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The majority of linear-optical nondestructive implementations of universal quantum gates are based on single-
photon resolving detectors. We propose two implementations, which are nondestructive (i.e., destroying only
ancilla states) and work with conventional detectors (i.e., those which do not resolve a number of photons).
Moreover, we analyze a recently proposed scheme of Wang et al. [J. Opt. Soc. Am. B 27, 27 (2010)] of an optical
iSWAP gate based on two ancillae in Bell’s states, classical feedforward, and conventional detectors with the
total probability of success equal to 7*/32, where 7 is detector’s efficiency. By observing that the iSWAP gate
can be replaced with the controlled NOT gate with additional deterministic gates, we list various possible
linear-optical implementations of the iISWAP gate: (i) assuming various ancilla states (unentangled, two-
photon, and multiphoton-entangled states) or no ancillae at all, (ii) with or without classical feedforward, (iii)
destructive or nondestructive schemes, and (iv) using conventional or single-photon detectors. In particular, we
show how the nondestructive iSWAP gate can be implemented with the success probability of 7#*/8 assuming
the same ancillae, classical feedforward, and a fewer number of conventional detectors than those in the
scheme of Wang et al. We discuss other schemes of the nondestructive universal gates using conventional de-
tectors and entangled ancillae in a cluster state, and Greenberger—Horne-Zeilinger and Bell’s states giving the
success probabilities of 7*/4, 7°/8, and 7*/8, respectively. In the latter scheme, we analyze how detector im-
perfections (dark counts in addition to finite efficiency and no photon-number resolution) and imperfect sources
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of ancilla states deteriorate the quantum gate operation. © 2010 Optical Society of America

OCIS codes: 270.0270, 270.5585.

1. INTRODUCTION

In the last decade there has been much interest in proba-
bilistic quantum computing using linear-optical elements
and postselection based on counts at photodetectors (see a
review in [1] and references therein). These studies have
been triggered by the pioneering works of Knill,
Laflamme, and Milburn (KLM) [2] and Koashi, Yama-
moto, and Imoto (KYI) [3]. Various linear-optical imple-
mentations of universal two-qubit gates were proposed in-
cluding the controlled NOT (CNOT) and controlled sign
(CS) gates as listed in Table 1.

Analysis of Table 1 shows that the majority of imple-
mentations of the CS/CNOT gates are based on selective
(i.e., single-photon or photon-number resolving) detectors,
and thus achieving a higher probability of success in com-
parison to those schemes based on conventional detectors.
However, in practical applications the most interesting
implementations are those using conventional detectors
(also referred to as the bucket detectors) which indicate
the presence or absence of photons only.

Surprisingly, there are a very few schemes which are
nondestructive and work with conventional detectors (see
Table 1). Apart from the proposal of Zou et al. [4], there
are schemes by Gasparoni et al. [5] (scheme 14) and Zhao
et al. [6] (scheme 15), which are experimental realizations
of the modified gate of Pittman et al. [7] (scheme 12) with-
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out feedforward. In these implementations a quantum en-
coder (described in Section 4) was used so that the whole
setup could realize the nondestructive CNOT gate (with
single-photon detectors). However, without having such
photon-number resolving detectors for appropriate wave-
length, they used conventional detectors in experiments.
Moreover, two additional (conventional) detectors were
added for the postselection of the output states. So, they
only realized a destructive version of the nondestructive
CNOT gate of Pittman et al. [7]. In Sections 3 and 4, we
propose two implementations of the nondestructive uni-
versal gates based on conventional detectors.

In a recent article, Wang et al. [8] described a
polarization-encoded linear-optical implementation of a
nondestructive iISWAP gate using two entangled ancillae
in the Einstein—Podolsky—Rosen (EPR) states, classical
feedforward, and conventional detectors. The total prob-
ability of success of this gate is P=17%/32, where 7 is the
detector efficiency, and the power of % corresponds to the
number of simultaneously clicking detectors. In this ar-
ticle, we show how to simplify and improve the scheme of
Wang et al. [8] to obtain the probability of success four
times higher and to reduce the number of conventional
detectors, while assuming the same ancillae.

