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The majority of linear-optical nondestructive implementations of universal quantum gates are based on single-
photon resolving detectors. We propose two implementations, which are nondestructive (i.e., destroying only
ancilla states) and work with conventional detectors (i.e., those which do not resolve a number of photons).
Moreover, we analyze a recently proposed scheme of Wang et al. [J. Opt. Soc. Am. B 27, 27 (2010)] of an optical
iSWAP gate based on two ancillae in Bell’s states, classical feedforward, and conventional detectors with the
total probability of success equal to �4 /32, where � is detector’s efficiency. By observing that the iSWAP gate
can be replaced with the controlled NOT gate with additional deterministic gates, we list various possible
linear-optical implementations of the iSWAP gate: (i) assuming various ancilla states (unentangled, two-
photon, and multiphoton-entangled states) or no ancillae at all, (ii) with or without classical feedforward, (iii)
destructive or nondestructive schemes, and (iv) using conventional or single-photon detectors. In particular, we
show how the nondestructive iSWAP gate can be implemented with the success probability of �4 /8 assuming
the same ancillae, classical feedforward, and a fewer number of conventional detectors than those in the
scheme of Wang et al. We discuss other schemes of the nondestructive universal gates using conventional de-
tectors and entangled ancillae in a cluster state, and Greenberger–Horne–Zeilinger and Bell’s states giving the
success probabilities of �4 /4, �6 /8, and �4 /8, respectively. In the latter scheme, we analyze how detector im-
perfections (dark counts in addition to finite efficiency and no photon-number resolution) and imperfect sources
of ancilla states deteriorate the quantum gate operation. © 2010 Optical Society of America

OCIS codes: 270.0270, 270.5585.
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. INTRODUCTION
n the last decade there has been much interest in proba-
ilistic quantum computing using linear-optical elements
nd postselection based on counts at photodetectors (see a
eview in [1] and references therein). These studies have
een triggered by the pioneering works of Knill,
aflamme, and Milburn (KLM) [2] and Koashi, Yama-
oto, and Imoto (KYI) [3]. Various linear-optical imple-
entations of universal two-qubit gates were proposed in-

luding the controlled NOT (CNOT) and controlled sign
CS) gates as listed in Table 1.

Analysis of Table 1 shows that the majority of imple-
entations of the CS/CNOT gates are based on selective

i.e., single-photon or photon-number resolving) detectors,
nd thus achieving a higher probability of success in com-
arison to those schemes based on conventional detectors.
owever, in practical applications the most interesting

mplementations are those using conventional detectors
also referred to as the bucket detectors) which indicate
he presence or absence of photons only.

Surprisingly, there are a very few schemes which are
ondestructive and work with conventional detectors (see
able 1). Apart from the proposal of Zou et al. [4], there
re schemes by Gasparoni et al. [5] (scheme 14) and Zhao
t al. [6] (scheme 15), which are experimental realizations
f the modified gate of Pittman et al. [7] (scheme 12) with-
0740-3224/10/112369-9/$15.00 © 2
ut feedforward. In these implementations a quantum en-
oder (described in Section 4) was used so that the whole
etup could realize the nondestructive CNOT gate (with
ingle-photon detectors). However, without having such
hoton-number resolving detectors for appropriate wave-
ength, they used conventional detectors in experiments.

oreover, two additional (conventional) detectors were
dded for the postselection of the output states. So, they
nly realized a destructive version of the nondestructive
NOT gate of Pittman et al. [7]. In Sections 3 and 4, we
ropose two implementations of the nondestructive uni-
ersal gates based on conventional detectors.

In a recent article, Wang et al. [8] described a
olarization-encoded linear-optical implementation of a
ondestructive iSWAP gate using two entangled ancillae

n the Einstein–Podolsky–Rosen (EPR) states, classical
eedforward, and conventional detectors. The total prob-
bility of success of this gate is P=�4 /32, where � is the
etector efficiency, and the power of � corresponds to the
umber of simultaneously clicking detectors. In this ar-
icle, we show how to simplify and improve the scheme of
ang et al. [8] to obtain the probability of success four

imes higher and to reduce the number of conventional
etectors, while assuming the same ancillae.
The iSWAP, CNOT, and CS are universal gates, so they

re formally equivalent, and each of them (together with
010 Optical Society of America
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ingle-qubit operations) can be used to construct any
ther gates and quantum circuits. Finding advantages of
ne universal gate over another can be understood only in
erms of their experimental feasibility or specific qubit in-
eractions in studied systems. For example, it is usually
uch easier to implement the iSWAP gates rather than

he CNOT gates in solid-state systems. This is because
he iSWAP operation naturally occurs during common
olid-state qubit interactions described by the Heisenberg
r XY models, while the CNOT operation can be gener-
ted from less common Ising interactions. For this reason,
fficient quantum-information processing based on the
SWAP gates was studied for solid-state qubits [9]. How-
ver, it seems that there is no clear advantage of the

