
Inseparability criteria based on matrices of moments

Adam Miranowicz,1,2 Marco Piani,1,3 Paweł Horodecki,4,5 and Ryszard Horodecki1,5

1Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
2Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland

3Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
4Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, 80-952 Gdańsk, Poland

5National Quantum Information Centre of Gdańsk, 81-824 Sopot, Poland
�Received 17 July 2009; published 3 November 2009�

Inseparability criteria for continuous and discrete bipartite quantum states based on moments of annihilation
and creation operators are studied by developing the idea of Shchukin-Vogel criterion �Phys. Rev. Lett. 95,
230502 �2005��. If a state is separable, then the corresponding matrix of moments is separable too. Thus, we
derive generalized criteria based on the separability properties of the matrix of moments. In particular, a
criterion based on realignment of moments in the matrix is proposed as an analog of the standard realignment
criterion for density matrices. Other inseparability inequalities are obtained by applying positive maps to the
matrix of moments. Usefulness of the Shchukin-Vogel criterion to describe bipartite-entanglement of more than
two modes is demonstrated: we obtain various three-mode inseparability criteria, including some previously
known ones, which were originally derived from the Cauchy-Schwarz inequality.
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I. INTRODUCTION

In recent years, the study of continuous-variable �CV�
systems from the point of view of quantum information has
attracted much interest, stimulated by experimental progress
�see �1,2� and references therein�. In particular, the theory of
quantum entanglement for CV systems has been consider-
ably developed, including the derivation by Shchukin and
Vogel �3� of a powerful inseparability criterion of bipartite
harmonic quantum states based on partial transposition �PT�
�4,5�, the so-called positive partial transposition �PPT� crite-
rion. The PPT criterion says that a separable state remains
positive under partial transposition, therefore a nonpositive-
partial-transposition �NPT� state must be entangled.
Shchukin and Vogel have demonstrated that their criterion
includes, as special cases, other well-known criteria of en-
tanglement in two-mode CV systems, including those de-
rived by Simon �6�, Duan et al. �7�, Mancini �8�, Raymer et
al. �9�, Agarwal and Biswas �10�, Hillery and Zubairy �11�.
Thus, the Shchukin-Vogel �SV� criterion can be considered a
breakthrough result, which shows a common basis of many
inseparability criteria for continuous variables �in particular,
the results of Duan et al. �7� seemed previously to be entirely
independent of partial transposition�. Another advantage of
the SV criterion should be noted: it is given in terms of
creation-operator and annihilation-operator moments, which
are measurable in standard homodyne correlation experi-
ments �12� �for recent reviews on entanglement detection see
Refs. �13,14��.

Despite the evident progresses �see also �13–18� and ref-
erences therein�, the theory of quantum entanglement for CV
systems can be considered less developed than the theory for
discrete, finite-dimensional systems �13�. In the latter case,
powerful inseparability criteria based on positive maps �see
�13,19� and references therein� and linear contractions
�20–23� �or permutations of the indices of density matrix
�24�� have been studied as generalizations of the standard

PPT criterion �4,5�. Inspired by these tools available to study
discrete-variable entanglement, we propose a generalization
of the Shchukin-Vogel CV approach.

Shchukin and Vogel �3� recognized a deep link between
the property of positivity under the operation of PT of a
two-mode density operator �, and the positivity under PT of
the corresponding matrix of moments. In the present work,
we obtain a more general relationship between the separabil-
ity properties of the density operator and of the matrix of
moments. Namely, we show that if a state is separable, then
a suitably designed matrix of moments is separable too. This
will allow us to apply all known separability criteria �not
only the PPT one� to the matrix of moments rather than
directly to the density matrix. For the sake of clarity, we will
analyze explicitly mainly the bipartite two-mode case; any-
way, the results can be extended to the multimode �see Sec.
VII� and multipartite case.

As the objectives of the paper are of wide range, let us
first specify the main goal and results of the paper. We ana-
lyze the Shchukin-Vogel inseparability criterion for matrices
of moments from a new perspective useful for generaliza-
tions along the lines of the standard inseparability criteria for
density matrices. More specifically, we emphasize the fact
that separability is preserved by the mapping from states to
matrices of moments. This more general approach leads us to
propose entanglement criteria based on realignment and
positive maps, which lead to inequalities directly applicable
in experimental tests of entanglement.

In particular, in Sec. II, we present a general idea of sepa-
rability criteria based on matrices of moments. In Sec. III, we
review the Shchukin-Vogel criterion. In Secs. IV and V, we
present our generalizations of the SV criterion based on the
separability properties of the matrix of moments of creation
and annihilation operators by referring to contraction maps
�e.g., realignment� and positive maps �e.g., those of Kossa-
kowski, Choi and Breuer�. A few examples illustrating the
applicability of the criteria are shown. In Sec. VI, we discuss
detection of entanglement by expressing the entries of the
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density matrix in terms of the moments. In Sec. VII, we
briefly discuss the use of the criteria to analyze bipartite-
entanglement of more than two modes. Finally, we give our
conclusions.

II. SEPARABILITY OF STATES AND MATRICES
OF MOMENTS

Consider two modes A and B with associated annihilation
and creation operators a and a† for A and b and b† for B.
Shchukin and Vogel showed that a Hermitian operator
X=XAB is nonnegative if and only if for any operator
f = fAB whose normally-ordered form exists, i.e.,

f = �
k1,k2,l1,l2=0

+�

ck1k2l1l2
a†k1ak2b†l1bl2, �1�

it holds �f†f�X�Tr	f†fX
�0.
Let us consider the operators

f i � fk
Af l

B, �2�

with fk
A�a†k1ak2 and f l

B�b†l1bl2. Here i is the unique natural
number associated with a double multi-index �k , l�, with
k= �k1 ,k2�, l= �l1 , l2�. Furthermore, the multi-indices k and l
are associated with unique natural numbers k↔ �k1 ,k2� and
l↔ �l1 , l2�. Any operator f whose normally form exists can
thus be written as f =�icif i. If we further define the matrix
M�X�= �Mij�X��, whose elements are given by

Mij�X� � �f i
†f j�X = Tr	f i

†f jX
 , �3�

we have
Lemma 1. An operator X is positive semidefinite �X�0� if

and only if M�X� is positive semidefinite �3�.
Indeed, X is positive semidefinite if and only if

�f†f�X�0 for all f =�icif i, i.e., if and only if
�ijci

�cjMij�X��0 for all possible �ci�i= �c1 ,c2 , . . .�. In turn,
this implies that X�0 if and only if M�X�= �Mij�X�� is a
positive semidefinite �infinite� matrix. We will refer to corre-
lation matrices as M�X� as to the matrices of moments.

