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Quantum correlations may be measured by means of the distance from the state to the subclass of states �

having well-defined classical properties. In particular, a geometric measure of asymmetric discord [Dakić et al.,
Phys. Rev. Lett. 105, 190502 (2010)] was recently defined as the Hilbert-Schmidt distance from a given two-qubit
state to the closest classical-quantum (CQ) correlated state. We analyze a geometric measure of symmetric discord
defined as the Hilbert-Schmidt distance from a given state to the closest classical-classical (CC) correlated state.
The optimal member of � is just a specially measured original state for both the CQ and CC discords. This
implies that this measure is equal to the quantum deficit of postmeasurement purity. We discuss some general
relations between the CC discords and explain why an analytical formula for the CC discord, contrary to the
CQ discord, can hardly be found even for a general two-qubit state. Instead of such an exact formula, we
find simple analytical-measurement-based upper bounds for the CC discord which, as we show, are tight and
faithful in the case of two qubits and may serve as independent indicators of two-party quantum correlations. In
particular, we propose an adaptive upper bound, which corresponds to the optimal states induced by single-party
measurements: optimal measurement on one of the parties determines an optimal measurement on the other party.
We discuss how to refine the adaptive upper bound by nonoptimal single-party measurements and by an iterative
procedure which usually rapidly converges to the CC discord. We also raise the question of optimality of the
symmetric measurements realizing the CC discord on symmetric states and give a partial answer for the qubit
case.
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I. INTRODUCTION

Entanglement is a fundamental type of quantum correlation
that has come to be seen as an important resource in quantum
information (see, e.g., Ref. [1]). However, quantum mechanics
supports other types of quantum correlations in composite
systems, distinct from entanglement, such as so-called quan-
tum discord [2,3], whose characterization is the topic of much
current research (see the review in Ref. [4] and references
therein). Quantum discord is an information-theoretic measure
of correlations where quantum correlations are identified in
terms of the difference of two classically equivalent definitions
of mutual information [2,3] in a composite system. A different
possible perspective on the quantumness of correlations is
captured in terms of quantum deficit functions [5], i.e.,
differences between certain properties of a state before and
after classical-type measurements are performed on it. One
such important property is the optimal thermodynamic work
that can be extracted from a state in scenarios of classical
(local) measurement complemented by zero-, one-, and two-
way classical communication between measuring parties [5]
(a state is classical if the deficit is 0). While the two-way sce-
nario is rather involved, the zero- and one-way quantum work
deficits are simply equal to the so-called relative entropy of
quantumness [6,7]—the minimal entropic “distance” measure
to specific classes of classical-type states.

Distance measures to sets of states with only classical
correlations are promising and, conceptually, simple ways
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of identifying quantum correlations. Recently, e.g., Dakić
et al. [8] introduced a geometric measure of discord of a state
as its minimal Hilbert-Schmidt distance metric to the set of
states with null quantum discord [these states are one-side
classical, or so-called classical-quantum (CQ) states of the
form ρ =∑i piPi ⊗ ρi , where Pi’s are orthogonal projections
with rank 1 and ρi’s are quantum states].

A natural, symmetric measure of quantum correlations
can be obtained by constraining to a set of fully classical
states, i.e., classical-classical (CC) states, which are diagonal
in some product basis [9]. The optimization process required
in the evaluation of (general) quantum correlation measures
renders their calculation challenging. Here, we shall build
on an equivalence between geometric measures of quantum
discord and quantum deficits of purity to provide tight and
faithful upper bounds on the symmetric geometric discord.

While, in general, geometric discord does not satisfy
monotonicity properties (see Ref. [10]), which are usually
expected for measures of quantum correlations, it may serve
as a good lower bound for the relative entropy of discord [6,7]
(remarkably different from the relative entropy of dissonance
[7]). Moreover, geometric discord can be an indicator of
quantum correlations.

