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Abstract. We review some counterintuitive properties of standard measures describing quantum entanglement and violation
of Bell’s inequality (often referred to as “nonlocality”) in two-qubit systems. By comparing the nonlocality, negativity,
concurrence, and relative entropy of entanglement, we show: (i) ambiguity in ordering states with the entanglement measures,
(ii) ambiguity of robustness of entanglement in lossy systems and (iii) existence of two-qubit mixed states more entangled than
pure states having the same negativity or nonlocality. To support our conclusions, we performed a Monte Carlo simulation of
10° two-qubit states and calculated all the entanglement measures for them. Our demonstration of the relativity of entanglement
measures implies also how desirable is to properly use an operationally-defined entanglement measure rather than to apply
formally-defined standard measures. In fact, the problem of estimating the degree of entanglement of a bipartite system cannot
be analyzed separately from the measurement process that changes the system and from the intended application of the generated
entanglement.

1. Introduction

Quantum entanglement [1,2], being at heart of Bell’s theorem [3], is considered to be an essen-
tial resource for quantum engineering, quantum communication, quantum computation, and quantum
information [4]. There were proposed various entanglement measures and criteria to detect entangle-
ment. Nevertheless, despite the impressive progress in understanding this phenomenon (see a recent
comprehensive review by Horodecki et al. [5] and references therein), a complete theory of quantum
entanglement has not been developed yet.

It is a commonly accepted fact that the entropy of entanglement of two systems, which is defined to
be the von Neumann entropy of one of the systems, is the unique entanglement measure for bipartite
systems in a pure state [6]. However, in the case of two systems in a mixed state, there is no unique
entanglement measure. In order to describe properties of quantum entanglement of bipartite systems
various measures have been proposed. Examples include [5]: entanglement of formation, distillable en-
tanglement, entanglement cost, PPT entanglement cost, relative entropy of entanglement, or geometrical
measures of entanglement.

It should be stressed that classification of entanglement measures of mixed states and effective methods
of calculation of such measures are among the most important but still underdeveloped (with a few
exceptions) problems of quantum information [7].

Here, we shortly review counterintuitive properties of some entanglement measures in the simplest
non-trivial case of entanglement of two qubits.
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2. Measures of quantum entanglement

We will study quantum entanglement and closely related violation of Bell’s inequality for two qubits
in mixed states according to some standard measures:

(1)

(ii)

(1ii)

(iv)

To describe the entanglement of formation [8] of a given two-qubit state p, we apply the Wootters
concurrence [9] defined as

C(p) = max (O,Qmiax N — Z)\) (1)
7

in terms of A;’s, which are the square roots of the eigenvalues of /(G2 ® G2)p* (62 @ G2), where

o9 is the Pauli spin matrix and asterisk stands for complex conjugation. The concurrence C'(p) is

related to the entanglement of formation, Fr(p), as follows [9]:

Er(p) =W[C(p)], where W(x)=h <%[1 +v1-— L2]> , ()
and h(y) = —ylgy — (1 — y)lg(1 — y) is binary entropy.

The PPT entanglement cost, which is the entanglement cost [5] under operations preserving
positivity of the partial transposition (PPT), can be given as [10,11]:

Eppr(p) = 1g[N(p) + 1] 3)
in terms of the negativity:
N(p) =2 max(0, —p;). 4)
J

These measures are related to the Peres-Horodecki criterion [12,13]. In Eq. (4), u; are the
eigenvalues of the partial transpose p' .

The relative entropy of entanglement (REE) [14,15] is a measure of entanglement corresponding
to a “distance” of an entangled state from separable states. Precisely, the REE can be defined as
the minimum of the relative quantum entropy

S(ﬁ”ﬁsep) =Tr (/A)lg[) —plg psep) Q)

in the set D of all separable states pep, 1.€.,
Er(p) = min_ S(pl|psep) = S(pl|Pess ) (6)
psepED

where p.ss denotes the closest separable state (CSS) to p. Numerical problems to calculate the
REE are shortly discussed in Appendix A.