For any density operator �AB, from Lemma 1 we have that
the corresponding matrix of moments M��AB� is positive
semidefinite. For a factorized state �AB=�A � �B we have

Mij��A
� �B�

= Tr	f i
†f j�

A
� �B


= Tr	�a†k1ak2�†�a†k1�ak2���b†l1bl2�†�b†l1�bl2���A
� �B


= Tr	�a†k1ak2�†�a†k1�ak2���A
Tr	�b†l1bl2�†�b†l1�bl2���B


= Tr	�fk
A�†fk�

A
�A
Tr	�f l

B�†f l�
B

�B


= Mkk�
A ��A�Mll�

B ��B� , �4�

where Mkk�
A ��A��Tr	�fk

A�†fk�
A �A
, so that MA��A�

= �Mkk�
A ��A�� is the matrix of moments of subsystem A in

state �A �and similarly for B�.
A matrix of moments uniquely defines a state, i.e., if

M���=M��� then �=�. This is immediately proven by con-
sidering that if M���=M��� then Tr	��−��f†f
=0 for all fs.

We introduce explicitly formal �infinite� bases �25�
�k���k� and �l���l�, in which we express the matrices of
moments,

M��� = �
kk�ll�

Mkl,k�l�����k��k�� � �l��l�� . �5�

Taking into account the one-to-one correspondence be-
tween matrices of moments and states and Eq. �4�, we con-
clude

Proposition 1. A state is separable, �=�ipi�i
A

� �i
B, pi�0,

�ipi=1, if and only if the corresponding matrix of moments
is also separable, i.e., M���=�ipiM

A��i
A� � Mi

B��i
A� with

MA��A�=�kk�Mkk�
A ��A��k��k�� and analogously for MB��B�.

Notice that the local matrices of moments MA�B���i
A�B�� in

the Proposition are physical, i.e., can consistently be inter-
preted as related to a local state. Thus, one has to take into
account the subtle point that a matrix of moments could be
separable in terms of generic positive matrices, but not in
terms of physical local matrices of moments. Such a point
does not arise when studying the entanglement of a density
matrix: in that case, any convex decomposition in tensor
products of positive matrices is automatically a good physi-
cal separable decomposition. Therefore, it might be that no
method based on the study of separability properties of ma-
trix of moments, can distinguish all entangled states.

III. PARTIAL TRANSPOSITION AND SHCHUKIN-VOGEL
CRITERION

Let us now recall the Shchukin-Vogel reasoning �3�. Let
us first define the operation of partial transposition. Given a
density operator

� = �
k,l,k�,l�

�kl,k�l��kl��k�l�� �6�

in some fixed basis �say in Fock basis�, where �klk�l�
= �kl���k�l��, its partial transposition �with respect to sub-
system B� is

�� = �
k,l,k�,l�

�kl,k�l��kl���k�l� . �7�

Transposition is a positive but not completely positive �26�
linear map which is well defined also in an infinite-
dimensional setting. Positivity of �� is a necessary condition
for separability of � �4,5�. We rederive explicitly the relation
between the matrix of moments of � and the one of the
partially transposed state ��,

Mkl,k�l���
�� = Tr��a†k1ak2�†�a†k1�ak2���b†l1bl2�†�b†l1�bl2�����

= Tr	�a†k1ak2�†�a†k1�ak2����b†l1bl2�†�b†l1�bl2���T�


= Tr	�a†k1ak2�†�a†k1�ak2���b†l1�bl2��†�b†l1bl2��


= Mkl�,k�l��� , �8�

following from the property bT=b†. Therefore, the matrix of
moments of the partially transposed state corresponds to the
partial transpositions of the matrix of moments of the state.
Moreover, considering Lemma 1, we have
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Criterion 1. �Shchukin-Vogel �3�� A bipartite quantum
state � is NPT if and only if M����= �M����� is NPT.

Considering the remarks following Proposition 1 it is
noteworthy that analyzing the partial transposition of the ma-
trix of moments we are able to conclude about the PPT or
NPT property of the states. In particular, this means that the
only possible entangled states, for which the analysis of the
separability properties of the corresponding matrix of mo-
ments is not enough to reveal their entanglement, are PPT
bound entangled states �27,28�.

Given Criterion 1, there is still the problem of analyzing
the positivity of �M�����. Since the matrix of moments is
infinite, one necessarily focuses on submatrices. Let us de-
fine MN���� to be the submatrix corresponding to the first
N rows and columns of M����. According to the original
work by Shchukin and Vogel �3�, a bipartite quantum state
would be NPT if and only if there exists an N such that
det MN�����0. As shown in �29�, this is not correct, since
the sign of all leading principal minors, i.e., of det MN����,
for all N�1, does not characterize completely the �semi-
�positivity of matrices of moments which are singular. For
any �possibly infinite� matrix M, let Mr, r= �r1 , . . . ,rN� de-
note the N�N principal submatrix which is obtained by de-
leting all rows and columns except the ones labeled by
r1 , . . . ,rN. By applying Sylvester’s criterion �see, e.g., �30��
we find �29�

Criterion 2. A bipartite state � is NPT if and only if there
exists a negative principal minor, i.e., det�M�����r�0 for
some r��r1 , . . . ,rN� with 1�r1�r2� . . . �rN.