The paper is organized as follows. In Sec. II, we provide
some basic definitions and theorems for the discords in relation
to quantum deficit. In Sec. III, we present our main result—the
measurement-based upper bounds on the CC discord. In
Sec. IV, we give explicit formulas for the upper bounds in
the case of two qubits. In Sec. V, we present an analytical
comparison of the discords and upper bounds for some
classes of states. In Sec. VI, we present a few methods with
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FIG. 1. (Color online) Venn-type diagram showing the sets of the
CC (�S = �AB ), CQ (�A), and QC (�B ) states together with the
closest states σ ∗

i (i = S,A,B) according to the CC (DS), CQ (DA),
and QC (DB ) geometric discords, respectively. States σS′ and σS′′ ,
which correspond to the adaptive upper bound D

(aub)
S , are the closest

CC states for σ ∗
A and σ ∗

B , respectively. This is an intuitive graph, but
more precisely, the point σ ∗

A (σ ∗
B ) should be on the line between ρ and

σS′ (σS′′ ).

examples for optimization of the upper bounds. We conclude in
Sec. VII.

II. BACKGROUND

We start by recalling the quantum zero-way and one-way
work deficit [6]. Let the sets of states �A, �B , and �S

correspond to CQ, quantum-classical (QC), and CC states,
respectively (see Fig. 1). Note that the set �S ≡ �AB =
�A ∩ �B is obviously in the intersection of the other two
sets, and any element of the intersection is in the set.
Let M̃X correspond to all von Neumann’s measurements
that are associated with the set �X (X = A,B,S) in the
following natural way, M̃A = MA ⊗ IB , M̃B = IA ⊗ MB ,
and M̃S = MA ⊗ MB , where MA, MB are just local von
Neumann’s measurements performed by Alice and Bob in
some orthonormal basis. We define the corresponding one-way
(X = A or B) and zero-way (X = S) quantum work deficits
as

�X(ρ) = min
M̃X

S[M̃X(ρ)] − S(ρ), (1)

where S(·) is the von Neumann entropy. The relative entropy
of quantumness [6,7] is

DR
X(ρ) = min

σ∈�X

S(ρ||σ ). (2)

There is an observation (see Sec. VI D in Ref. [6]) that links
the above quantities.

Observation 1. For any quantum state it holds that �X(ρ) =
DR

X(ρ). Furthermore,

DR
X(ρ) = min

M̃X

S(ρ‖M̃X(ρ)), (3)

which means that the optimal state σ ∗
X, saturating the minimum

in Eq. (2), comes from the optimal measurement in Eq. (1) of
the examined state M̃∗

X(ρ) = σ ∗
X. A proof of Observation 1 is

given in Appendix A.
Lemma 1. For any function f , any Hermitian operators F

and G, and any von Neumann’s measurement operationM, we
have tr[Ff (M(G))] = tr[M(F )f (M(G))]. See Appendix A
for a proof of this lemma.

Geometric discord as a purity deficit. Geometric measures
of the discord of a state are also similarly completely
determined by optimal measurements on it, as noted by Luo
and Fu [11] and elucidated in the review by Modi et al. [4].
We formulate this property as follows.

Observation 2. Let σ ∗
X ∈ �X be an optimal state saturating

the minimum for quantum geometric discord [8],

DX(ρ) = min
σ∈�X

‖ρ − σ‖2, (4)

defined by the norm ‖A‖ =
√

tr(A†A). Then it is realized by
some optimal measurement M̃∗

X on ρ, i.e., σ ∗
X = M̃∗

X(ρ), and
satisfies the Pythagorean formula:

DX(ρ) = ‖ρ − σ ∗
X‖2 = ‖ρ‖2 − ‖σ ∗

X‖2. (5)

Thus, M̃∗
X maximizes the postmeasurement purity

maxM̃X
tr[(M̃X(ρ))2], leading to the alternative formula:

