG��Z� �30�

have the same CSS �Z. This is an important example in our
analysis as all low-rank states discussed in Sec. VI are spe-
cial cases of �30�. Note that it is required to assume x


xmax� = �R1+R4� /R1 to ensure that �R4−xR̄4��0. Assuming
for simplicity that R1�R4, the analogous conditions for �Ri

−xR̄i��0 with i=1,2 ,3 are also satisfied for x
xmax� . On the

other hand, the condition �R2−xR̄2��R3−xR̄3�� �Y −xȲ�2,
which is also implied by the positivity of �Z, restricts x to be

smaller than xmax� = f −�f2−4��̄ / �2�̄�, where �=R2R3−Y2,

�̄= R̄2R̄3− Ȳ2, and f =R2R̄3+ R̄2R3−2YȲ. Thus, �30� is defined
for 0�x
xmax
min�xmax� ,xmax� �. The problem of expressing
�Z in terms of �Z will be addressed in the following section.

VI. FORMULA APPLICATIONS
FOR LOWER-RANK CSS

Our compact-form formula can also be applied for lower-
rank CSSs � in two approaches: directly for some special
states and indirectly for arbitrary states.

To justify a direct application, the following conditions
should be satisfied: �i� There must exist a full-rank edge state
�� in the vicinity of �. If it is certain that � is a CSS for
some �, this condition is trivial. However, if we do not know
whether or not � can be a CSS for some �, this is not trivial.
�ii� Let ���� be the kernel of ���, i.e., �������=0. Then, ����
must be entangled. However, when ���� is not entangled, we
merely cannot find any entangled ���0 for �� by the
compact-form formula, and hence this condition is not so
important. �iii� There must exist a sequence such that ��
→� and ����→ ��� simultaneously. This condition seems to
severely constrain the choice of ��� in the case of rank����
=2.

Thus, our formula can be applied directly to the rank-2
Horodecki state defined for p� 	0,1� by �22�

�H = p������	����� + �1 − p��00�	00� , �31�

which is a mixture of a Bell state ������= ��01�� �10�� /�2
and a separable state orthogonal to it. It is worth noting that

the Horodecki state is extremal in the sense that it minimizes
the REE for a given concurrence �9�, negativity �i.e., a mea-
sure of the PPT entanglement cost� for a given concurrence
�9�, fidelity �i.e., maximal singlet fraction� for a given con-
currence ��1 /3�, and negativity ����5−2� /3� �25�. The
state also satisfies fulfills some extremal conditions for the
REE for a given negativity �15�. The CSS for �H derived
from �3�–�5� reads as

�H = q�2�00�	00� + 2p�q�������	����� + p�2�11�	11� ,
�32�

where p�= p /2 and q�=1− p�, in agreement with the known
result derived in another way �2�. Note that, although rank
��H

��=3, �H is not full rank. Fortunately, the above-
mentioned conditions necessary for the direct application of
the compact-form formula are satisfied.

In the second more general approach, one can apply our
formula for arbitrary lower-rank states in a limiting sequence
from a full-rank state because the REE is a continuous func-
tion. For example of such application of our formula for
lower-rank states we will analyze pure states and the rank-2
Vedral-Plenio state defined by �2�:

�VP = p���+��	��+�� + �1 − p��01�	01� �33�

for 0
 p
1 with the corresponding CSS

�VP = �1 −
p

2
��01�	01� +

p

2
�10�	10� , �34�

for which rank ��VP�=rank ��VP
� �=2. By contrast with the

Horodecki state, �33� is a mixture of a Bell state and a sepa-
rable state not orthogonal to it.

To derive CSSs �P and �VP, and thus to show the useful-
ness of our formula also for lower-rank states, let us apply
state �Z, given by �24�, in the limiting cases. Namely, by
assuming in �30� that x=xmax� 
xmax� and R1�R4, one gets the
following extremal state:

�Z� 
 �Z�x = xmax� � =�
r1 0 0 0

0 r2 y 0

0 y r3 0

0 0 0 0
� , �35�

where

r1 = R1 − R4,

r2 = R2 +
2R4

z2 �R2
2 − R2R3 + 2Y2� +

2R4

Lz
�R2 − R3� ,

r3 = 1 − r1 − r2,

y =
1

2Y
�2�R1 + R2�R4 − �r2 − R2��R2 − R3�� . �36�

In the special case of �Z� for R1=R4→0, one gets
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�Z� = �1 − R3��01�	01� + R3�10�	10�; �37�

then �Z�=�Z�−xȲ��01�	10�+ �10�	01�� with Ȳ =−�1−2R3� /
�4 atanh�1−2R3��, where atanh is the inverse hyperbolic tan-

gent. This state for x=R3 / Ȳ assuming R3
1 /2 corresponds
to a generalized Vedral-Plenio state:

�GVP = p��P�	�P� + �1 − p��01�	01� , �38�

where in comparison with the standard Vedral-Plenio state
�VP, given by �33�, a Bell state is replaced by a pure state,

��P� = �P�01� + ei��1 − P�10� , �39�

for any 0
 P
1. For simplicity we set �=0. Thus, the CSS
�GVP is just given by Eq. �37� for R3= p�1− P�. By assuming

R3= p /2 and x=R3 / R̄, one gets �VP and its CSS �VP, given
by �34�, in agreement with the solution obtained in Ref. �2�.
Moreover, any two-qubit pure state ���=c0�00�+c1�01�
+c2�10�+c3�11� can be transformed by local rotations into
the state �39�. Thus, the CSS �Z�, given by �37�, also de-
scribes the CSS �P for an arbitrary pure state ��� as expected
�1�.

A mixed state introduced by Gisin �23�,

�G = q�00�	00� + p��P�	�P� + q�11�	11� , �40�

where ��P� is given by �39�, 0
 p
1, and q= �1− p� /2. By
contrast with the generalized Vedral-Plenio state and the gen-
eralized Horodecki state, �40� is a mixture of an entangled
pure state and two separable states orthogonal to it. The Gi-

sin state is also a special case of �Z assuming R1−xR̄1=R4

−xR̄4=q. Thus, its CSS is equal to �Z, given by �24� for
R1=R4. It is worth noting that �40� is one of the simplest
examples of an entangled state, which does not violate any
Bell-type inequality �for some range of p for a given P� �24�.

Assuming y2=r2r3, the state �Z� reduces to a rank-2 state,
which we refer to as the generalized Horodecki state defined
as

�GH = p��P�	�P� + �1 − p��00�	00� , �41�

where p=1−r1 and ��P� is given by �39� for P=r2 / �1−r1�.
Note that, for P=1 /2, which corresponds to r2=r3, �GH re-
duces to the standard Horodecki state �H given in terms of a
Bell state ��P�= ���+��. On the other hand, the state �GH for
r1= �1+C� /2 and r2=d+ reduces to the Verstraete-Verschelde
state defined for C
1 /3 by �25�

�V =�
�1 + C�/2 0 0 0

0 d+ C/2 0

0 C/2 d− 0

0 0 0 0
� , �42�

where d�= 1
4 �1−C��1−2C−3C2� and C
C��V� is the

concurrence, which can be expressed in terms of negativity
N=N��V�, as C= 1

2 �N+�N�4+5N�� holds. It is worth noting
that state �42� minimizes the fidelity for a given concurrence
and negativity �25�.

It is seen by analyzing �Z� as a function of elements of �Z�
that it seems impossible to invert the general Eqs. �35� and
�36�. However, the equations can be inverted in some special
cases. For example, by assuming R2=R3 for the state �Z�,
which implies r2=r3= �1−r1� /2, one finds that the general
relation for r2 in Eqs. �36� reduces to r2=R2+R4=1−R1
−R2. Under this assumption, the set of equations �36� can be
solved for �Ri� in terms of �ri� and y
r2 as follows:

R4 =
4r1y2

�1 + r1�2 − 4y2 ,

R2 = R3 = r2 − R4,

R1 = r1 + R4. �43�

This state, in the special case of r2=y, reduces to the stan-
dard Horodecki state �H, given by �31�. However, it does not
reduce to the generalized Horodecki state �GH if P� 1

2 , for
which we can give only a formal solution for the REE:

ER
�GH� = − H2�r1� − r1 ln R1 − f−

2 ln �− − f+
2 ln �+, �44�

where H2�·� is the binary entropy and f�=N�����−R3��r2
+Y�r3�, while �� and N� are defined below Eq. �25�. A
compact-form explicit formula for the REE for the states �Z�
with elements given by �43� as well as for the Horodecki
state or the Vedral-Plenio state is thus obtained. However, it
seems impossible to invert �36� in order to express all �Ri� in
terms of �ri� and y, even for the generalized Horodecki state
with P, p�0, 1

2 ,1.