Focusing on the principal submatrix �M����r, is equiva-
lent to considering a matrix given by moments Mij���
=Tr	f i

†f j�
 only for some specific operators f i. In turn,
this amounts to study positivity of � �or ��, when we
consider �M�����r� only with respect to a subclass of opera-
tors f†f �see the proof of Lemma 1�, i.e., with f =�i=1

N cri
fri

.
Hereafter, if not otherwise specified, we slightly abuse
notation and denote by f = �fr1

, fr2
, . . . , frN

� a subclass of
the class of operators �Eq. �2��. Let Mf������M�����r with
f = �fr1

, fr2
, . . . , frN

� denote the principal submatrix corre-
sponding to r= �r1 ,r2 , . . . ,rN�. Criterion 2 can then equiva-
lently be rewritten as

Criterion 3. A bipartite state � is NPT if and only if there
exists f such that det Mf���� is negative.

More compactly,

� is PPT ⇔ ∀ f: det Mf���� � 0,

� is NPT ⇔ ∃ f: det Mf���� � 0. �9�

Notice that in general Mf����� �Mf�����, i.e., the opera-
tion of partial transposition and the choice of a principal
submatrix do not commute. The criterion requires to consider
submatrices of the partially transposed matrix of moments,
i.e., Mf����, not to take submatrices of the matrix of mo-
ments and study their partial transposition. Nonetheless, also
considering the partial transposition of a submatrix of the
matrix of moments is a test for separability, if the submatrix
is chosen in the right way �see Sec. IV, in particular Eq.
�17��.

On the other hand, for any f �i.e., for any r�, the moments
which constitute the entries of Mf���� and Mf���, when both
expressed with respect to �, are simply related by Hermitian
conjugation of the mode b.

IV. INSEPARABILITY CRITERIA VIA REORDERING
OF MATRICES OF MOMENTS

In this section, we will be interested in studying the sepa-
rability properties of the matrix of moments through a reor-
dering of its elements. Indeed, apart from partial transposi-
tion, there are other entanglement criteria based on such
reorderings. In the bipartite setting, the only nontrivial one
which is also independent of partial transposition is realign-
ment. For a state � as in Eq. �6�, the realigned state reads

�R = �
k,l,k�,l�

�kl,k�l��kk���ll�� . �10�

In a finite-dimensional setting, necessary conditions for sepa-
rability can be formulated as �����1 �4� and ��R��1
�20,21�, where �A�=Tr	A†A
 is the trace norm of A. The
converse statements, ����	1 and ��R�	1, are therefore suf-
ficient conditions for the state to be entangled. It is worth
noting that �����1, contrary to the realignment criterion, is
also a sufficient condition for separability for 2�2 and
2�3 systems �5�.

We have seen how the partial transposition of the matrix
of moments corresponds to the matrix of moments of the
partially transposed state, leading to the SV criterion. It is
immediate to define a realigned matrix of moments follow-
ing Eq. �10�. Unfortunately, there is no simple relation be-
tween the realigned matrix of moments and the realigned
state. More importantly, partial transposition and realign-
ment, while both corresponding to a reordering of the ele-
ments of a matrix, appear to be on a different footing as
regards their applicability in an infinite-dimensional setting.
Indeed, the partial transposition criterion can be stated as a
condition on positivity of the partially transposed state or
matrix of moments, besides a condition on the corresponding
trace norm. On the other hand, the realignment condition can
be expressed only in the latter way, so that it is not suited to
study the separability properties of a non-normalized �and
non-normalizable� infinite matrix, e.g., in the case of the ma-
trix of moments. To circumvent such an issue, in the follow-
ing we will analyze separability properties of properly trun-
cated matrix of moments, opening the possibility to deploy
the power of the techniques developed for finite-dimensional
systems. We remark that such a “truncation approach” could
also be applied directly to CV density matrices, as it was
done, for example, in �17�, but in this work we focus on the
matrices of moments. One of the main reasons is that, as
already remarked about SV criterion, moments are measur-
able in standard homodyne correlation experiments.

In the SV approach, one typically refers directly to the
total infinite matrix of moments M���� �see Criterion 1�,
studying positivity of its principal minors �see Criterion 2�.
Instead, we propose to first truncate the matrix of moments
M���, and then analyze with different criteria the separability
of the truncated matrix of moments. Indeed, truncation is
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equivalent to focusing on �some� submatrix. The submatrix
must be chosen correctly, avoiding the introduction of arti-
fact entanglement by the truncation. The truncated matrix is
positive and, once normalized, can be considered a legiti-
mate state of an effective bi- or multipartite finite-
dimensional system. Explicitly, consider subsets of indices

IA = 	k�1�, . . . ,k�dA�
 ↔ 	k�1�, . . . ,k�dA�
 ,

IB = 	l�1�, . . . ,l�dB�
 ↔ 	l�1�, . . . ,l�dB�


and the corresponding projectors PA=�k�IA
�k��k� and

PB=�l�IB
�l��l�. Then we can define a finite-dimensional ma-

trix

MIAIB
��� = �PA � PB�M����PA � PB� �11�

and we have that MIAIB
��� /Tr	MIAIB

���
 is a well-defined
state �positive and with trace equal to one� for a dA � dB
system, which is separable if the starting state � is separable.
Indeed, according to Proposition 1, if � is separable then
M��� is separable too; moreover, a further local projection
cannot induce the creation of entanglement.