DX(ρ) = min
M̃X

‖ρ − M̃X(ρ)‖2

= tr(ρ2) − max
M̃X

tr[(M̃X(ρ))2]. (6)

See Appendix A for a proof of this observation. Note that
choosing X = A corresponds to one-side or asymmetric (CQ)
geometric discord [8], while X = S corresponds to the sym-
metric (CC) version [9]. The last form of Eq. (6) for geometric
discord highlights an immediate analogy to the original deficit
of Eq. (1) upon replacing the original von Neumann entropy
S(ρ) ≡ Sα=1(ρ) with the Tsallis entropy Sα(ρ) = − 1

α−1 tr(ρα)
(for α = 2). We shall refer to the left-hand-side of Eq. (6) as a
purity deficit, which is a special case of entropy-based deficits
�

α,T
X := minM̃X

Sα[M̃X(ρ)] − Sα(ρ). For completeness, we
provide a proof of Observation 2 in Appendix A (see Ref. [11]
and Secs. II G and III B2 in Ref. [4] for alternate proofs).

Simple consequences. Observation 2 leads us to:
Lemma 2. For both the geometric discords DX and the

quantum discords DR
X based on relative entropy, the following

hold: (i) The CQ and QC discords bound the CC discord from
below, DS(ρ) � max[DA(ρ),DB(ρ)]. (ii) We have simple im-
plications DA(ρ) = 0 ⇒ DS(ρ) = DB(ρ) and DB(ρ) = 0 ⇒
DS(ρ) = DA(ρ), with the optimal measurement M∗

S being a
product of the measurement realizing the respective CQ or QC
discord and the one that commutes with the initially classical
subsystem. (iii) DS(ρ) = 0 ⇔ DA(ρ) = DB(ρ) = 0.

See Appendix A for a proof of this lemma.

III. MEASUREMENT-BASED UPPER BOUNDS
ON THE CC DISCORD

We now turn to the main result of this paper. The explicit
calculation of the geometric CC discord is, in general, difficult,
as it involves optimization over all measurements of the
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required form given by Eq. (6). In particular, the CC discord
involves optimization over two sides of the states and so
involves twice as many parameters as the CQ case. For the
case of CQ-type discord, certain lower bounds have been
found [11,12]. On the other hand, we show here that the
measurement-based formula Eq. (6) can be fruitfully used
to construct useful upper bounds on the CC discord. The
conclusions of the present paragraph are valid for the geometric
and relative entropy discords and for quantum deficit based on
any quantum entropy Sα .

Let us recall that one refers to a bound as (i) tight if
it coincides with the bounded quantity on some nontrivial
subclass of states and (ii) faithful iff it vanishes on any state
for which the bounded quantity vanishes.

A. Nonadaptive upper bound

An arbitrary measurement over two sides of the state is, by
definition, an upper bound on discords:

D
σ=MS (ρ)
S (ρ) = Sα(σ ) − Sα(ρ)

= Sα[MS(ρ)] − Sα(ρ) � DS(ρ), (7)

where α ∈ [0,∞]. For ease of notation, let M∗
X,ρ denote the

optimal measurement leading to the discord DX of state ρ.
The product of the two (CQ and QC) optimal measurements
on state ρ leads to the first interesting bound, which we shall
call the simple product (or nonadaptive) bound, for which the
measurement-induced state is

σ̃ = [M∗
A,ρ ⊗ M∗

B,ρ](ρ) (8)

in Eq. (7). This is one of the simplest kinds of bounds
motivated by asking how the CC and CQ discords (or optimal
measurements) are related. Indeed, we have noted in Lemma 2
that this type of bound trivially coincides with the CC discord
in the special case where one of the CQ discords is null.

B. Adaptive upper bound

One can further introduce refined bounds that are adaptive,
i.e., measurement on one of the parties is performed on the
optimal state corresponding to the other party, as below:

σ̃ ′ = [M∗
A,ρ ⊗ M∗

B,M∗
A,ρ (ρ)

]
(ρ), (9)

σ̃ ′′ = [M∗
A,M∗

B,ρ (ρ) ⊗ M∗
B,ρ

]
(ρ). (10)

Note that part ii of Lemma 2 immediately leads to the
following.