VII. NONUNIQUENESS OF THE CSS FOR BELL STATES

Analysis of our formula and the above examples enables
us to find that for a given entangled state there is not always
a unique CSS due to a limiting procedure. For this purpose
let us derive CSSs for a Bell state ���+�� from �Z, given by
�24�. First, assume that R1=R4=	 and R2=R3=1 /2−	 for
small 	�0. By taking the limit of 	→0, one gets the fol-
lowing CSS:

�Bell� = lim
	→0

�Z =
1

2
��01�	01� + �10�	10�� , �45�

for which G��Bell� �=− 1
4 ��01�	10�+ �10�	01��. By noting that

xmax=2, one finds that �Bell� −xmaxG��Bell� � corresponds to the
Bell state ���+��. The same CSS is obtained from special
cases of the CSS for pure state and the Vedral-Plenio state,
given by �34� for p=1. On the other hand, let us analyze �Z
assuming Ri=1 /4−	 for i=1, . . . ,4. Then, in the limit of 	
→0, �Z reduces to the CSS:

�Bell� = lim
	→0

�Z =
1

4
��00�	00� + 2���+��	��+�� + �11�	11�� ,

�46�

for which state �Bell� −xmaxG��Bell� � also corresponds to the
Bell state ���+��. Note that �46� is a special case of the CSS
for the Horodecki state, given by �32� for p=1, and for the
Gisin state, given by �40� for p= P= 1

2 .
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In a more general approach, let us analyze a Bell-diagonal
state of the form

�BD = �1 − k	���1�	�1� + 	�
i=2

4

ki��i�	�i� , �47�

where 0
ki�� and k
k2+k3+k4 such that k	
1. The
state in the limit of 	→0 reduces to the Bell state ��1�, for
which the CSS depends on �ki� as follows:

�Bell =
1

2
��1�	�1� +

1

2k
�
i=2

4

ki��i�	�i� �48�

according to �23�. Thus, an arbitrary Bell-diagonal state with
one of its eigenvalues equal to 1 /2 is the CSS for a Bell
state. In special cases, �Bell goes to �45� for k2=1, k3=k4
=0 and to �46� for k2=0, k3=k4=1, assuming ��1,2�= ������
and ��3,4�= ������= �1 /�2���00�� �11��. Other CSSs of Bell
states, which are not diagonal in the Bell basis, can be ob-
tained by rotating �Bell. For example, the CSS

�Bell� =
1

4
�2���+��	��+�� + ���	�� + ���−��	��−��� , �49�

where ���= �1 /�2�����−��+ ���+��� is obtained by rotating �Bell�
given by �46�.

It is worth noting that the generated Bell-diagonal state
�=�Bell−xG��Bell� is independent of the parameters �ki� in
�Bell only for x=xmax, but it depends on the choice of �ki� for
x�xmax, although the largest eigenvalue of �, �1
=max�eig��, is �ki� independent. Thus, the REE is also inde-
pendent of �ki�, as ER���=1−H2��1� for �1�

1
2 and ER���

=0 otherwise. Similarly, other entanglement measures, in-
cluding the negativity and concurrence are �ki� independent,
as N���=C���=2�1−1. By contrast, violation of Bell in-
equality by � depends on all eigenvalues ��i�, so it depends
on the choice of �ki� for �Bell. This can be seen explicitly by

analyzing the Horodecki parameter M �27,28� describing the
degree of the violation of the Bell inequality due to Clauser,
Horne, Shimony, and Holt.

VIII. CONCLUSION

We have addressed the long-standing problem of finding a
qubit formula for the relative entropy of entanglement �18�
or, equivalently, of finding the CSS � for a given entangled
state �. We have obtained a solution to the inverse problem
by finding a compact expression for an entangled state � for
a given CSS �, which is a crucial simplification of the
former solution �13�. The usefulness of our formula can be
demonstrated by finding the REE for some special states but
also by analyzing general properties of the REE. Thus, we
have studied �i� weak and strong additivity of the REE, �ii�
how the REE is related to the Rains upper bound for the
entanglement of distillation, and �iii� nonuniqueness of the
closest separable states for Bell states.

All the examples of entangled states � with analytical ex-
pression for the CSSs �, discussed in Refs. �1,2,8–11,15,16�,
can easily be explained by using our formula as follows. By
starting from some special � one should generate � and then
try to find an inverse analytical relation to express � in terms
of �. Thus, for example, we have derived the well-known
formulas for pure, Bell-diagonal states, the Horodecki states
�22�, the Vedral-Plenio states �2�, and the Gisin states �23�
but also obtained new formulas for some other entangled
states.

We have analyzed more general states �Z with elements
�ri�, which can be generated from the CSS �Z with elements
�Ri� via Eqs. �36�. The point is that, apart from some special
cases including R2=R3 and R1=R4=0, the set of Eqs. �36�
for �ri� as a function of �Ri� seemingly cannot be solved for
�Ri� due to the presence of logarithmic functions �29�. Thus,
we cannot express �Z in terms of �Z in general. Although this
is not a proof of impossibility, our analysis of the formula for
�Z in terms of �Z strongly suggests that the inverse problem,
which corresponds to finding a compact-form relation for �
in terms of a given �, can be solved in some special cases
only.
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