As we noted at the end of Sec. III, any choice of a prin-
cipal submatrix can be described as considering a specific
class f of operators, i.e., a restricted set of products of anni-
hilation and creation operators in normal order. Now, we are
interested in the classes of operators corresponding to the
choice of IA and IB. This means we will always consider only
tensor-product classes of operators,

f̃ = fA
� fB

= �a†k1
�1�

ak2
�1�

, . . . ,a†k1
�dA�

ak2
�dA�

� � �b†l1
�1�

bl2
�1�

, . . . ,b†l1
�dB�

bl2
�dB�

�

= �a†k1
�1�

ak2
�1�

b†l1
�1�

bl2
�1�

, . . .� . �12�

With the help of this notation, a truncated matrix of moments
will be denoted in the following as

Mf̃��� � �
k,k��IA

l,l��IB

Mkl,k�l�����kl��k�l�� �13�

for an operator class f̃ , which is given by a tensor product of
classes �as marked by tilde�.

Elements of matrix �Eq. �13�� can be reordered to get
entanglement criteria in full analogy to those based on reor-
dering of the density matrix elements. Thus, we formally
apply to Mf̃��� the “partial transposition”

�Mf̃����� = �
k,l,k�,l�

Mklk�l�����k�l��kl�� , �14�

and the “realignment”

�Mf̃����R = �
k,l,k�,l�

Mklk�l�����kk���ll�� , �15�

in complete analogy to Eqs. �7� and �10�. Let us define the
normalized trace norms



f̃

���� �
��Mf̃������

Tr	Mf̃���

, 


f̃

R��� �
��Mf̃����R�

Tr	Mf̃���

. �16�

It is worth noting that, because of the tensor-product struc-

ture of f̃ , we have

�Mf̃����� = Mf̃���� �17�

for all f̃ and all �.
The SV criterion can now be equivalently formulated as
Criterion 4. A bipartite state � is NPT if and only if there

exists a tensor-product class f̃ , given by Eq. �12�, such that
Mf̃���� is not positive or, equivalently, 


f̃

����	1.
The Rudolph-Chen-Wu �20,21� realignment criterion for

density matrices, can be generalized straightforwardly for the
matrices of moments as follows:

Criterion 5. A bipartite quantum state � is inseparable if

there exists f̃ , such that �Mf̃����R has trace norm ��Mf̃����R�
greater than Tr	Mf̃���
.

More compactly,

� is separable ⇒ ∀ f̃: 

f̃

R��� � 1,

� is inseparable ⇐ ∃ f̃: 

f̃

R��� 	 1. �18�

In principle, the criterion �18� based on the realignment of
the matrix of moments is inequivalent to the SV criterion
based on PT, similarly as, for finite-dimensional density ma-
trices, the Peres-Horodecki criterion is not equivalent to the
Rudolph-Chen-Wu criterion.

Exemplary applications of partial transposition
and realignment

Let us give a few examples of application of the insepa-
rability criteria based on PT and realignment of matrices of
moments. We recall that �Mf̃�����=Mf̃���� for a tensor-

product f̃ .
Example 1. To detect the entanglement of the singlet state

���= 1
2

��01�− �10��, one can choose f̃ = �1,a� � �1,b�
��1,a ,b ,ab� yielding the following matrix of moments

Mf̃�����Mij�= �� f̃ i
† f̃ j��,

Mf̃��� = �
1 �a� �b� �ab�

�a†� �Na� �a†b� �Nab�
�b†� �ab†� �Nb� �aNb�

�a†b†� �Nab†� �a†Nb� �NaNb�
� , �19�

where �= ������, and Na=a†a, Nb=b†b are the number op-
erators. The only nonzero terms of Eq. �19� for the singlet
state are: M11=1, M22=M33=−M23=−M32=1 /2. Elements
of �Mij� can be reordered, according to Eqs. �14� and �15�, to
get �Mf̃����� and �Mf̃����R equal to
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�
M11 M21 M13 M23

M12 M22 M14 M24

M31 M41 M33 M43

M32 M42 M34 M44

�,�
M11 M12 M21 M22

M13 M14 M23 M24

M31 M32 M41 M42

M33 M34 M43 M44

� ,

�20�

respectively. Thus, for the singlet state one gets the
trace norms, defined by Eq. �16�, greater than 1, i.e.,



f̃

�
=


f̃

R
= �1+2� /2, as well as negative det Mf̃����=−1 /16

and min eig Mf̃����= �1−2� /2. It is seen that both the PT
and realignment based criteria detect the entanglement of the
singlet state. It is worth noting that one could analyze just the
submatrix of the first matrix of Eq. �20� corresponding
to r= �1,4�. This amounts to considering, in the standard SV
approach, Mf���� with f = �1,ab�. Then one gets

Mf���� = � 1 �ab†�
�a†b� �NaNb� � , �21�

from which the Hillery-Zubairy criterion of entanglement
follows �11�:

det Mf���� = �NaNb� − ��ab†��2 � 0. �22�

For our state, one gets Mf����= �1,−1 /2;−1 /2,0�, which re-
sults in det Mf����=−1 /4.

Example 2. The realignment-based and PT-based criteria
can also detect the entanglement of partially entangled states.
To show this, let us analyze the state ���= 1

3
��00�+ �01�

+ �10�� for which negativity is equal to 2/3. By choosing f̃ the
same as in Example 1, one gets

Mf̃��� =
1

3�
3 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0
� , �23�

which implies 

f̃

�
=


f̃

R
=1.1891	1 �as well as

det Mf̃����=−1 /81�0�. Thus, the entanglement of the state
can be detected by both criteria. As in Example 1, we can use
the submatrix of moments Mf����= �1,1 /3;1 /3,0�, given by
Eq. �21� �or, which is the same, the submatrix �Mf̃�����r of
the partially transposed Mf̃��� of Eq. �23�, for r= �1,4��,
which also has negative determinant �equal to −1 /9� and
minimum eigenvalue, given by �3−13� /6�−0.1.