Fact 1. The bounds, (7), based on measurements, given by
Eqs. (8)–(10), are faithful, so they may serve as independent
indicators of two-side quantum correlations.

C. Iterative procedure for the adaptive upper bound

The adaptive form of Eqs. (9) and (10) allows for an iterative
procedure that may be helpful in refining upper bound on the
CC discord. Indeed, let X and X′ be two opposite subsys-
tems [i.e., (X,X′) = (A,B) or (X,X′) = (B,A)]. Consider the
following procedure.

Step 1. Choose the initial subsystem X = X0 (either A or
B), and initial measurement MX = M∗

X0
.

Step 2. Iterate the following steps.

Step 2.1. Given input measurement MX on X calculate the
output, i.e., optimal measurement M∗

X′,MX(ρ) on the second
system X′.

Step 2.2. Put X′ in place of X and the output M∗
X′,MX(ρ) as

the input for Step 2.1; calculate its output again.
Step 2.3. Calculate the bound on the discord, given by

Eq. (7), with the help of the measurement MS being the tensor
product of the input-output pairs of measurements on X and
X′ presented in Steps 2.1 and 2.2; take the minimum of the
two.

Step 2.4. Take the minimum of the output of Step 2.3 of
two subsequent rounds.

Step 3. Stop the procedure if the outcome of Step 2.4 does
not change.

IV. TWO-QUBIT CASE REVISITED

We now consider the case of the CC discord of two qubit
states. The standard Bloch representation of any two-qubit
state is

ρ = 1

4

⎛
⎝I ⊗ I + �x · �σ ⊗ I + I ⊗ �y · �σ +

3∑
i,j=1

Tijσi ⊗ σj

⎞
⎠

≡ f (�x,�y,T ) ≡ f (|x〉,|y〉,T ), (11)

where �σ = [σ1,σ2,σ3] is a vector of three Pauli matrices, T

is the correlation matrix with elements Tij = tr[ρ(σi ⊗ σj )],
and �x = [x1,x2,x3]T ≡ |x〉 and �y = [y1,y2,y3]T ≡ |y〉 are the
(column) local Bloch vectors with components xi = tr[ρ(σi ⊗
I )] and yi = tr[ρ(I ⊗ σi)].

A. CC vs CQ discords

We state the following simple
Fact 2. Any two-qubit state ρ = f (|x〉,|y〉,T ) is mapped

into

σ(n̂)A (ρ) = f (|n̂〉〈n̂|x〉,|y〉,|n̂〉〈n̂|T ), (12)

σ(m̂)B (ρ) = f (|x〉,|m̂〉〈m̂|y〉,T |m̂〉〈m̂|), (13)

σ(n̂,m̂)S (ρ) = f (|n̂〉〈n̂|x〉,|m̂〉〈m̂|y〉,|n̂〉〈n̂|T |m̂〉〈m̂|) (14)

by the measurement of (i) n̂�σ on the left qubits, (ii) m̂�σ on the
right qubits, and (iii) n̂�σ and m̂�σ on the left and right qubits,
respectively.

This follows from Lemma 1 and the fact that the diagonal
of n̂�σ vanishes in the eigenbasis of any n̂′ �σ with n̂′ ⊥ n̂.