Table 1. List of Selected Linear-Optical Implemen
Applied to Implem

No. Author E/T Comment

I. Unenta

1 KLM [2] T
2 Ralph et al. [47] T Simplified No.
3 Knill [29] T Improved No. 1
4 Pittman et al. [34] E
5 Pittman et al. [34] T Modified No. 4
6 Giorgi et al. [32] T Modified No. 16
7 Bao et al. [33] E Modified No. 13

II. Enta

8 KLM [2] T
9 KYI [3] T

10 KYI [3] T Modified No. 9
11 KYI [3] T Modified No. 9
12 Pittman et al. [7] T
13 Pittman et al. [7] T Modified No. 12
14 Gasparoni et al. [5] E Realization of No.
15 Zhao et al. [6] E Realization of No.
16 Giorgi et al. [32] T Related to No. 1
17 Zou et al. [4] T Related to No. 1
18 Gottesman and Chuang [10] T
19 Pittman et al. [7] T Based on No. 1

III. Wit

20 Pittman et al. [7] T
21 Pittman et al. [7] T Modified No. 20
22 Pittman et al. [48] E Realization of No.
23 Giorgi et al. [32] T Related to No. 2
24 Giorgi et al. [32] T Modified No. 23
25 Hofmann and Takeuchi [35] T
26 Ralph et al. [36] T Equivalent to No.
27 O’Brien [49] E Realization of No. 25,
28 Okamoto et al. [50] E Realization of No. 25,
29 Kiesel et al. [51] E Simplified No. 25, N
30 Langford et al. [52] E Equivalent to No.

aMeasurement of both the control and target bits used for postselection.
bAssuming perfect efficiency ��=1� of detectors.
cKey: P—the total probability of success, E/T—experimental/theoretical implem

he AppendixA for more explanations.
inear-optical implementations of the iSWAP gates over
ther universal optical gates, maybe except some realiza-
ions in specific hybrid optical and solid-state systems.

In Section 2, we present simple schemes to decompose
he iSWAP gate into the CS or CNOT gate, for which
any proposals (see Table 1 and AppendixA) can be

eadily applied. In particular, by using such schemes to-
ether with an implementation of the CS gate by Zou et
l. [4], which was actually used in [8], one obtains the
SWAP gate with the success probability P=�4 /8. In Sec-
ion 3, we discuss other implementations of the iSWAP
ate yielding P=�4 /4 and P=�6 /8 using as resources the
ottesman–Chuang four-qubit entangled state [10] and a
air of Greenberger–Horne–Zeilinger (GHZ) states, re-

ns of the CSÕCNOT Gates, Which Can Directly be
the iSWAP Gatec

P Feedforward
Entangled
Ancillae Destructive

Conventional
Detector

ancillae

1
16 No 0 No No
1
16 No 0 No No
2
27 No 0 No No
1
8 No 0 Yesa No
1
4 Yes 0 Yesa No
1
8 Yes 0 No No
1
8 Yes 0 No No

ncillae

1
4 Yes EPR No No
1
16 Yes EPR No No
1
4

b Yes 3�EPR No No
1
4 Yes 5�EPR No No
1
16 No EPR No No
1
4 Yes EPR No No
1
16 No EPR Yesa Yes
1
16 No EPR Yesa Yes
1
4 Yes EPR No No
1
8 Yes 2�EPR No Yes

— Yes ��� No —
1
4 Yes ��� No No

ncillae

1
4 No 0 Yes No
1
2 Yes 0 Yes No
1
4 No 0 Yes No
1
4 No 0 Yes No
1
2 Yes 0 Yes No
1
9 No 0 Yesa No
1
9 No 0 Yesa No
1
9 No 0 Yesa No
1
9 No 0 Yesa No
1
9 No 0 Yesa No
1
9 No 0 Yesa No

���—the Gottesman–Chuang state equivalent to a four-qubit cluster state �10�. See
tatio
ent

ngled
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12
12
2
2

8

hout a

20
0

25
No. 26
No. 26
o. 26
29

entation,



s
s
t

2
A
e
T
p

i
e
h
F
i
t
b
i
t

c
a
[
S
g
(

i
U
c

F

h
b

t

m
q
p
i
f

p
g
c
S
i
u
c
C
a
C

b
T
C
C
o
u

p
m
s
t
s
o
p
t
e

3
D
S
H
S
t
F
G
P
s
t
s
s
i

t

F
C
�
o
p
q
a
t
b
i

M. Bartkowiak and A. Miranowicz Vol. 27, No. 11 /November 2010 /J. Opt. Soc. Am. B 2371
pectively. In Section 4, we propose a scheme using the
ame resources (including ancillae in the EPR states) as
he CS gate of Zou et al. [4]. We conclude in Section 5.