Example 3. The realignment-based criterion is sensitive
also for some infinite-dimensional entangled states, as can be
shown on the example of superpositions of coherent states,
referred to as the two-mode Schrödinger cat states,

���� = N����,− � − �− �,�� ,

���� = N����,� − �− �,− �� ,

which are normalized by functions N� and N� of the com-
plex amplitudes � and . As actually shown in �3�, the en-
tanglement of ���� �but also of ����� can be detected by the
standard SV criterion for f = �1,b ,ab�, for which one gets a
negative determinant det Mf����. The realignment-based cri-

terion applied to the factorized f̃ = �1,a� � �1,b� is also sen-
sitive enough to detect entanglement of both states ���� and
����. E.g., for both states with �=0.3 and =0.2, one gets
the trace norms for realignment and PT greater than one, i.e.,



f̃

R
=1.1666 and 


f̃

�
=1.1783. Note again that by analyzing

determinant or minimum eigenvalue of submatrix �Mf̃�����r
for r= �1,4�, given by Eq. �21�, one can detect entanglement
of the state by handling less moments.

V. POSITIVE MAPS ACTING ON MATRICES
OF MOMENTS

In this section we generalize the SV criterion by applying
the theory of positive maps �see reviews �13,19��.

The standard criterion of separability for states which is
based on positive maps says the following �4,5�: a bipartite
state � is separable if and only if every positive linear map �
acting partially �say on the second subsystem only� trans-
forms � into a new matrix with nonnegative spectrum, i.e.,

�idA � �B���AB� � 0. �24�

�For brevity, the system-identifying superscripts are usually
omitted.� Therefore, if the partial action of a positive map on
a state of a composite system spoils the positivity of the
state, then the state must be entangled. Obviously, the Peres-
Horodecki PPT criterion can be formulated as Eq. �24�, with
�=T being the transposition operation. On the other hand,
we note that realignment is not a positive map, and the re-
lated criterion involves the evaluation of the trace norm of
the realigned state, which is in general not even Hermitian.

One direction of the separability criterion based on posi-
tive maps can be applied in the space of matrices of moments
to conclude that the starting state is entangled. Indeed, the
reasoning at the base of the partial map criterion does not
require any normalization and regards only the property of
positivity. More explicitly:

Criterion 6. Let � be a linear map preserving positivity of
�infinite� matrices, and let M��� be a separable matrix of
moments, i.e., M���=�npnMn��A� � Mn��B� with pn�0.
Then the �infinite� matrix resulting from the partial action of
�, i.e., �id � ���M����=�npnMn��A� � ��Mn��B��, is also
positive.

Therefore, if we are given a matrix of moments M��� for
two modes and a positive map � and we find that
�id � ���M���� is not positive, then we conclude that the
matrix of moments as well as the starting state is not sepa-
rable.

If there were a mapping between positive linear maps on
states and positive linear maps on the corresponding matrices
of moments, we could perhaps derive a general theorem of
the Shchukin-Vogel type. Unfortunately such a connection, if
existing at all, does not seem to be immediate. Transposition
appears in this sense to be very special, since transposition of
states translates simply into transposition of matrices of mo-
ments. Here, we will limit ourselves to the application of
partial maps to truncated matrices of moments, so that we
have the following:
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Criterion 7. If, for some f̃ , there is a positive linear map �
such that �id � ���Mf̃���� is not positive, then � is entangled.

This Criterion is a direct consequence of the observation
at the basis of Proposition 1 and Criterion 6. Essentially, if
one constructs a �sub�matrix of moments that preserves the
separable structure of a state, and finds that the matrix of
moments is entangled �using any arbitrary criterion, in this
case linear maps�, then one knows that the state was en-
tangled. We remark that we are only able to establish a suf-
ficient condition for entanglement �alternatively, a necessary
condition for separability�, contrary to the analogous theo-
rem for density matrices by Horodecki et al. �5�, which says
that there always is a map able to detect the entanglement.

We remark that in the case of transposition, which is de-
fined for any dimension, the application of the map to the
matrix of moments is equivalent to considering the matrix of
moments of the partially transposed state. Therefore it is pos-
sible to directly focus on submatrices of the form Mf����. On
the other hand, in general, we may consider maps whose
action is defined on finite dimensions: consequently, we have
to first take �properly chosen� submatrices Mf̃���, and only
then act partially on them to obtain M

f̃
�= �id � ���Mf̃����.

This does not exclude that, after the action of the map, we
may consider the positivity of an even smaller submatrix
�M

f̃
��r of the partially transformed submatrix of moments.
For example, one can apply nondecomposable �31� maps

to try to detect the entanglement of PPT entangled states.
Classes of such maps were constructed for arbitrary finite
dimension N�3, e.g., by Kossakowski �32�, Ha �33�, and
recently by Yu and Liu �34�, Breuer �35�, and Hall �36�.

We are not able to provide examples of PPT bound en-
tangled states, the entanglement of which is detected by ap-
plying positive maps on submatrices of moments, but the
existence of such examples is not excluded. Furthermore, we
stress that it may happen that a detection method based on an
indecomposable map is able to detect more efficiently the
entanglement of an NPT state than PT itself, e.g., it may be
sufficient to consider smaller submatrices of moments. In
any case, through the application of various indecomposable
maps one can easily generate criteria for separability that are
possibly independent from those obtained from PT. Indeed,
as an important application of the proposed method we stress
that it enables a simple derivation of interesting inseparabil-
ity inequalities, e.g.,

2��NaNb� + �Na
2Nb�� � ��Nab� − �a†b��2, �25�

which corresponds to the condition on the determinant of Eq.
�36� obtained in the next subsection.

Exemplary applications of positive maps

The proposed method can be summarized as follows: first
truncate the matrix of moments, i.e., M→Mf̃, then apply a
positive map, i.e., Mf̃ →M

f̃
�, and check the positivity of the

partially transformed submatrix of moments M
f̃
�. In turn, this

amounts to considering positivity of submatrices �M
f̃
��r, or,

by virtue of Sylvester’s criterion, to checking positivity of

determinants det�M
f̃
��r. Thus, one can say that submatrices of

partially transformed submatrices are considered.
Here, we give a few examples of application of our in-

separability criteria based on some specific classes of posi-
tive maps applied to matrices of moments.