The iISWAP, CNOT, and CS are universal gates, so they
are formally equivalent, and each of them (together with
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Table 1. List of Selected Linear-Optical Implementations of the CS/CNOT Gates, Which Can Directly be
Applied to Implement the iSWAP Gate®

Entangled Conventional
No. Author E/T Comment P  Feedforward Ancillae  Destructive Detector
I. Unentangled ancillae
1 KLM [2] T = No 0 No No
2 Ralph et al. [47] T Simplified No. 1 % No 0 No No
3 Knill [29] T Improved No. 1 % No 0 No No
4 Pittman et al. [34] E H No 0 Yes® No
5 Pittman et al. [34] T Modified No. 4 i Yes 0 Yes* No
6 Giorgi et al. [32] T Modified No. 16 % Yes 0 No No
7 Bao et al. [33] E Modified No. 13 i Yes 0 No No
II. Entangled ancillae
KLM [2] T 1 Yes EPR No No
9 KYI [3] T % Yes EPR No No
10 KYI [3] T Modified No. 9 1° Yes 3XEPR No No
11 KYI [3] T Modified No. 9 i Yes 5 X EPR No No
12 Pittman et al. [7] T = No EPR No No
13 Pittman et al. [7] T Modified No. 12 i Yes EPR No No
14 Gasparoni et al. [5] E Realization of No. 12 % No EPR Yes® Yes
15 Zhao et al. [6] E Realization of No. 12 % No EPR Yes* Yes
16 Giorgi et al. [32] T Related to No. 12 i Yes EPR No No
17 Zou et al. [4] T Related to No. 12 5—13 Yes 2XEPR No Yes
18 Gottesman and Chuang [10] T — Yes [x) No —
19 Pittman et al. [7] T Based on No. 18 1 Yes [x) No No
II1. Without ancillae

20 Pittman et al. [7] T 1 No 0 Yes No
21 Pittman et al. [7] T Modified No. 20 % Yes 0 Yes No
22 Pittman et al. [48] E Realization of No. 20 4—11 No 0 Yes No
23 Giorgi et al. [32] T Related to No. 20 i No 0 Yes No
24 Giorgi et al. [32] T Modified No. 23 % Yes 0 Yes No
25 Hofmann and Takeuchi [35] T é No 0 Yes“ No
26 Ralph et al. [36] T Equivalent to No. 25 é No 0 Yes® No
27 O’Brien [49] E  Realization of No. 25, No. 26 % No 0 Yes® No
28 Okamoto et al. [50] E  Realization of No. 25, No. 26 %, No 0 Yes® No
29 Kiesel et al. [51] E Simplified No. 25, No. 26 No 0 Yes* No
30 Langford et al. [52] E Equivalent to No. 29 % No 0 Yes* No

“Measurement of both the control and target bits used for postselection.
" Assuming perfect efficiency (7=1) of detectors.

“Key: P—the total probability of success, E/T—experimental/theoretical implementation, |x)—the Gottesman—Chuang state equivalent to a four-qubit cluster state [10]. See

the AppendixA for more explanations.

single-qubit operations) can be used to construct any
other gates and quantum circuits. Finding advantages of
one universal gate over another can be understood only in
terms of their experimental feasibility or specific qubit in-
teractions in studied systems. For example, it is usually
much easier to implement the iISWAP gates rather than
the CNOT gates in solid-state systems. This is because
the iSWAP operation naturally occurs during common
solid-state qubit interactions described by the Heisenberg
or XY models, while the CNOT operation can be gener-
ated from less common Ising interactions. For this reason,
efficient quantum-information processing based on the
iSWAP gates was studied for solid-state qubits [9]. How-
ever, it seems that there is no clear advantage of the

linear-optical implementations of the iISWAP gates over
other universal optical gates, maybe except some realiza-
tions in specific hybrid optical and solid-state systems.
In Section 2, we present simple schemes to decompose
the iISWAP gate into the CS or CNOT gate, for which
many proposals (see Table 1 and AppendixA) can be
readily applied. In particular, by using such schemes to-
gether with an implementation of the CS gate by Zou et
al. [4], which was actually used in [8], one obtains the
iSWAP gate with the success probability P=*/8. In Sec-
tion 3, we discuss other implementations of the iISWAP
gate yielding P=7*/4 and P=7%/8 using as resources the
Gottesman—Chuang four-qubit entangled state [10] and a
pair of Greenberger—Horne—Zeilinger (GHZ) states, re-
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spectively. In Section 4, we propose a scheme using the
same resources (including ancillae in the EPR states) as
the CS gate of Zou et al. [4]. We conclude in Section 5.

2. DECOMPOSITION OF THE iSWAP GATE
AND IMPROVED SCHEME OF WANG
et al.

The iISWAP gate changes an arbitrary pure state of two
photon-polarization qubits,

|in) = a1l HH) + ap| HV) + a3|VH) + | VV), (1)

into |Yiswap)=a1|HH) +ias|VH) +iag|HV)+ay|VV), where,
e.g., |[HV)=|H)|V)=|H)®|V), and |H) and |V) represent
horizontal and vertical polarization states, respectively.
For the sake of simplicity, we refer here to qubits encoded
in photon polarization only. Obviously, we can also refer to
the photon-path and phase qubits which are dual-line qu-
bits interchangeable with polarization qubits by a polar-
izing beam splitter (PBS) and a beam splitter, respec-
tively [1].