. DECOMPOSITION OF THE iSWAP GATE
ND IMPROVED SCHEME OF WANG
t al.
he iSWAP gate changes an arbitrary pure state of two
hoton-polarization qubits,

��in� = �1�HH� + �2�HV� + �3�VH� + �4�VV�, �1�

nto ��iswap�=�1�HH�+ i�2�VH�+ i�3�HV�+�4�VV�, where,
.g., �HV�= �H��V�= �H� � �V�, and �H� and �V� represent
orizontal and vertical polarization states, respectively.
or the sake of simplicity, we refer here to qubits encoded

n photon polarization only. Obviously, we can also refer to
he photon-path and phase qubits which are dual-line qu-
its interchangeable with polarization qubits by a polar-
zing beam splitter (PBS) and a beam splitter, respec-
ively [1].

Schuch and Siewert [11] showed that the CNOT gate
an be decomposed into the two iSWAP gates or the SWAP
nd iSWAP gates. The latter relation was also applied in
8], but not in its full power. By inverting the Schuch–
iewert relation and replacing the CNOT with the CS
ate, we find that the iSWAP gate can be simply given as
see the top circuit in Fig. 1)

UiSWAP = UCS�S � S�USWAP, �2�

n terms of the phase gate S=diag��1, i��, the CS gate
CS=diag��1,1,1,−1��, and the SWAP gate. The scheme

an also be given in terms of the CNOT gate, as shown in

S

S

CSiS
W

A
P =

S H H

S
=

QWP

QWP

HWPHWP

=
ig. 1. Circuits decomposing the iSWAP gate into the CS and
NOT gates together with the SWAP, Hadamard �H� and phase

S� gates. The bottom scheme shows a linear-optical realization
f the iSWAP using polarization-encoded qubits, where (i) the
hase gate is implemented (up to a global phase factor) by a
uarter-wave plate, (ii) the Hadamard gate is realized by a HWP
t angle �=� /8, (iii) the SWAP gate can be obtained determinis-
ically by exchanging the qubit lines, and (iv) the CS/CNOT can
e realized probabilistically using one of the schemes discussed
n Sections 3 and 4.
ig. 1 (center), using the relation UCS= �I � H�UCNOT�I
� H�. The Hadamard gate H can be implemented by the
alf-wave plate (HWP), which for a single qubit is given
y

UHWP��� = �cos 2� sin 2�

sin 2� − cos 2�
� , �3�

ilted at �=� /8.
The SWAP gate is a classical gate and can be imple-
ented deterministically, e.g., by brute-force exchanging

ubits or waveguides carrying single qubits. Using the
olarization-encoded qubits, the phase gate S is simply
mplemented by a quarter-wave plate with a horizontal
ast axis.

Note that, contrary to the iSWAP gate, the entangling
ower of the SWAP gate is zero, which means that this
ate cannot entangle qubits, but it is just able to alter the
onfiguration of existing entanglement among qubits.
ometimes this fact is confusing because the SWAP gate

s said to have a capability of two ebits, where ebit is a
nit of bipartite entanglement. This is also correct in a
ommunication scenario. All gates except the CS (or
NOT) are deterministic, so the maximum success prob-
bility of the iSWAP is the same as those of the CS and
NOT.
The scheme of the iSWAP gate due to Wang et al. [8] is

ased on proposals by Pittman et al. [7] (scheme 12 in
able 1) and Zou et al. [4] (scheme 17) implementing the
NOT/CS gates. Scheme 17 realizing the nondestructive
S gate offers (to our knowledge) the highest probability
f success (equal to 1/8) in this group of implementations
sing EPR states and conventional detectors as resources.
Thus, by applying scheme 17 together with the decom-

osition scheme shown in Fig. 1, one obtains an imple-
entation of the iSWAP gate yielding the probability of

uccess P=�4 /8, which is four times higher than that for
he scheme of Wang et al. [8]. Moreover, the discussed
cheme requires only eight conventional detectors instead
f ten detectors used in [8]. In the next sections, we
resent other CNOT and CS schemes, which can be used
o implement the iSWAP gate with probabilities of success
qual to �4 /4, �6 /8, and �4 /8.

. SCHEME I WITH CONVENTIONAL
ETECTORS AND ANCILLAE IN GHZ
TATES
ere we describe an implementation (referred to as
cheme I) of the CNOT gate based on conventional detec-
ors and ancillae prepared in the GHZ states as shown in
ig. 2. Scheme I is obtained by combining the schemes of
ottesman and Chuang [10] (scheme 18 in Table 1) and
ittman et al. [7] (scheme 19). It is worth stressing that
cheme 19 was originally designed solely for selective de-
ectors. Here, we show the feasibility of the modified
cheme 19 using conventional detectors. Moreover, the de-
cribed scheme can be used as an implementation of the
SWAP gate according to Fig. 1.