Kossakowski and Choi maps

The Kossakowski class of positive maps transforms ma-
trices A= �Aij�N�N in CN onto matrices in the same space as
follows �32�

�K�A� =
1

N
Tr A +

1

N − 1
g · �Rx + �y Tr A� , �26�

where “·” stands for the scalar product, �=�N−1� /N,
x= �xi�i, xi=Tr	Agi
, and g= �gi�i satisfying gi=gi

�, Tr	gigj

=�ij, Tr	gi
=0 for i , j=1, . . . ,N2−1. In our applications, we
assume y=0, R to be rotations R����SO�N2−1�, and gi to
be generators of SU�N�. Note that the Ha maps �33� do not
belong to Eq. �26�. In a special case for A= �Aij�3�3, the
Kossakowski map is reduced to the Choi map �37�,

�Choi�A� = − A + diag���A11 + A22 + �A33,

�A11 + �A22 + A33,

A11 + �A22 + �A33
�� , �27�

which is positive if and only if ��1, �++��3 and
1���2⇒�� �2−��2, while decomposable if and only if
��1 and 1���3⇒�� �3−��2 /4. We denote the result-
ing �un-normalized� matrix of moments shortly as

M
f̃
���� � �id � �Choi��Mf̃���� . �28�

It is worth noting that some bound entangled states can be
detected �22� by applying to � the Störmer map �38�, which
is a special case of the Choi map for �=2, =0, �=1 and
of Eq. �26� for �=� /3 and N=3.

Example. As an exemplary application of a positive map,
let us apply the Störmer map to 9�9 matrix of moments

M
f̃
���� for f̃ = �1,a ,a� � �1,b ,b�. Note that the chosen map is

nondecomposable. For simplicity, we analyze only the sub-
matrix �M

f̃
�����r for r= �2,3 ,7�,

�M
f̃
�����r = �M11 + M22 − M23 − M27

− M32 M22 + M33 − M37

− M72 − M73 M77 + M99
�

= �1 + �Na� − �Na� − �a†b�
− �Na� 2�Na� − �a†b�

− �a†b�� − �a†b�� �NaNb� + �Nb�
� , �29�

where Mij = � f̃ i
† f̃ j� are elements of the original �not-

transformed� matrix of moments, Mf̃. Matrix �29� for the
singlet state is given by 1

2 �3,−1,1 ;−1 ,2 ,1 ;1 ,1 ,1� having
negative determinant �equal to −1 /4�, which reveals the
entanglement of the state. Analogously, the entanglement
of the partially entangled state ���= 1

3
��00�+ �01�+ �10�� can

also be detected by Eq. �29�, which is now reduced to
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�M
f̃
�����r= 1

3 �4,−1,−1;−1,2 ,−1;−1,−1,1� with negative de-
terminant �equal to −1 /27�.

Breuer map

Our inseparability criterion for matrices of moments can
also be based on the Breuer positive map defined in a space
of even dimension d�4 as follows �35�:

�Breuer�A� = 1 Tr A − A − ��A� , �30�

where ��A�=UATU† can be interpreted as a time reversal
transformation and is given by a skew-symmetric unitary
matrix U. The latter can be constructed explicitly as
U=RDRT in terms of �36�,

D = �
k=0

d/2−1

ei�k��2k��2k + 1� − �2k + 1��2k�� , �31�

for any angles �k and arbitrary orthogonal matrix R. Al-
though antisymmetric unitary matrices exist only in even-
dimensional spaces, the Breuer map can be generalized for
arbitrary dimensions �see, e.g., �36��. Thus, it is tempting to
propose an analogous criterion by applying the Breuer map
to a matrix of moments,

M
f̃
���� � �id � �Breuer��Mf̃���� �32�

and checking positivity of the transformed matrix M
f̃
����. It

is worth noting that the Breuer map is a special case of the
Yu-Liu positive map �34�, thus even more powerful and
computationally simple inseparability criteria for density ma-
trices �34–36� can also be applied for matrices of moments.

Example 1. To reveal entanglement of the singlet state, let
us first analyze a matrix Mf̃��� of moments generated by

some 16-element f̃ . Antisymmetric unitary matrix U can, for
example, be constructed as the antidiagonal matrix

U = �
0 0 0 1

0 0 1 0

0 − 1 0 0

− 1 0 0 0
� . �33�

Then, by applying the corresponding Breuer map, one can
easily get, from Eq. �32�, the transformed 16�16 matrix
M

f̃
���� for arbitrary state �. This matrix reveals, for example,

entanglement of the singlet state for various choices of f̃ ,

e.g.: f̃ �1�= �1,a ,Na ,a2� � �1,b ,Nb ,b2�, f̃ �2�= �1,a ,Na ,1�
� �1,b ,Nb ,1�, or even f̃ �3�= �1,a ,1 ,1� � �1,b ,1 ,1�.

Note that f̃ �2� and f̃ �3� do not provide more information
than �1,a ,Na� � �1,b ,Nb� and �1,a� � �1,b�, respectively.
The matrices of moments corresponding to the former sets of
operators contain redundant copies of the moments related to
the latter sets, i.e., a repetition of an operator amounts to
have a matrix of moments with repeated columns and rows.
We considered such redundant sets of operators because
Breuer criterion requires one of the subsystems to be at least
four-dimensional, but at the same time we wanted to empha-
size that is possible to detect �by means of Breuer’s map�

entanglement with fewer and fewer combinations of “inde-

pendent” operators. We point out that f̃ �1� provides for sure

more information in general than f̃ �2�, and in turn the latter

more than f̃ �3�.
The entanglement detection can be much simplified by

analyzing the submatrix of M
f̃
���� corresponding, e.g.,

to r= �2,5�,

�M
f̃
�����r = � M11 + M44 − M25 − M47

− M25
� − M47

� M66 + M77
� , �34�

where, as usual, Mij = � f̃ i
† f̃ j� are elements of the original ma-

trix Mf̃���. For f̃ = f̃ �1�, matrix �34� reduces to

�M
f̃�1�� ����r = � 1 + �a†2a2� − �a†b� − �a†3ab�

− �a†b�� − �a†3ab�� ��1 + Na�NaNb� � .