Schuch and Siewert [11] showed that the CNOT gate
can be decomposed into the two iISWAP gates or the SWAP
and iSWAP gates. The latter relation was also applied in
[8], but not in its full power. By inverting the Schuch—
Siewert relation and replacing the CNOT with the CS
gate, we find that the iSWAP gate can be simply given as
(see the top circuit in Fig. 1)

Uiswar = Ucs(S @ S)Ugwap, (2)

in terms of the phase gate S=diag([1,:]), the CS gate
Ucg=diag([1,1,1,-1]), and the SWAP gate. The scheme
can also be given in terms of the CNOT gate, as shown in

- S_T_

— S HCS |-

iISWAP
I

QWP

QWPHHWPHD—HWPH

Fig. 1. Circuits decomposing the iISWAP gate into the CS and
CNOT gates together with the SWAP, Hadamard (H) and phase
(S) gates. The bottom scheme shows a linear-optical realization
of the iISWAP using polarization-encoded qubits, where (i) the
phase gate is implemented (up to a global phase factor) by a
quarter-wave plate, (ii) the Hadamard gate is realized by a HWP
at angle #==/8, (iii) the SWAP gate can be obtained determinis-
tically by exchanging the qubit lines, and (iv) the CS/CNOT can
be realized probabilistically using one of the schemes discussed
in Sections 3 and 4.
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Fig. 1 (center), using the relation Ugg=(I® H)Ucnor(l
®H). The Hadamard gate H can be implemented by the
half-wave plate (HWP), which for a single qubit is given
by

(3

cos 260 sin 260
sin 20 —cos 26/’

Unwp(0) = (

tilted at #=/8.

The SWAP gate is a classical gate and can be imple-
mented deterministically, e.g., by brute-force exchanging
qubits or waveguides carrying single qubits. Using the
polarization-encoded qubits, the phase gate S is simply
implemented by a quarter-wave plate with a horizontal
fast axis.

Note that, contrary to the iSWAP gate, the entangling
power of the SWAP gate is zero, which means that this
gate cannot entangle qubits, but it is just able to alter the
configuration of existing entanglement among qubits.
Sometimes this fact is confusing because the SWAP gate
is said to have a capability of two ebits, where ebit is a
unit of bipartite entanglement. This is also correct in a
communication scenario. All gates except the CS (or
CNOT) are deterministic, so the maximum success prob-
ability of the iSWAP is the same as those of the CS and
CNOT.

The scheme of the iSWAP gate due to Wang et al. [8] is
based on proposals by Pittman et al. [7] (scheme 12 in
Table 1) and Zou et al. [4] (scheme 17) implementing the
CNOT/CS gates. Scheme 17 realizing the nondestructive
CS gate offers (to our knowledge) the highest probability
of success (equal to 1/8) in this group of implementations
using EPR states and conventional detectors as resources.

Thus, by applying scheme 17 together with the decom-
position scheme shown in Fig. 1, one obtains an imple-
mentation of the iSWAP gate yielding the probability of
success P=17%/8, which is four times higher than that for
the scheme of Wang et al. [8]. Moreover, the discussed
scheme requires only eight conventional detectors instead
of ten detectors used in [8]. In the next sections, we
present other CNOT and CS schemes, which can be used
to implement the iISWAP gate with probabilities of success
equal to 7*/4, 7°/8, and 7*/8.

3. SCHEME I WITH CONVENTIONAL
DETECTORS AND ANCILLAE IN GHZ
STATES

Here we describe an implementation (referred to as
Scheme I) of the CNOT gate based on conventional detec-
tors and ancillae prepared in the GHZ states as shown in
Fig. 2. Scheme I is obtained by combining the schemes of
Gottesman and Chuang [10] (scheme 18 in Table 1) and
Pittman et al. [7] (scheme 19). It is worth stressing that
scheme 19 was originally designed solely for selective de-
tectors. Here, we show the feasibility of the modified
scheme 19 using conventional detectors. Moreover, the de-
scribed scheme can be used as an implementation of the
iISWAP gate according to Fig. 1.