Schemes 18 and 19 use ancilla in the following cluster-
ype state:
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��� =
1

	2
��HH���+� + �VV��	+��, �4�

hich is equivalent (under local unitary transformations)
o the standard four-qubit cluster states [12]. In Eq. (4),
�+�= 1

	2 ��HH�+ �VV�� and �	+�= 1
	2 ��HV�+ �VH�� are Bell’s

tates (EPR states). Various schemes for generation of the
tate ��� were proposed including a nondestructive
cheme [13] yielding the probability of success equal to
3/8. It is possible to generate ��� with the success prob-
bility of �2 /2 using the Gottesman–Chuang protocol
10], which we apply in the following.

Our detailed implementation of the CNOT gate, as
hown in Fig. 2, is based on schemes 18 and 19 and in-
ludes a scheme for generation of the state ���. An arbi-
rary input state ��in�, given by Eq. (1), is applied in
odes c (control) and t (target). We use two ancillae in the
HZ states, ��GHZ�= 1

	2 ��HHH�+ �VVV��, as resources. Pho-
ons in modes 4–6 are sent through the Hadamard gate,
hich can be implemented by the HWP tilted at �=� /8
nd is described by transformations �H�→ 1

	2 ��H�+ �V�� and
V�→ 1

	2 ��H�− �V��. For two photons with different polariza-
ions, the Hadamard transformation reads as �HV�

�1H1V�→ 1
	2 ��2H ,0V�− �0H ,2V��. Thus, the total input

tate (including the ancilla states) after the action of the
adamard gates is changed into

���� =
1

2	2
��H�1�H�2�H�3 + �V�1�V�2�V�3� � ��H�4�H�5�H�6

+ �V�4�V�5�H�6 + �V�4�H�5�V�6 + �H�4�V�5�V�6�. �5�

he state ���� is sent through a polarizing beam splitter,
BS1, in the HV-basis (i.e., which transmits H-polarized
tates and reflects V-polarized states) and the two Had-
mard gates, which results in

ψ ′ ψ ′′

c

1

2

3

4

6

5

t

1PBS

klV

jU

3VD
3HD

4HD

4VD

HWP

HWP

HWP

GHZψ

GHZψ

inψ

3PBS

2PBS

outψ

ψ ′′′

cVD

cHD

1HD

1VD

6VD

6HD

tHD

tVD

HWP

HWP

HWP

HWP

HWP

HWP

ig. 2. Scheme I implementing the CNOT gate using conven-
ional detectors and ancillae in the GHZ states, ��GHZ�. Key:
WP=UHWP�� /8� implements the Hadamard gate H; Uj and Vkl

re conditional unitary operations given in Table 2, where �z is
mplemented by UHWP�0�; Dk are photodetectors; PBSi are polar-
zing beam splitters in the HV-basis.
���� =
1

2
���+�34U

0 + �	+�34U
1����1256

+
1

2
��V�1�V�2�
�3�0�4��+�56 + �H�1�H�2�0�3�
�4�	+�56�,

here Uj= ��z
�5�

� �z
�6��j �j=0,1� are given in terms of Pau-

i’s matrices �z, �
�= 1
	2 ��2H�− �2V��, and �0�
�0H��0V� de-

otes no photon in H and V modes.
Whenever two photons reach separately detectors D3H

nd D4H or D3V and D4V, the state ��� is generated at the
utput (see Table 2). For combinations of single clicks at
etectors D3H and D4V or D3V and D4H, the output state
equires application of two Pauli’s gates �z on photons in
odes 5 and 6 to obtain the state ���. The Pauli �z gate

an be implemented by the HWP at �=0 according to Eq.
3).

Thus, in the discussed part of the scheme (shown in
ig. 2 up to Uj operations), it is possible to generate the
tate ��� after the successful postselection measurement
nd using feedforward. The probability of success of the
eneration of ��� is equal to �2 /2. The state ��� is then
sed as an ancilla for the CNOT gate with the input state

�in�, given by Eq. (1).
The state ���� after measuring modes 3 and 4 and pass-

ng through PBS2 and PBS3 in the HV-basis and four
WPs is transformed into

���� =
1

4
���+�c1���+�6tV

00 + �	+�6tV
11� + �	+�c1���+�6tV

10

+ �	+�6tV
01����out�25 +

	3

2
��err�,

here Vkl= ��z
�2��k � ��z

�5��l for k , l=0,1. The state ��err� is a
uperposition of states, which corresponds to a situation
hen two photons enter one pair of detectors, DiH or DiV