�35�

For the example of the singlet state, one gets
�M

f̃�1�� ����r= �1,1 /2;1 /2,0�, for which the determinant is
−1 /4. One can get even simpler criterion from Eq. �34� by

choosing f̃ = f̃ �2�,

�M
f̃�2�� ����r = � 2 �Nab� − �a†b�

�Nab†� − �ab†� �NaNb� + �Na
2Nb� � . �36�

Explicitly, for the singlet state, we have det�M
f̃�2�� ����r

=det�2,1 /2;1 /2,0�=−1 /4. By contrast to f̃ �1� and f̃ �2�, ma-

trix �34� for f̃ = f̃ �3� is positive. Nevertheless entanglement
can be revealed by choosing a larger submatrix of M

f̃�3�� ���
corresponding to r= �2,5 ,7 ,8�, which results in

�M
f̃�3�� ����r = �

2 x− 0 x+

x−
� z y+

� 0

0 y+ 2�Nb� y−

x+
� 0 y−

� z
� , �37�

where x�= � �b�− �a†b�, y�= � �aNb�− �Nb�, and
z= ��Na+1�Nb�. For the singlet state, one again gets
det�M

f̃�3�� ����r=−1 /4.
It is not surprising that one has to change submatrix �i.e.,

Eq. �37� instead of Eq. �34��, because for f̃ �3� less entries of
the matrix Mf��� contain independent information �actually,
only a 4�4 matrix �corresponding to �1,a� � �1,b�� out of
the larger 16�16 matrix �all the other entries are just repeti-
tions��.

Example 2. To reveal the entanglement of the Bell state

���= 1
2

��00�+ �11��, one can apply f̃ = f̃ �1� or f̃ �2� and the
Breuer map to be the same as in the former example. Here,
one can choose submatrix �M

f̃
�����r corresponding to

r= �1,6 ,9�, which reads as
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� M2,2 + M3,3 − M1,6 − M3,8 M2,10 + M3,11

− M6,1 − M8,3 M5,5 + M8,8 − M6,9 − M8,11

M10,2 + M11,3 − M9,6 − M11,8 M10,10 + M11,11
� .

�38�

For the analyzed Bell state, Eq. �38� yields
det�M

f̃�1�� ����r=det�M
f̃�2�� ����r=−1 /4 clearly demonstrating

the entanglement.
Thus, it is seen how new inseparability inequalities, cor-

responding to det�M
f̃
�����r�0, can be obtained by applica-

tion of positive maps to matrices of moments.

VI. DETECTION OF BOUND ENTANGLEMENT
OF FINITE-DIMENSIONAL STATES THROUGH

ANALYSIS OF MOMENTS

The original SV criterion is based on partial transposition,
thus it cannot reveal PPT bound entanglement. On the other
hand, it is known that the standard realignment criterion ap-
plied directly to the density matrix can detect entanglement
of some bound entangled states �20–24�. A question arises:
can PPT bound entanglement be detected by our
realignment-based generalized criterion? We have tested nu-
merically some bound entangled states of dimensions 3�3
�27,39�, 2�4 �27�, d�d �40,41� as well as infinite �17,18�,
but we have not been able to detect entanglement by our
generalized criterion.

All numerical simulations suggest that the norms of reor-
dered Mf̃ satisfy the inequality 


f̃

�
�


f̃

R
or, equivalently,

��Mf̃���� ��Mf̃�R�. If this observation is true in general, then
the described realignment-based criterion is useless in detect-
ing PPT bound entanglement. Nevertheless, bound entangle-
ment can be detected via moments with the help of the for-
mula �see, e.g., �42��,

�m1���m2� =
1

m1 ! m2!
�
j=0

�
�− 1� j

j!
��a†�m2+jam1+j� , �39�

which enables calculation of a given density matrix from
moments of creation and annihilation operators. It is worth
noting two properties: �i� the above sum is finite for finite-
dimensional states �ii� Eq. �39� is not convergent for some
states of the radiation field including thermal field with mean
photon number �1. The formula readily generalizes for two-
mode fields as

�m1,n1���m2,n2� = �
j,k=0

�
��a†�m2+jam1+j�b†�n2+kbn1+k�

�− 1� j+kj ! k ! m1 ! n1 ! m2 ! n2!
.

�40�

Let us analyze a special case of Eq. �40� for two qubits.
Single-qubit annihilation operator is simply the Pauli opera-
tor given by a=�−= �0,1 ;0 ,0�, which implies that there are
only four nonzero terms in sum �40�. We can explicitly write
two-qubit density in terms of the moments as follows:

� = �
�N̄aN̄b� �N̄ab†� , �a†N̄b� , �a†b†�

�N̄ab� , �N̄aNb� , �a†b� , �a†Nb�

�aN̄b� , �ab†� , �NaN̄b� , �Nab†�

�ab� , �aNb� , �Nab� , �NaNb�
� , �41�

where N̄a=1−Na and N̄b=1−Nb. Matrix �41� can be partially
transposed and realigned. All principal minors of �� are posi-
tive if and only if � is separable. The above simple example
for 2�2 system was given to show the method only. To
detect bound entanglement, one has to analyze at least
2�4 or 3�3 systems. For brevity, we will not present ex-
plicitly density matrices in terms of moments for these sys-
tems. Nevertheless, they can easily be constructed using Eq.
�40� and then realigned, according to Eq. �10�, to detect en-
tanglement of some bound entangled states �20–22�. Finally,
let us remark that there are drawbacks of the method: �i� it
works if we know the dimension d�� of a given state. �ii�
Usually, it is simpler to directly reconstruct density matrix
rather than to reconstruct it via moments.