To describe a degree of violation of Bell’s inequality [3] due to Clauser, Horne, Shimony and
Holt (CHSH) [16], we use the modified Horodecki measure [17,19]:

B(p) = wnax 0, max (u; + ) — 1], ©)

which is given in terms of the eigenvalues u; (j = 1,2,3) of U; = TﬁT T, where T} is a real
matrix with elements ¢,,,,, = Tr [p (G, @ Gn)], TﬁT is the transposition of 7, and &, (1 = 1,2, 3)
are Pauli’s spin matrices. For short, we refer to 5 as “nonlocality” (measure).
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For any two-qubit pure state |/), the nonlocality B is equal to the entanglement measures C' and NV:

B(l) = C(1)) = N(|).- ®)

It is seen that for this case the measures B, ' and /V correspond to the relative entropy of entanglement
FEr and von Neumann’s entropy:

WIB(|¥))] = WIC ()] = WIN([¥))] = Er(|¥)) = ENeumann (), ©)

where W is given in Eq. (2).

In the following we describe somewhat surprising properties of the entanglement measures for two-
qubits in mixed states. For brevity, by referring to the entanglement measures, we also mean the
nonlocality 5.

3. Ambiguity in ordering states with entanglement measures

Our problem can be posed as follows:

Problem 1. Two measures of entanglement, say &' and E", imply the same ordering of states if the
condition [18]

E'(pr) < E'(p2) & E"(p1) < E"(p2) (10)

is satisfied for arbitrary states p1 and po. The question is whether this condition is fulfilled for all “good”
entanglement measures.

In early fundamental works on quantum information, it is often claimed that good entanglement
measures should fulfill this condition. For example, in Ref. [14] it was stated that: “For consistency, it
is only important that if /; is more entangled then po for one measure than it also must be for all other
measures.”

For qubits in pure states, condition (10) is always fulfilled, since all good measures are equivalent.
However, standard measures can imply different ordering of mixed states even for only two qubits.
This was first shown numerically by Eisert and Plenio [18] by analyzing their results of Monte Carlo
simulations of two-qubit states. The problem was then analyzed by others [19-28].

To our knowledge, the first analytical examples of two-qubit states violating condition (10) were given
in Refs. [19,23]. In Ref. [24], to find analytical examples of extreme violation of Eq. (10), we applied
the results of Verstraete et al. [29] concerning allowed values of the negativity /V for a given value of the
concurrence C'.

Note that the violation of condition (10) cannot be observed for pure states of two-qubit systems. By
contrast, for three-level systems (the so-called qutrits), analytical examples of violation of the condition
are known even for pure states [20-22].

The property that ordering of states depends on the applied entanglement measure sounds counter-
intuitive. Nevertheless, it is physically sound since states, which are differently ordered according to
two measures, cannot be transformed into each other with 100% efficiency by applying local quantum
operations and classical communication (LOCC) only. Virmani and Plenio [21] proved in general terms
that all good asymptotic entanglement measures are either identical or have to imply different ordering
on some quantum states.
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In Ref. [25], the three measures (the negativity, concurrence, and REE) were compared and found
analytical examples of states (say /' and p”) for which one measure implies state ordering opposite to
that implied by the other two measures:

C(p') <cp"), N@E)<NG@"), Er(f) > Er(p");
Cp) <C("), N@)>N@"), Er(Y) <Er(p"); (11)
C(p) > "), N@E)<N(G"), Er(p) < Er(p").

There can be found other analytical examples of states exhibiting even more peculiar ordering of states
according to these three measures. Examples include pairs of states for which a degree of entanglement
is preserved according to one or two measures but it is different according to the other measures, e.g.:

Cp)y=C@"), N@)<N@"), Er(p) > Er(p");

C(ph) <C@"), N@)=N(@@"), Er(p)>Er(p"); (12)
C(p)y<C@"), N@E)>N@E"), Er(p)=Er(").

and
C(p)=C@"), N(@)=N(@"), Er())<Er(p");

C(p)=C@"), N@E)<N@"), Er(Y)=Er(p"); (13)
c@)<c@), N@E)=N@"), Er(p)=Er(})").