or some i �i=c ,1 ,6 , t�. On the contrary, successful events
re those when four photons are registered separately by
ll these pairs of detectors. Conventional detectors can be
sed because exactly four photons (without counting out-
ut photons) are always present in the setup. Other cases
an be easily postselected without deteriorating the prob-
bility of success even for conventional detectors. Because
f the application of Hadamard gates in front of PBSs, one
an identify individual cases and use feedforward to cor-
ect the output states when it is necessary. After that one
btains ��out�25= ��cnot�, where ��cnot�=�1�HH�+�2�HV�
�3�VV�+�4�VH� as required by the CNOT operation for

he input state given by Eq. (1). The probability of success
f the CNOT gate is equal to �4 /4 if the state ��� is given,
hile the probability of success for the whole scheme

hown in Fig. 2, including the generation of the state ���,
ccounts for �6 /8.
Finally, it is worth stressing that we treat the GHZ

tates as resources. These states can be obtained from,
.g., EPR-state pairs by applying a nondestructive optical
ethod as proposed by Zeilinger et al. [14]. The first ex-

erimental generation of the GHZ state was realized by
ouwmeester et al. [15]. Since then various optical
chemes for generation of the GHZ states were described
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see, e.g., [16–19]) and, in principle, such methods can be
sed to generate ancillae for Scheme I.

. SCHEME II WITH CONVENTIONAL
ETECTORS AND ANCILLAE IN
PR STATES
ere we describe an implementation of the CS gate,

hown in Fig. 3 and referred to as Scheme II, using con-
entional detectors and ancillae in the EPR or EPR-like
tates. In our analysis of the experimentally oriented
cheme II, we include a few kinds of detector imperfec-
ions (dark counts, finite efficiency, and no photon-
umber resolution) and realistic sources of the ancilla
nd input states.
Our Scheme II is a modified version of the proposals by

ittman et al. [7] (scheme 12) and Zou et al. [4] (scheme
7). Note that scheme 17 was also applied by Wang et al.
8] as a part of their iSWAP scheme. The basic idea of Zou
t al. [4] was to use a quantum encoder to transform an
nput state ��H�+��V� into ��HH�+��VV�. The probability
f success for such a device with a feedforward mecha-
ism is equal to 1/2 (to compare with 1/4 without feedfor-
ard). In both [4,8] two such encoders (with feedforward)
ere used to encode an input state and to obtain finally a
ondestructive gate.
Scheme II is similar to scheme 17 since it is also based

n the double use of the quantum encoder and the triple
se of feedforward. However, the basic idea is different: In
cheme 17, output states of the encoders are measured
eparately. In contrast, in our scheme the output states of
he encoders are combined on a PBS and only then mea-

Table 2. Numbers of Photons Measured by Id
Conditional Operation

D3H D3V

1 0
0 1
1 0
0 1

DcH DcV D1H D1V D

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0
1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1
ured. So, using this part of Scheme II one can generate a
luster-like state, while two single-qubit quantum encod-
rs in scheme 17 can give two separate EPR pairs. More-
ver, contrary to [4], we calculate the gate fidelity assum-
ng, in particular, dark counts and realistic sources of the
PR states.
In the case of the perfect CS gate, an arbitrary pure

tate, given by Eq. (1), is transformed into ��cs�=�1�HH�
�2�HV�+�3�VH�−�4�VV�. The deviation of the output
tate 
out of a realistic CS gate from the state ��cs� of an
deal CS gate can be described by the fidelity defined by

cVD

cHD

tHD

tVD

HWP

HWP

Z

3HD

3VD

HWPinρ

Z

Z

ρ ′′

1

2

3
4

3

2c

c

t

t

U' 2VD

2HD

outρ

EPRψ

EPRψ

jU

klV

HWP

HWP

ρ ′′′ρ′
ig. 3. Scheme II implementing the CS gate using two ancillae

n perfect or non-perfect EPR states, ��EPR�. Notation is similar to
hat in Fig. 2. States and unitary operations U�, U�, Uj, and Vkl

re defined in Section 4 and in Table 3.

etectors Di and the Corresponding Required
and Vkl for Scheme I

D4H D4V Uj

1 0 I
0 1 I
0 1 �z

�5�
� �z

�6�

1 0 �z
�5�

� �z
�6�

D6V DtH DtV Vkl

0 1 0 I
1 0 1 I
0 1 0 I
1 0 1 I
0 1 0 �z

�2�

1 0 1 �z
�2�

0 1 0 �z
�2�

1 0 1 �z
�2�

0 0 1 �z
�5�

1 1 0 �z
�5�

0 0 1 �z
�5�

1 1 0 �z
�5�

0 0 1 �z
�2�

� �z
�5�

1 1 0 �z
�2�

� �z
�5�

0 0 1 �z
�2�

� �z
�5�

1 1 0 �z
�2�

� �z
�5�
eal D
s Uj

6H

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
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F = ��cs�
out��cs�. �6�

et us first analyze the action of the multigate U� com-
osed of six gates marked in a dotted-dashed box in Fig. 3:

U� = UHWP
�c� UHWP

�t� UPBS
�ct� UHWP

�t� UPBS
�2c� UPBS

�t3� , �7�

here UPBS
�kl� denotes the PBS unitary transformation of k

nd l lines. The PBS operation in the dual-line (dual-rail)
otation (and assuming labeling of lines as shown Fig. 3)
orresponds to swapping of H-polarized modes and no ac-
ion on V-polarized modes. UHWP=UHWP�� /8� corre-
ponds to the Hadamard gate, which can be equivalently
mplemented by a 50/50 beam splitter, when one of the in-
ut modes is H-polarized and the other is V-polarized, to-
ether with two �−� /2� phase shifters [1]. The latter
mplementation is particularly useful to understand the
adamard transformation applied to more than one pho-

on.
For a moment, let us assume that the ancillae are in

he perfect EPR states, ��EPR�= ��+�. Thus, the total initial
tate is given by �	in�= ��in�ct��EPR�12��EPR�34, where ��in�ct
s given by Eq. (1). The action of the multigate U� on the
nitial state �	in� can be compactly written as

U��	in� = Nok��ok� + Nerr1��err1� + Nerr2��err2�, �8�

here ��ok�=1/	2���+�ctU0+ �	+�ctU1��C̃4�1234 with Uj

��z
�2��j �j=0,1�, Nok

2 =1/8, Nerr1
2 = �8��1�2+7��2�2+6� /16,

nd Nerr2
2 = ��2�2 /16+ ���3�2+ ��4�2� /2. In general, �C̃4�1234 is

f the form �1�HHHH�+�2�HHVV�+�3�VVHH�
�4�VVVV� which, in a special case of all equal coeffi-
ients, reduces to a four-entangled cluster state �C4�.
tate ��err1� corresponds to undesired cases, which can be
xcluded by measuring only modes c and t (the first post-
election). In contrast, ��err2� represents all the cases, in
hich more than one photon reaches a detector; and so,
y using conventional detectors, they cannot be distin-
uished from one-photon states. Thus, ��err2� corresponds
o undesired cases, which cannot be uniquely excluded via
he first postselection, but can be later excluded after
easuring modes 2 and 3 (the second postselection).
It is seen that, by assuming conventional detectors

ithout dark counts and the ancillae to be in the perfect
PR states, one obtains the probability of success equal to
=�4 /8 and the fidelity equal to 1 as in the original

cheme of Zou et al. [4]. Note that a successful measure-
ent corresponds to clicks of four out of eight detectors

see Table 3), which explains why P��4. Moreover, a fac-
or of 1/8 is just equal to Nok

2 in Eq. (8).
So far, we presented the transformations of states by

ssuming perfect sources of the ancilla states and no dark
ounts of detectors both for Schemes I and II. Here, in
ontrast, we use a numerical method assuming non-
erfect sources of ancillae and input states, and dark
ounts.

For a conventional detector of efficiency � and mean
ark count rate �, the positive-operator-valued measure
POVM) elements associated with distinguishing vacuum
�0� and the presence of at least one photon ��1� have the
orm
�0 = 

m=0

�

e−��1 − ��m�m��m�, �1 = 1 − �0, �9�

here �=�resRdark is given in terms of the dark count rate,
dark, and the detector resolution time �res [20].
We assume now that the entangled ancilla states are

enerated via spontaneous parametric downconversion
SPDC). The output state of a type-II SPDC crystal or two
ype-I SPDC crystals sandwiched together can be ap-
roximated as an EPR-like state of the form (see, e.g.,
21,22])

��EPR� = �1 − �2�−1/2��0��0� + ���HH� + �VV��� + O��2�,

�10�

here the parameter � is given by the product of interac-
ion time of the pump field and the crystal, their coupling
onstant, and complex amplitude of the pump field. The
tate given by Eq. (10) clearly differs from the exact EPR
tate ��+� by the inclusion of vacuum (and also higher or-
er states) in the superposition. The parameter �2 is usu-
lly of the order 10−4/pulse [20], and it describes the rate
f single-photon pair generation per pulse of the pump
eld. Thus, the output state of the SPDC crystal contains
acuum with a high probability, and its effect on the gate
peration cannot be neglected.