Schemes 18 and 19 use ancilla in the following cluster-
type state:
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Fig. 2. Scheme I implementing the CNOT gate using conven-
tional detectors and ancillae in the GHZ states, |Jguz). Key:
HWP=Upyp(7/8) implements the Hadamard gate H; U¥ and V*
are conditional unitary operations given in Table 2, where o, is
implemented by Unwp(0); D), are photodetectors; PBS; are polar-
izing beam splitters in the HV-basis.

1
)= ,—§(|HH)|‘1>+> + V)W), (4)
\J

which is equivalent (under local unitary transformations)
to the standard four-qubit cluster states [12]. In Eq. (4),
|*)=%(HH)+|VV)) and |[¥*)=+(HV)+|VH)) are Bell's
states (EPR states). Various schemes for generation of the
state |y) were proposed including a nondestructive
scheme [13] yielding the probability of success equal to
7°/8. It is possible to generate |x) with the success prob-
ability of 7?/2 using the Gottesman—Chuang protocol
[10], which we apply in the following.

Our detailed implementation of the CNOT gate, as
shown in Fig. 2, is based on schemes 18 and 19 and in-
cludes a scheme for generation of the state |x). An arbi-
trary input state |¢,), given by Eq. (1), is applied in
modes ¢ (control) and ¢ (target). We use two ancillae in the
GHZ states, |¢GHZ)=é(|HHH)+|VVV>), as resources. Pho-
tons in modes 4-6 are sent through the Hadamard gate,
which can be implemented by the HWP tilted at 6==/8
and is described by transformations |H)— %(|H »+|V)) and
[V)— %(|H y=|V)). For two photons with different polariza-
tions, the Hadamard transformation reads as |HV)
=|141v)— 5(21,0)-|05,2y)). Thus, the total input
state (including the ancilla states) after the action of the
Hadamard gates is changed into

1
') = E(|H>1|H>2|H>3 +[Vi[V)e|V)s) ® (H)y|H)s|H)e
\‘!

+ V)4 V)s| H)g + V)| H)5| V) + [H) 4| V)5 V)e) - (5)

The state |/} is sent through a polarizing beam splitter,
PBS;, in the HV-basis (i.e., which transmits H-polarized
states and reflects V-polarized states) and the two Had-
amard gates, which results in
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[y = §(|‘D+>34U0 +[UH)34U") | x)1256

1
+ §(|V>1|V>2‘§>3|O>4|¢+>56 + [H)1|H)3|0)3|8) 4/ ¥*)56)

where U/ =(0';5)®0'§6))j (j=0,1) are given in terms of Pau-
li’s matrices o,, |& =%(\2H)—\2v>), and |0)=(0z)|0y) de-
notes no photon in H and V modes.

Whenever two photons reach separately detectors Dsgy
and D,y or Dsy and Dy, the state |x) is generated at the
output (see Table 2). For combinations of single clicks at
detectors D3y and D4y or D3y and Dyy, the output state
requires application of two Pauli’s gates o, on photons in
modes 5 and 6 to obtain the state |y). The Pauli o, gate
can be implemented by the HWP at #=0 according to Eq.
(3).

Thus, in the discussed part of the scheme (shown in
Fig. 2 up to U¥ operations), it is possible to generate the
state |y) after the successful postselection measurement
and using feedforward. The probability of success of the
generation of |x) is equal to 7?/2. The state |y) is then
used as an ancilla for the CNOT gate with the input state
|¥in), given by Eq. (1).

The state |¢/') after measuring modes 3 and 4 and pass-
ing through PBSy and PBS; in the HV-basis and four
HWPs is transformed into

1
") = Z[\<1>+>01(|<1>+>6tV°° + W6 VI + [U )1 (|06, VO

13
+ |\P+>6tV01)]|¢out>25 + \7|l/’err>>

where Vklz(ag))k@ (0'25))1 for £,1=0,1. The state |/, is a
superposition of states, which corresponds to a situation
when two photons enter one pair of detectors, D,y or D;y
for some i (i=c,1,6,¢). On the contrary, successful events
are those when four photons are registered separately by
all these pairs of detectors. Conventional detectors can be
used because exactly four photons (without counting out-
put photons) are always present in the setup. Other cases
can be easily postselected without deteriorating the prob-
ability of success even for conventional detectors. Because
of the application of Hadamard gates in front of PBSs, one
can identify individual cases and use feedforward to cor-
rect the output states when it is necessary. After that one
obtains |w0ut>25= ‘{//cnot% where W/cnot>= a1|HH>+ a’2‘HV>
+a3|VVy+ay|VH) as required by the CNOT operation for
the input state given by Eq. (1). The probability of success
of the CNOT gate is equal to 7*/4 if the state |y) is given,
while the probability of success for the whole scheme
shown in Fig. 2, including the generation of the state |y),
accounts for 7%/8.