The comparative analyses presented in Refs. [19,23-25] are not only related to a mathematical problem
of classification of states according to various entanglement measures. They could also enable a deeper
understanding of some physical aspects of entanglement.

3.1. Nonequivalent states with the same entanglement according to Er, C and N

Problem 2. Find analytical examples of *nonequivalent™® two-qubit states [ and p" exhibiting the same
entanglement of formation [C(p') = C(p")], the same PPT entanglement cost [N(p') = N(p")], and
the same relative entropy of entanglement [Er(p) = Er(p")]?

As a first attempt to find such an example, let us compare two different pure states:
') = €4ol00) + ¢4, |01) + €1[10) + 11 [11),
[¥") = cf0]00) + ¢4, 101) + ¢|10) + cfy[11), (14)
fulfilling the condition
|co0ch1 — o110l = lcoocit — o1 ol (15)

which guarantees the same degree of entanglement according to the measures C', N and F'r. However,
states [¢') and [¢)"") can be transformed into each other by local operations. Namely, by applying local
rotations, |1) can be converted into (p = p/, p")

[ (p)) = v/pl01) + /1 —p[10) (16)
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for which the negativity and concurrence are equal to 21/p(1 — p). The same value is obtained also
for [1)(1 — p)), but this state can be transformed into |¢)(p)) by applying the NOT gate to each of the
qubits. This shows that pure states are not a good example of states satisfying the conditions specified in
Problem 2.

As a second attempt, let us compare two Bell diagonal states described by /5 and p7, with the
same maximum eigenvalue max; A; > 1/2. These states have the same entanglement according to the
measures C', N and Fr. However, as shown in Ref. [25], states p/; and p/; exhibit different nonlocality,
i.e., violate Bell’s inequality to different degree. Specifically, the nonlocality B for a Bell diagonal state
is given by [25]:

B(ps) = wnax{oa mas [0 = X2+ O = A0)2] = 1, (17)

where subscripts (4, j, k) correspond to cyclic permutations of (1,2,3). It is seen that the violation
of Bell’s inequality depends on all values of A;, while the entanglement measures Ivp, ', and N
~I

depend only on the largest value max; A\; > 1/2. Thus, states /5 and /%, fulfilling the conditions

eig(p’p) # eig(ps) and max{eig(p’z)} = max{eig(p%)} > 1/2, have the same entanglement measures:

Er(ply) = Er(p}), C(ply) = C(p) and N(plz) = N(p7), but the states are not equivalent as they
exhibit different nonlocality, B(p';) # B(p'5).

4. Ambiguity of robustness of entanglement
4.1. Maximally entangled pure states in lossy cavities

Let us analyze the following problem:

Problem 3. Which maximally entangled pure states are the most fragile or robust to decoherence of two
qubits in lossy cavities?

This problem was addressed in Refs. [19,23] by analyzing decoherence of optical photon-number
qubits stored initially in the following three maximally entangled (pure) states (MES):

) = 2= (001) = [10). [ ¥2) = —(100) + 1)) (8)
) = 5100) + [01) + [10) = 11)) = —=([0,+) + [1, ). (19)

where |£) = (|0) & |1))/+/2. State |¥3) can be obtained from |¥s) by applying Hadamard’s gate to the
second qubit.

To address Problem 3, let us analyze two entangled qubits in a superposition of vacuum and single-
photon states (so-called photon-number qubits) in a lossy cavity (or, equivalently, in two cavities). Then,
one can apply the standard master-equation approach to describe the effect of radiative decay of cavities
(i.e., zero-temperature reservoirs) on entanglement of two qubits according to the concurrence C'x (),
negativity Ny (1), and nonlocality By (t) [19]. In Fig. 1, it is assumed that the qubits are initially in the
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Fig. 1. Decay of entanglement between two qubits initially in the maximally entangled states |W¥y) (for k = 1,2,3) in lossy
cavities with damping rates v = 0.1 described by: (a) the negativity /N, (b) the concurrence C', and (c) the nonlocality B. It is
seen that there is no simple answer to the question which of the initial states |V},) is the most fragile (or robust) to decoherence.
In the discussed model of dissipation, the fastest decoherence exhibits: |¥1) according to NN, [V2) according to C, and |V3)
according to B.