Each line in Schemes I and II can carry an arbitrary
umber of photons in H and V polarizations. Using a
ual-line notation, one can write �H�= �1�H�0�V
�1H ,0V�,

V�= �0�H�1�V, and �0�= �0�H�0�V.
The state 
� after the action of the multigate U� and the
easurement of photons by the detectors DcH, DcV, DtH,

nd DtV is given by


� = N Trct��m
�cH��m�

�cV�
�n

�tH��n�
�tV�U�
in�U��†�, �11�

here Trct
TrcH,cV,tH,tV, 
in= �	in��	in�, N is a renormal-
zation constant, and the POVM elements are given by
q. (9). Moreover, m, m�, n, and n� are equal to 1 or 0,
orresponding to clicks or no clicks of the detectors ac-
ording to Table 3. By applying the conditional gate Uj

��z
�2��j with j=0,1, defined in Table 3, the state 
� is

ransformed to 
�=Uj
��Uj�†. After the operation U�
UHWP

�2� UHWP
�3� corresponding to the Hadamard gates at

ines 2 and 3, and after photon counting by the detectors
, D , D , and D , the state 
 is transformed to

Table 3. Same as Table 2 But for Scheme II

D2H D2V D3H D3V Uj

1 0 1 0 I
0 1 0 1 I
1 0 0 1 �z

�2�

0 1 1 0 �z
�2�

DcH DcV DtH DtV Vkl

1 0 1 0 I
0 1 1 0 �z

�1�

1 0 0 1 �z
�4�

0 1 0 1 �z
�1�

� �z
�4�
2H 2V 3H 3V �
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� = N Tr23��m
�2H��m�

�2V�
�n

�3H��n�
�3V�U�
��U��†�, �12�

here Tr23
Tr2H,2V,3H,3V, while m, n, m�, and n� corre-
pond to clicks or no clicks of the detectors according to
able 3. Note that the PBSs in front of all the detectors

ust convert polarization qubits into dual-line qubits, so
hey are redundant if we apply the dual-line notation con-
istently in our numerical approach. The final output
tate 
out=Vkl
��Vkl�† is obtained from 
� by applying the
onditional gates Vkl= ��z

�1��k � ��z
�4��l �k , l=0,1� according

o Table 3.
For simplicity, in our numerical calculations we re-

erved a three-dimensional Hilbert space for each mode;
hus we set �0�H= �1;0;0�, �1�H= �0;1;0�, and �2�H
�0;0;1�, and analogously for V polarization. This is valid
y assuming dark count rates and the � parameter to be
elatively low. Otherwise, higher-dimensional Hilbert
paces should be set.

Let us assume realistic values of conventional detectors
23] (see also [20,24]): the detector efficiency is �=0.7, the
ark count rate is Rdark=100 s−1, and the detector reso-
ution time is �res=10 ns. For convenience, we assume
hat all detectors are the same. The rate of single-photon
air generation per pulse of the pump field is set to �2

10−4/pulse [20]. For experimental verification of Scheme
I, it is useful to assume that the input state ��in� is also
enerated by the SPDC and is given by Eq. (10). For brev-
ty, we analyze only the first cases in Table 3, where no
xtra conditional operations are required. Under these as-
umptions, we find that the fidelity drops to F�0.97,
hich is still relatively high.

. CONCLUSIONS
e studied linear-optical implementations of two-qubit

niversal gates including the iSWAP and CS/CNOT gates.
s shown in Table 1, the majority of these realizations of
ondestructive gates are based on single-photon detec-
ors. In contrast, we focused on practical implementations
sing conventional detectors, which do not resolve a num-
er of photons.
Despite the progress in constructing single-photon de-

ectors (see [25,26] and references therein), they are still
ot commonly used. This conclusion can be drawn, e.g., by
nalyzing experimental realizations of quantum gates
isted in Table 1. One of the drawbacks of single-photon
etectors is that their dark count rates are much higher
han those for conventional detectors [26]. There are also
roposals of multiple-photon resolving detectors including
ascade arrays of conventional detectors (connected with
eam splitters or with high-speed low-loss optical
witches [27]) and fiber-loop detectors [28]. Such detec-
ors, which are based on the idea of chopping up photons,
re conceptually very attractive but still experimentally
nderdeveloped.
We analyzed a recent proposal of Wang et al. [8] to

mplement the iSWAP gate using two entangled ancillae
n EPR states, classical feedforward, and conventional
hotodetectors (of a finite efficiency �) with the success
robability of �4 /32 only. This scheme was based on an
mplementation of the CS gate by Zou et al. [4] (scheme 17
n Table 1) with the success probability of �4 /8.
We showed that the iSWAP gate can be decomposed
nto the CS/CNOT gate and deterministic gates including
he SWAP, phase, or Hadamard gates. Thus, one can im-
ediately obtain schemes that implement the iSWAP

ate by using the CS/CNOT gates with relatively high
robabilities of success. In particular, by applying scheme
7 of Zou et al. [4] together with the iSWAP decomposition
cheme, we showed how to implement the iSWAP gate
ith the success probability four times higher than that

n the scheme of Wang et al. [8].
Moreover, we studied the applicability of conventional

etectors to other implementations of nondestructive
ates originally designed for single-photon detectors. We
howed that the scheme of Pittman et al. [7] implement-
ng the nondestructive CNOT gate can be used also with
onventional detectors achieving the probability of suc-
ess equal to �4 /4 assuming as a resource the
ottesman–Chuang four-qubit entangled state [10] or
qual to �6 /8 for a pair of ancillae in the GHZ states.