Finally, it is worth stressing that we treat the GHZ
states as resources. These states can be obtained from,
e.g., EPR-state pairs by applying a nondestructive optical
method as proposed by Zeilinger et al. [14]. The first ex-
perimental generation of the GHZ state was realized by
Bouwmeester et al. [15]. Since then various optical
schemes for generation of the GHZ states were described
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Table 2. Numbers of Photons Measured by Ideal Detectors D; and the Corresponding Required
Conditional Operations U7 and V*! for Scheme I

D 3H D 3V D 4H D 4V []J
1 0 1 0 I
0 1 0 1 1
1 0 0 1 P e
0 1 1 0 o og®
D.n D.y Dy Dy Dey Dev Dy Dy Vi
1 0 1 0 1 0 1 0 I
1 0 1 0 0 1 0 1 I
0 1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 1 1
1 0 0 1 1 0 1 0 a?
1 0 0 1 0 1 0 1 o
0 1 1 0 1 0 1 0 a?
0 1 1 0 0 1 0 1 a?
1 0 0 1 1 0 0 1 ¥
1 0 0 1 0 1 1 0 o
0 1 1 0 1 0 0 1 ¥
0 1 1 0 0 1 1 0 o
1 0 1 0 1 0 0 1 @
1 0 1 0 0 1 1 0 d? g
0 1 0 1 1 0 0 1 o? g
0 1 0 1 0 1 1 0 d? g

(see, e.g., [16-19]) and, in principle, such methods can be
used to generate ancillae for Scheme 1.

4. SCHEME II WITH CONVENTIONAL
DETECTORS AND ANCILLAE IN
EPR STATES

Here we describe an implementation of the CS gate,
shown in Fig. 3 and referred to as Scheme II, using con-
ventional detectors and ancillae in the EPR or EPR-like
states. In our analysis of the experimentally oriented
Scheme II, we include a few kinds of detector imperfec-
tions (dark counts, finite efficiency, and no photon-
number resolution) and realistic sources of the ancilla
and input states.

Our Scheme II is a modified version of the proposals by
Pittman et al. [7] (scheme 12) and Zou et al. [4] (scheme
17). Note that scheme 17 was also applied by Wang et al.
[8] as a part of their iISWAP scheme. The basic idea of Zou
et al. [4] was to use a quantum encoder to transform an
input state o|H)+ 8|V) into o|HH)+ 8|VV). The probability
of success for such a device with a feedforward mecha-
nism is equal to 1/2 (to compare with 1/4 without feedfor-
ward). In both [4,8] two such encoders (with feedforward)
were used to encode an input state and to obtain finally a
nondestructive gate.

Scheme 1II is similar to scheme 17 since it is also based
on the double use of the quantum encoder and the triple
use of feedforward. However, the basic idea is different: In
scheme 17, output states of the encoders are measured
separately. In contrast, in our scheme the output states of
the encoders are combined on a PBS and only then mea-

sured. So, using this part of Scheme II one can generate a
cluster-like state, while two single-qubit quantum encod-
ers in scheme 17 can give two separate EPR pairs. More-
over, contrary to [4], we calculate the gate fidelity assum-
ing, in particular, dark counts and realistic sources of the
EPR states.

In the case of the perfect CS gate, an arbitrary pure
state, given by Eq. (1), is transformed into |i)=a;|HH)
+ag|HV)+ a3|VH)— ay|VV). The deviation of the output
state pyy of a realistic CS gate from the state | of an
ideal CS gate can be described by the fidelity defined by

VA/
1
z—©

‘ ‘//EPR> °

<

X
Pin NA HWP) i Pout
t
o
.'3
‘l//EPR> ¢ N ~1z—©

p’ pl/ p
Fig. 3. Scheme II implementing the CS gate using two ancillae
in perfect or non-perfect EPR states, |#gpg). Notation is similar to
that in Fig. 2. States and unitary operations U’, U”, I¥, and V¥
are defined in Section 4 and in Table 3.
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F= <¢cs‘p0ut|l/’cs>‘ (6)

Let us first analyze the action of the multigate U’ com-
posed of six gates marked in a dotted-dashed box in Fig. 3:

t t t 2 t3
U= U(ﬁWPU %i)WPU gB)sU(H)WPU%PC,gU %B)S> (7)

where Ugeé)s denotes the PBS unitary transformation of &
and [/ lines. The PBS operation in the dual-line (dual-rail)
notation (and assuming labeling of lines as shown Fig. 3)
corresponds to swapping of H-polarized modes and no ac-
tion on V-polarized modes. Ugwp=Unwp(7/8) corre-
sponds to the Hadamard gate, which can be equivalently
implemented by a 50/50 beam splitter, when one of the in-
put modes is H-polarized and the other is V-polarized, to-
gether with two (-#/2) phase shifters [1]. The latter
implementation is particularly useful to understand the
Hadamard transformation applied to more than one pho-
ton.