MES |W¥}) for k = 1,2,3 and the cavity damping rate is v = 0.1. By analyzing Fig. 1, one can conclude
that entanglement decays in this model fulfill the inequalities:

Na(t) = Ns3(t) = Ni(?),
Bi(t) = Ba(t) > Bs(t),
Ci(t) 2 C3(t) = Ca(). (20)

It is worth noting that due to the Markov approximation assumed in the derivation of the master equation,
our conclusions are valid for evolution times ¢ short in comparison to reservoir decay time v~ !, and much
longer than correlation time 7. of reservoir(s), i.e., 7. K t — ty <K v 1 where ¢ is the initial evolution
time. Thus, in this specific dissipation model, the most fragile to dissipation is |¥) according to the
negativity NV, | W) according to the concurrence C, and |W3) according to the nonlocality B. The results
seem to be contradicting, but it should be remembered that measures €', N and B describe different
aspects of mixed states even if for pure states they coincide ¢' = N = B. Results of Refs. [19,23]
clearly confirm the relativity of state ordering by €', N and B. This example of Ref. [19] was probably
the first demonstration of this property in a real physical process.

4.2. Maximally entangled mixed states in lossy cavities

Here, we analyze decay of Werner’s state, which can be defined for p € (0, 1) as [31]:

A

AP 0) = plw ) (0| + 52T e, @1

which is a mixture of the singlet state, |¥), and maximally mixed state, given by I @ I, where I is

identity operator. Original Werner’s state can be generalized for mixtures of other Bell states with Iol.
Thus, one can define Werner-type state as follows (k = 2, 3):

PP 0) = plU)(Uy + 22 T e ], (22)

where |Ws) and |W3) are given by Egs (18) and (19), respectively.
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Fig. 2. Decay of entanglement of two photon-number qubits in a lossy cavity. Entanglement is measured by the negativity (a)
Ni and (b) AN, = N — N; for qubits initially in Werner’s states p}(f)(()) for k = 1,2,3 and p = 0.8. The cavities damping
rate is v = 0.1. For clarity, the scale of figure (b) is enlarged in comparison to figure (a).

Werner’s states can be considered as maximally entangled mixed states (MEMS) of two qubits since
the amount of entanglement of these states cannot be increased by any unitary transformation [32] and
they are maximally entangled (according to the concurrence) for a given value of linear entropy [33].

Let us ask more specific question related to Problem 3:

Problem 4. Which MEMS are the most robust to dissipation in the discussed model of lossy cavities?

Even for such formulated question there is no simple answer. To show this we analyze the same model
of decaying photon-number qubits in a lossy cavity (or cavities) as studied in Sect. 4.1, but for qubits

initially in Werner’s states [)ggp ) (0) for k =1,2,3 and p = 0.8. Let us compare the decays of the negativity
as shown in Fig. 2 and also described in detail in Table [ in Ref. [19]. It is seen that a given Werner state
can be more robust to decay than another Werner’s state at short evolution times but, in turn, less robust
at longer times. The differences between the negativity values for various states shown in Fig. 2 are not
very large but still distinct.

5. Mixed states more entangled than pure states

Problem 5. Can two-qubit *mixed* states be more entangled than *pure™ states according to some
entanglement measure £ at a fixed value of another entanglement measure £" assuming £'(p) < E"(p)
for any state p?

It can be shown analytically that pure states are the upper bound for the negativity for a given value
of the concurrence [29], as shown in Fig. 3(a), and the upper bound for the REE as a function of the
concurrence [15], as presented in Fig. 3(b). Similar conclusions can be drawn for, e.g., the nonlocality
for a given value of the concurrence [see Fig. 3(c)], and the nonlocality as a function of the negativity.