We have also described another scheme based on con-
entional detectors and ancillae in the EPR or EPR-like
tates as a modified version of the scheme by Zou et al.
4]. To verify the experimental feasibility of this scheme,
e showed how the quantum gate fidelity is deteriorated
ue to realistic sources of ancilla and input states, and de-
ector imperfections to include dark counts, finite effi-
iency, and no photon-number resolution.

PPENDIX A: COMPARISON OF THE
CHEMES LISTED IN TABLE 1
ere, we give more explanations and compare various

inear-optical implementations of the CS/CNOT gates
isted in Table 1. Obviously, these schemes can be used
lso to construct the iSWAP gate according to Fig. 1. The
mplementations can be divided into several groups ac-
ording to, e.g., different resources as shown in Table 1: (I)
nentangled ancillae, (II) entangled ancillae, and (III)
ithout ancillae at all. Our examples of the second group

nclude not only ancillae in the EPR states described in
ection 4, but also the Gottesman–Chuang four-
ntangled state and the GHZ states discussed in Section
.
We compared the schemes concerning the total prob-

bility of success, destructive or nondestructive character
f the implementations, application of conventional or
onconventional detectors, and whether the feedforward
echanism was applied. Classical feedforward means

hat a scheme includes measurement devices of some
odes such that the classical outcomes of the measure-
ents can be used to change the remaining modes.
In group I, where one or two ancillae prepared in an

nentangled state were used, the highest probability of
uccess for the gates without feedforward accounts for
/27 [29] (for scheme 3 in Table 1). It is worth noting that
here is only numerical evidence [30], but no analytical
roof (contrary, e.g., to the nonlinear sign shift gate [31])
hat 2/27 is the rigorous tight upper bound on the success
robability using two unentangled ancillae without feed-
orward. Moreover, additional ancillae do not increase
his value. When feedforward is used the probability can
e increased to 1/8 for gates with two ancillae [32,33]
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schemes 6 and 7) or even to 1/4 with one ancilla [34]
schemes 4 and 5) at the expense of destructing the out-
ut states. It should be mentioned that for all these
roups of implementations, the destructive gates (i.e.,
hose for which not only ancilla states are measured)
chieve higher probabilities.
In group II, the best achieved probability of success ac-

ounts for 1/16 without feedforward [3,7] (schemes 9 and
2) and 1/4 with feedforward [2,7,32] (schemes 8, 13, and
6).
Group III consists of the CS/CNOT gates based on the

dea of Hofmann and Takeuchi [35] (scheme 25) and
alph et al. [36] (scheme 26). Other examples in this
roup are mainly experimental realizations of schemes 25
nd 26 using a beam splitter with the reflection coefficient
qual to 1/3. The probability of success for them achieves
/9, assuming the measurement of both the control and
arget bits for the postselection.

Intentionally, we have not included implementations of
he CS/CNOT gates based on the idea of one-way compu-
ation using cluster states as proposed by Raussendorf
nd Briegel [12]. According to their proposal one can
mplement the CS/CNOT gate by performing single-qubit

easurement in an appropriate basis on a given cluster
tate. Using this procedure with additional feedforward it
s possible to implement the CS/CNOT gate nearly deter-

inistically even with conventional detectors as de-
cribed, e.g., in [37–40] and experimentally realized in
41–44].

However, it should be stressed that such implementa-
ions of the CS/CNOT gates based on cluster-type states
ook deterministic only, because it is assumed something
trictly easier than applying the true CNOT gate on inde-
endently prepared input photonic qubits. The latter task
hould not be deterministic because of the no-go theorem
or the Bell measurement by linear optics.

It is worth clarifying that Table 1 includes two schemes
sing the cluster-type states. Namely, schemes of Gottes-
an and Chuang [10] (scheme 18) and closely related pro-

osal of Pittman et al. [7] (scheme 19) are implementa-
ions of the nondestructive and nondeterministic CNOT
ate using a four-photon entangled state ���, which is
quivalent, under a local unitary transformation, to a
our-qubit cluster state. We included this gate in Table 1
ince it does not realize the Raussendorf–Briegel protocol,
ut uses the state ��� as an ancilla only.
In Table 1, we also have not included deterministic

mplementations of the universal gates based on single-
hoton cross-Kerr nonlinearities (see [1,45] and refer-
nces therein). Such schemes are fundamentally different
rom probabilistic linear-optical schemes. Moreover, there
re serious doubts [46] on whether they can be useful for
uantum computing if applied for single photons in a
tandard way.
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