For a moment, let us assume that the ancillae are in
the perfect EPR states, |#gpgr)=|®*). Thus, the total initial
state is given by [Win)=|¢in)ce|¥EpR)12|¥EPR) 34, Where [¢in).s
is given by Eq. (1). The action of the multigate U’ on the
initial state |¥;,) can be compactly written as

U’ |\I,in> = N0k| dfok> + Nerr1|'r//err1> + Nerr2| (//err2> > (8)

where )= 1/\2(1D ) U0+ W) U)|Co)1zgs  with U7
=Py (j=0,1), N%=1/8, N2 =(8|ay|?+7|as)?+6)/186,
and N?_,=|as|?/16+(|as|?+|ay|?)/2. In general, |Cy)1954 is
of the form  oy|HHHH)+ao|/HHVV)+a3|VVHH)
- ay|[VVVV) which, in a special case of all equal coeffi-
cients, reduces to a four-entangled cluster state |C,).
State |er1) corresponds to undesired cases, which can be
excluded by measuring only modes ¢ and ¢ (the first post-
selection). In contrast, |#.,9) represents all the cases, in
which more than one photon reaches a detector; and so,
by using conventional detectors, they cannot be distin-
guished from one-photon states. Thus, |i9) corresponds
to undesired cases, which cannot be uniquely excluded via
the first postselection, but can be later excluded after
measuring modes 2 and 3 (the second postselection).

It is seen that, by assuming conventional detectors
without dark counts and the ancillae to be in the perfect
EPR states, one obtains the probability of success equal to
P=9*/8 and the fidelity equal to 1 as in the original
scheme of Zou et al. [4]. Note that a successful measure-
ment corresponds to clicks of four out of eight detectors
(see Table 3), which explains why P ~ 7*. Moreover, a fac-
tor of 1/8 is just equal to Ngk in Eq. (8).

So far, we presented the transformations of states by
assuming perfect sources of the ancilla states and no dark
counts of detectors both for Schemes I and II. Here, in
contrast, we use a numerical method assuming non-
perfect sources of ancillae and input states, and dark
counts.

For a conventional detector of efficiency #» and mean
dark count rate v, the positive-operator-valued measure
(POVM) elements associated with distinguishing vacuum
(ITy) and the presence of at least one photon (I1;) have the
form
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Table 3. Same as Table 2 But for Scheme II

D 2H D 2V D 3H D 3V Uj
1 0 1 0 I
0 1 0 1 I
1 0 0 1 a?
0 1 1 0 o?
D cH D 2% D tH D tV Vkl
1 0 1 0 I
0 1 1 0 oV
1 0 0 1 o
0 1 0 1 oVeo®

o= > e™(1- 7)"m)Xm|,

m=0

Iy =1 -1, 9)

where v= 1R gark 18 given in terms of the dark count rate,
R gark, and the detector resolution time 7,4 [20].

We assume now that the entangled ancilla states are
generated via spontaneous parametric downconversion
(SPDC). The output state of a type-II SPDC crystal or two
type-I SPDC crystals sandwiched together can be ap-
proximated as an EPR-like state of the form (see, e.g.,
[21,22])

lypr) = (1= ¥)7V|0)]0) + ¥(|HH) + [VV))]+ O(¥),
(10)

where the parameter vy is given by the product of interac-
tion time of the pump field and the crystal, their coupling
constant, and complex amplitude of the pump field. The
state given by Eq. (10) clearly differs from the exact EPR
state |®*) by the inclusion of vacuum (and also higher or-
der states) in the superposition. The parameter y? is usu-
ally of the order 10~4/pulse [20], and it describes the rate
of single-photon pair generation per pulse of the pump
field. Thus, the output state of the SPDC crystal contains
vacuum with a high probability, and its effect on the gate
operation cannot be neglected.