VII. SIMPLE CONSTRUCTION OF MULTIMODE
ENTANGLEMENT CRITERIA

The two-mode SV criterion can readily be applied in the
analysis of bipartite-entanglement of m modes. For this pur-
pose, one can define an m-mode normally ordered operator

f � f�	ai
� = �
	ni
=0

�

�
	mi
=0

�

c�	ni,mi
��
i=1

m

�ai
ni�†ai

mi, �42�

where for brevity we denote 	ni
�	n1 ,n2 , . . . ,nm
, and simi-
larly other expressions in curly brackets. As in the proof of
Lemma 1, we have that an operator X is positive semidefinite
if and only if Tr	Xf†f
�0 for every f as in Eq. �42�. To
analyze how mode aj is entangled to all the other modes, it is
enough to identify, in the reasoning followed in the previous
sections, system A with the mode j and system B with all the
other modes. Therefore we take a=aj, while normally or-
dered powers b†l1bl2 are substituted by normally ordered
powers

a1
†�k1�1a1

�k1�2 . . . aj−1
†�kj−1�1aj−1

�kj−1�2,

aj+1
†�kj+1�1aj+1

�kj+1�2 . . . am
†�km�1am

�km�2.

As in the two-mode setting, we may �and we will� analyze
positivity of an operator X with respect to a restricted class of
operators f , more specifically with only some coefficients
c�	ni ,mi
� that do not vanish. This corresponds to testing
positivity of principal submatrices.

For example, we show that Eq. �9� implies the three-mode
Hillery-Zubairy criterion �11� originally derived from the
Cauchy-Schwarz inequality. By choosing f = �1,abc� �we
use the notation introduced in Sec. III�, one gets
Mf����= �1, �a†bc� ; �ab†c†� , �NaNbNc��, where Nc=c†c and,
analogously, Na and Nb are the number operators. Imposing
negativity of the determinant, one derives
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�NaNbNc� � ��a†bc��2, �43�

which is the desired Hillery-Zubairy criterion �11�, i.e., a
sufficient condition for the state to be entangled. By restrict-
ing the above case to two modes �say c=1�, one can choose
f = �1,ab�, which leads the Hillery-Zubairy two-mode en-
tanglement condition �11�, given by Eq. �22�, as
already shown in �3�. By choosing a different function f , one
can propose other Hillery-Zubairy-type three-mode criteria.
For example, let us choose f = �a ,bc� then Mf����
= ��Na� , �abc� ; �abc�� , �NbNc��, which results in a sufficient
condition for the three-mode entanglement,

�Na��NbNc� � ��abc��2. �44�

In a special case, Eq. �44� is reduced to another two-mode
entanglement condition of Hillery and Zubairy: �Na��Nb�
� ��ab��2, derived from the Cauchy-Schwarz inequality in
�11�.

VIII. CONCLUSIONS

We have studied inseparability criteria for bipartite quan-
tum states, which are given in terms of the matrices of ob-
servable moments of creation and annihilation operators,
therefore generalizing the analysis by Shchukin and Vogel.
Indeed, we have suggested �also by means of examples� that
all the techniques originally developed to detect “directly”—
that is, by considering the physical density matrix—the en-
tanglement of states, can be deployed at the level of the
matrices of moments. In doing this there are advantages—
e.g., by considering an appropriate submatrix of the matrix
of moments one can apply techniques developed for finite
dimensional system to detect the entanglement of infinite-
dimensional systems—and disadvantages—e.g., while the
separable structure of an entangled state is inherited by all
properly constructed matrices of moments, it is not com-
pletely clear how the entanglement of the starting physical
state gets encoded in the matrix of moments, and in some
cases it may be difficult to choose the correct technique to
detect it.

In particular, we have proposed a criterion based on re-
alignment of elements of the moment matrices of special

symmetry �i.e., corresponding to tensor product f̃s�, as a gen-
eralization of the Rudolph-Chen-Wu realignment criterion
applied for density matrices. Another reordering of elements
of the moment matrices corresponds to the partial transposi-

tion as in the original SV criterion. We have proposed an-
other criterion based on positive maps applied to appropriate
submatrices of moments. We further observe that the formal-
ism of matrices of moments can be certainly combined with
the powerful criterion invented in the finite-dimensional set-
ting by Doherty et al. �43�, in the attempt to detect, e.g., the
entanglement of continuous-variable systems. How powerful
this combination can be is nonetheless not evident or easily
predictable, and we leave it as an interesting open problem.

We have also discussed applications of the SV criteria to
describe bipartite-entanglement of more than two modes. In
particular, we have obtained the three-mode Hillery-Zubairy
criteria originally derived from the Cauchy-Schwarz inequal-
ity, and derived new ones of the same type.

As regards the confidence in the certification of entangle-
ment, if entanglement is verified within error bars for the
matrix of moments �e.g., by considering the determinants of
submatrices of the partially transposed matrix of moments as
in the original SV criterion�, then entanglement is certified
for the physical state. This is true both in the case where
error bars come from uncertainties in an experiment—from
which the entries of the matrix of moments are obtained—or
from numerical tools. We remark that here we are just con-
sidering certification of entanglement: in this paper we have
not explored the relation between the degree of
entanglement—as quantified by some entanglement
measure—of the physical state and the degree of entangle-
ment of the matrix of moments.

In conclusion, although it is an open question whether our
criteria generalizing the Shchukin-Vogel idea are sensitive
enough to detect bound entanglement, they enable to derive
new classes of classical inequalities, which can be used for
practical detection of quantum entanglement.

Note added. Recently, the SV criterion was thoroughly
applied to the multipartite CV case in �44�.
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