Thus, it is reasonable to conjecture that pure states are the upper bound also for the REE, e.g., for
a given value of the negativity. But it was shown in Refs. [25,28] that this conjecture is wrong [see
Fig. 3(e)]. This property can be demonstrated analytically on the example of, e.g., the Horodecki state [5]
defined as a mixture of the maximally entangled state [e.g., the singlet state |1 )] and a separable state
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Fig. 3. (Color online) Entanglement and nonlocality measures for 10° two-qubit states / generated by a Monte Carlo simulation.
Green curves correspond to pure states, and blue curves show the upper and lower bounds of a one measure £’(p) as a function
of another £”(p). It is seen that pure states |¢/) lie for the whole range of abscissa at the upper bound of: (a) the negativity
N(p) for a given value of the concurrence C'(p) (b) the REE Er(p) vs C'(p), (c) the nonlocality B(p) vs C(p), and (d) B(p)
vs N(p). However, for (¢) Er(p) vs N(p) and (e) Er(p) vs B(p) pure states are at the upper bound for abscissa values close
to one only. Thus, in the cases (e) and (f), the entanglement of mixed states can exceed that of pure states for abscissa values
close to zero.

orthogonal to it (e.g., |00)):
P = p[W) (W] + (1 = p)]00)(00], (23)

where p € (0,1). The negativity and REE for the Horodecki state are equal to

NGEY = /(1 =p)2+p2 — (1 —p), (24)
Er(p™) = B (N) = 2h(1 - p/2) — h(p) — p, (25)

respectively, where p = /2N (1 + N) — N and h(x) is binary entropy. By comparing the REEs for
Horodecki’s state and for pure states, it can be shown that [25,28]:

ED(N)y> BEP(N)  for0 < N < Ny, (26)
ED(N)y < BD(N)  for Ny < N <1, 27)

where Ny = 0.3770 - - - and EE%H) (Ny) = E;P)(Ny) = 0.2279 - - -, which corresponds to point Y in

Fig. 4. These inequalities were shown analytically by expending E](%H) (N) and EI(%P) (N) in power series
of N = ¢ (N =1 — ¢) for values close to 0 (1). Moreover, mixed states corresponding to blue region
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Fig. 4. (Color online) The relative entropy of entanglement (REE), Kr(p), as a function of the negativity, N (), for pure
states (thick solid curve), Horodecki states (dashed curve) and Bell diagonal states (thin solid curve). Blue and yellow regions
correspond to mixed states with the REE higher than that for pure states for a given value the negativity. States in blue region
are described in the text.

in Fig. 4, for which the inequality in Eq. (26) holds, can be obtained by mixing the Horodecki state jr
with a separable state pﬁg) closest to prr [25]:

P, N) = (1= w)p™ +pl D), (28)

where N € (0,1), p € (\/2N(1+ N)— N,1)and x = [(N + p)2 — 2N (1 4+ N)]/[p*(1 + N)]. The

closest separable state pf:i;’) is given by (¢ = p/2):

1
PED () =q(1 = q) D (=177, 1 — j)(k, 1 — k[ + (1 — ¢)?|00)(00] + ¢*[11){11]. (29)
7,k=0

By applying Vedral-Plenio’s theorem [15], the REE can be found as follows [25]:
Br(p™) = B0, N) = g+ 201 ($2) + e () (30)

where i1 = 1 — gz and 5o = 1 — 2q + ¢%x. With this choice of 2, parameter NV is just the negativity
of ptH /)(p, N). States corresponding to blue region in Fig. 4 can be obtained as special cases of state
P (p, N) for N intherange 0 < N < Ny and proper values of p. Thus, it is seen that there are mixed
states for which the REE is greater than that for pure states at least in the range NV € (0, Ny ). Later, in
Ref. [28], it was shown that the generalized Horodecki states exhibit this property in slightly larger range
as shown by yellow region in Fig. 4. There is some evidence [28] that the upper bound of the REE as a
function of the negativity is likely to be given by these states.