Each line in Schemes I and II can carry an arbitrary
number of photons in H and V polarizations. Using a
dual-line notation, one can write |H)=|1)g|0)y=|1x,0v),
[V)=10)z{1)y, and [0)=]0)#[0)y-

The state p’ after the action of the multigate U’ and the
measurement of photons by the detectors D.y, D.v, Dy,
and D,y is given by

p' =N Tr I AU o (U], (11)

where Tr, =Tty vimv, Pin=|¥Yin)¥inl, N is a renormal-
ization constant, and the POVM elements are given by
Eq. (9). Moreover, m, m’, n, and n’ are equal to 1 or 0,
corresponding to clicks or no clicks of the detectors ac-
cording to Table 3. By applying the conditional gate U7
=(0'?Y with j=0,1, defined in Table 3, the state p’ is
transformed to p’=Up (V). After the operation U”
g\)NPU(}%VP corresponding to the Hadamard gates at
lines 2 and 3, and after photon counting by the detectors
Doy, Doy, D3y, and Dgy, the state p” is transformed to
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pm — N Tr23[HgH)H£,2LY)H§LSH)H£L3IW U//p//(U//)f] , (12)

where Try3=Troy ov sm sv, while m, n, m’, and n' corre-
spond to clicks or no clicks of the detectors according to
Table 3. Note that the PBSs in front of all the detectors
just convert polarization qubits into dual-line qubits, so
they are redundant if we apply the dual-line notation con-
sistently in our numerical approach. The final output
state pyu=V*p"(V¥)" is obtained from p” by applying the
conditional gates V¥'=(c'")k® (¢'*)! (k,I=0,1) according
to Table 3.

For simplicity, in our numerical calculations we re-
served a three-dimensional Hilbert space for each mode;
thus we set |0)y=[1;0;0], |1)5z=[0;1;0], and |2)y
=[0;0;1], and analogously for V polarization. This is valid
by assuming dark count rates and the y parameter to be
relatively low. Otherwise, higher-dimensional Hilbert
spaces should be set.

Let us assume realistic values of conventional detectors
[23] (see also [20,24]): the detector efficiency is 7=0.7, the
dark count rate is R4, =100 s~!, and the detector reso-
lution time is 7,,=10 ns. For convenience, we assume
that all detectors are the same. The rate of single-photon
pair generation per pulse of the pump field is set to 2
=10"*/pulse [20]. For experimental verification of Scheme
I1, it is useful to assume that the input state |¢,) is also
generated by the SPDC and is given by Eq. (10). For brev-
ity, we analyze only the first cases in Table 3, where no
extra conditional operations are required. Under these as-
sumptions, we find that the fidelity drops to F=~0.97,
which is still relatively high.

5. CONCLUSIONS

We studied linear-optical implementations of two-qubit
universal gates including the iISWAP and CS/CNOT gates.
As shown in Table 1, the majority of these realizations of
nondestructive gates are based on single-photon detec-
tors. In contrast, we focused on practical implementations
using conventional detectors, which do not resolve a num-
ber of photons.

Despite the progress in constructing single-photon de-
tectors (see [25,26] and references therein), they are still
not commonly used. This conclusion can be drawn, e.g., by
analyzing experimental realizations of quantum gates
listed in Table 1. One of the drawbacks of single-photon
detectors is that their dark count rates are much higher
than those for conventional detectors [26]. There are also
proposals of multiple-photon resolving detectors including
cascade arrays of conventional detectors (connected with
beam splitters or with high-speed low-loss optical
switches [27]) and fiber-loop detectors [28]. Such detec-
tors, which are based on the idea of chopping up photons,
are conceptually very attractive but still experimentally
underdeveloped.

We analyzed a recent proposal of Wang et al. [8] to
implement the iISWAP gate using two entangled ancillae
in EPR states, classical feedforward, and conventional
photodetectors (of a finite efficiency 7) with the success
probability of 7%*/32 only. This scheme was based on an
implementation of the CS gate by Zou et al. [4] (scheme 17
in Table 1) with the success probability of 7*/8.
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We showed that the iISWAP gate can be decomposed
into the CS/CNOT gate and deterministic gates including
the SWAP, phase, or Hadamard gates. Thus, one can im-
mediately obtain schemes that implement the iSWAP
gate by using the CS/CNOT gates with relatively high
probabilities of success. In particular, by applying scheme
17 of Zou et al. [4] together with the iISWAP decomposition
scheme, we showed how to implement the iISWAP gate
with the success probability four times higher than that
in the scheme of Wang et al. [8].

Moreover, we studied the applicability of conventional
detectors to other implementations of nondestructive
gates originally designed for single-photon detectors. We
showed that the scheme of Pittman et al. [7] implement-
ing the nondestructive CNOT gate can be used also with
conventional detectors achieving the probability of suc-
cess equal to 7#%/4 assuming as a resource the
Gottesman—Chuang four-qubit entangled state [10] or
equal to 7%/8 for a pair of ancillae in the GHZ states.

We have also described another scheme based on con-
ventional detectors and ancillae in the EPR or EPR-like
states as a modified version of the scheme by Zou et al.
[4]. To verify the experimental feasibility of this scheme,
we showed how the quantum gate fidelity is deteriorated
due to realistic sources of ancilla and input states, and de-
tector imperfections to include dark counts, finite effi-
ciency, and no photon-number resolution.

APPENDIX A: COMPARISON OF THE
SCHEMES LISTED IN TABLE 1

Here, we give more explanations and compare various
linear-optical implementations of the CS/CNOT gates
listed in Table 1. Obviously, these schemes can be used
also to construct the iSWAP gate according to Fig. 1. The
implementations can be divided into several groups ac-
cording to, e.g., different resources as shown in Table 1: (I)
unentangled ancillae, (IT) entangled ancillae, and (III)
without ancillae at all. Our examples of the second group
include not only ancillae in the EPR states described in
Section 4, but also the Gottesman—Chuang four-
entangled state and the GHZ states discussed in Section
3.

We compared the schemes concerning the total prob-
ability of success, destructive or nondestructive character
of the implementations, application of conventional or
nonconventional detectors, and whether the feedforward
mechanism was applied. Classical feedforward means
that a scheme includes measurement devices of some
modes such that the classical outcomes of the measure-
ments can be used to change the remaining modes.

In group I, where one or two ancillae prepared in an
unentangled state were used, the highest probability of
success for the gates without feedforward accounts for
2/27 [29] (for scheme 3 in Table 1). It is worth noting that
there is only numerical evidence [30], but no analytical
proof (contrary, e.g., to the nonlinear sign shift gate [31])
that 2/27 is the rigorous tight upper bound on the success
probability using two unentangled ancillae without feed-
forward. Moreover, additional ancillae do not increase
this value. When feedforward is used the probability can
be increased to 1/8 for gates with two ancillae [32,33]
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(schemes 6 and 7) or even to 1/4 with one ancilla [34]
(schemes 4 and 5) at the expense of destructing the out-
put states. It should be mentioned that for all these
groups of implementations, the destructive gates (i.e.,
those for which not only ancilla states are measured)
achieve higher probabilities.

In group II, the best achieved probability of success ac-
counts for 1/16 without feedforward [3,7] (schemes 9 and
12) and 1/4 with feedforward [2,7,32] (schemes 8, 13, and
16).

Group IIT consists of the CS/CNOT gates based on the
idea of Hofmann and Takeuchi [35] (scheme 25) and
Ralph et al. [36] (scheme 26). Other examples in this
group are mainly experimental realizations of schemes 25
and 26 using a beam splitter with the reflection coefficient
equal to 1/3. The probability of success for them achieves
1/9, assuming the measurement of both the control and
target bits for the postselection.

Intentionally, we have not included implementations of
the CS/CNOT gates based on the idea of one-way compu-
tation using cluster states as proposed by Raussendorf
and Briegel [12]. According to their proposal one can
implement the CS/CNOT gate by performing single-qubit
measurement in an appropriate basis on a given cluster
state. Using this procedure with additional feedforward it
is possible to implement the CS/CNOT gate nearly deter-
ministically even with conventional detectors as de-
scribed, e.g., in [37—40] and experimentally realized in
[41-44].

However, it should be stressed that such implementa-
tions of the CS/CNOT gates based on cluster-type states
look deterministic only, because it is assumed something
strictly easier than applying the true CNOT gate on inde-
pendently prepared input photonic qubits. The latter task
should not be deterministic because of the no-go theorem
for the Bell measurement by linear optics.

It is worth clarifying that Table 1 includes two schemes
using the cluster-type states. Namely, schemes of Gottes-
man and Chuang [10] (scheme 18) and closely related pro-
posal of Pittman et al. [7] (scheme 19) are implementa-
tions of the nondestructive and nondeterministic CNOT
gate using a four-photon entangled state |y), which is
equivalent, under a local unitary transformation, to a
four-qubit cluster state. We included this gate in Table 1
since it does not realize the Raussendorf-Briegel protocol,
but uses the state |y) as an ancilla only.

In Table 1, we also have not included deterministic
implementations of the universal gates based on single-
photon cross-Kerr nonlinearities (see [1,45] and refer-
ences therein). Such schemes are fundamentally different
from probabilistic linear-optical schemes. Moreover, there
are serious doubts [46] on whether they can be useful for
quantum computing if applied for single photons in a
standard way.
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