Recently, we also analytically demonstrated [30] that the entanglement REE for a given nonlocality for
mixed states exceeds that for pure states [see Fig. 3(f)]. Moreover, this effect occurs in the larger range
of abscissa values in comparison to the dependence of the REE on the negativity, as seen by comparing
Figs 3(e) and 3(f).
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6. Conclusion

In this short review, we presented a few intriguing properties of some standard entanglement measures
for two qubits. Our examples include a comparison of the negativity corresponding to the Peres-
Horodecki criterion [12,13], the Wootters concurrence [9], and the relative entropy of entanglement of
Vedral et al. [14]. Moreover, the predictions of these measures were also compared with the Horodecki
measure [17] of the violation of Bell’s inequality, referred here to as “nonlocality”.

We discussed the following three counterintuitive properties of entanglement measures: (i) entangled
states cannot be ordered uniquely with the entanglement measures, which also implies that (ii) fragility
or robustness of entanglement of dissipative systems cannot be uniquely classified by entanglement
measures, and (iii) there are two-qubit mixed states, which are more entangled (according to the REE)
than pure states for a given negativity or nonlocality.

It is well known that there is no unique entanglement measure for mixed states. But the relativity of
entanglement measures and its implications are more counterintuitive. Our demonstration might indicate
that operational approaches to the quantum entanglement problem are more meaningful rather than
standard approaches based on formally-defined measures. We find the problem of defining operational
entanglement measures analogous to operational approaches to the quantum phase problem ! posed by
Noh et al. [34,35]. The idea is to define entanglement (or phase) measures in terms of what actually is,
or can be, measured.

We hope that the discussed problem of non-unique ordering of states according to formally-defined
entanglement measures can stimulate investigations of operationally-defined measures oriented for some
specific experiments.
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Appendix A: Notes on the calculation of the REE

The concurrence, negativity and nonlocality can be calculated easily. By contrast, there has not yet
been proposed an efficient method to calculate the REE for arbitrary mixed states even in the case of two
qubits [36]. Analytical formulas for the REE are known only for some special sets of states with high
symmetry (see [5,37] and references therein). Thus, usually, numerical methods for calculating the REE
have to be applied [15,38,39].

It is a long-standing problem, posed by Eisert [36], of obtaining an analytical compact formula for
the REE for two qubits. The problem is equivalent to finding the closest separable state j.qs for a given
entangled state p. In Ref. [37], a few arguments were given indicating that this problem, probably, cannot

Noh et al. in Ref. [35] wrote: “There has been a good deal of discussion in the past of the most appropriate dynamical
variable to represent the phase of a quantum field, and many candidates have been studied. Our analysis suggests that this
question may not have a general answer with respect to the measured phase operators, because different measurement schemes
lead to different operators. As in many other quantum-mechanical problems, it seems that questions about the value of a
dynamical variable cannot be divorced from the measurement process that generates the ensemble.”
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be solved analytically for arbitrary states. Nevertheless, there exists a solution to the inverse problem
of finding an analytical formula for p for a given closest separable state j.s as derived by Ishizaka et
al. [40,37].

The complexity of the problem can be explained (see, e.g., Ref. [15]) by virtue of Caratheodory’s
theorem, which implies that any separable two-qubit state can be decomposed as

16
frep = 3 B2 (0 @ [P P, (A1)
j=1

where the kth (k = 1, 2) qubit pure states can be parametrized, e.g., as follows
|’(/J§k)> = oS ag»k) |0) + exp(in§k)) cos ag»k) 1), (A2)

and p; = sin ¢;_1 H,li ;cos ¢ with o = 7 /2. Thus, the minimalization of the quantum relative entropy
S(p||psep), given by Eq. (5), with psep, described by Eq. (A1), should be performed over 16 x 4 + 15
= 79 real parameters. Usually (see, e.g., Refs. [15,38]), gradient-type algorithms are applied to perform
the minimalization. Rehacek and Hradil [38] proposed a method resembling a state reconstruction
based on the maximum likelihood principle. Doherty et al. [39] designed a hierarchy of more and more
complex operational separability criteria for which convex optimization methods (known as semidefinite
programs) can be applied efficiently. One can also use an iterative method based on Ishizaka formula [40,
37] for the closest entangled state for a given separable state in order to find the closest separable state
for a given entangled state. Our algorithms for calculating the REE are based either on the latter method
or on a simplex search method without using numerical or analytic gradients.
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