Observation 2 and Fact 2 directly lead to the analytical
formula (see Ref. [8]) for the CQ discord DA as follows:

DA(ρ) = ‖ρ‖2 − ‖σ ∗
A‖2

= tr(ρ2) − max
k̂

(
tr
[
σ(k̂)A (ρ)

]2)
= 1

4

(‖�x‖2 + ‖T ‖2 − max
k̂

[〈k̂(|x〉〈x| + T T T )|k̂〉])
= 1

4 (‖�x‖2 + ‖T ‖2 − kx) = 1
4 (trKx − kx), (15)

where k̂x is the largest eigenvalue of matrix Kx = |x〉〈x| +
T T T. For clarity, we also write

4‖ρ‖2 = 1 + ‖�x‖2 + ‖�y‖2 + ‖T ‖2

≡ 1 + 〈x|x〉 + 〈y|y〉 + tr(T T T ). (16)
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However, Observation 2 yields more, viz., the eigenvector
|k̂x〉 corresponding to the eigenvalue kx defines the optimal
measurement of party A on ρ producing the closest CQ state
σ , which (via Fact 2) is

σ ∗
A = f (〈k̂x |x〉|k̂x〉,|y〉,|k̂x〉〈k̂x |T ). (17)

Analogously, one obtains DB(ρ) = 1
4 (trKy − ky) = 1

4 (‖�y‖2 +
‖T ‖2 − ky), where ky is the largest eigenvalue of matrix Ky =
|y〉〈y| + T TT with eigenvector |k̂y〉. The closest QC state is

σ ∗
B = f (|x〉,〈k̂y |y〉|k̂y〉,T |k̂y〉〈k̂y |). (18)

Observation 2 also delivers the two-qubit CC discord,

DS(ρ) = ‖ρ‖2 − ‖σ ∗
S ‖2, (19)

where the norm of σ ∗
S = f (|x∗

S〉,|y∗
S〉,T ∗

S ) can be given in terms
of some functions minimized solely over unit vectors |x̂S〉 (or,
equivalently, |ŷS〉) as given in Appendix B. This is identical to
the single Bloch-sphere optima obtained in Ref. [9].

B. Quest for symmetry of the optimal measurement
for symmetric states

There is a general question whether the states symmetric
under swapping subsystems always allow for a symmetric
optimal measurement in the formula for the CC discord DS .
Here, we provide some partial results on this problem. Namely,
there is a practical observation:

Theorem 1. Consider the two-qubit symmetric states ρ, i.e.,
the ones satisfying ρAB = ρBA or, equivalently,

T = T T , (20)

|x〉 = |y〉. (21)

If the matrix T satisfies either T � 0 or (−T ) � 0, then the
optimal CC state σ ∗

S and the corresponding measurement are
symmetric, i.e., the optimal measurement basis is defined by
some |x̂∗

S〉 = |ŷ∗
S〉.

Proof. Clearly, since DS(ρ) = tr(ρ2) − maxx̂S ,ŷS

Tr[σ(x̂S ,ŷS )AB
(ρ)2], we may write it in the form

DS(ρ) = tr(ρ2) − 1
4

[
1 + max

x̂S ,ŷS

u(x̂S,ŷS)
]
, (22)

where the function u is defined as

u(x̂S,ŷS) ≡ 〈x̂S |T |ŷS〉2 + 〈x̂S |x〉2 + 〈ŷS |y〉2. (23)

Following Theorem 1, it is not difficult to see that, by the
symmetry of the initial state ρ, one has |x〉 = |y〉. Now for
T > 0 (all eigenvalues strictly positive) one defines the new
scalar product (xS,yS)T = 〈√T x|√T y〉, which defines also
the norm ‖�xS‖T = √

(xS,xS)T . Now, since ‖�xS − �yS‖2
T � 0,

for any pair of unit vectors |x̂S〉 and |ŷS〉 one has 1
2 [u(x̂S,x̂S) +

u(ŷS,ŷS)] � u(x̂S,ŷS), which means that the maximum in
Eq. (22) is achieved by a symmetric pair (|x̂∗

S〉 = |ŷ∗
S〉). The

proof for (−T ) > 0 goes along the same lines. For the cases
when T � 0 or (−T ) � 0, i.e., where 0 eigenvalues are
allowed, the statement follows from the continuity argument
since here the argument realizing the maximum is continuous
in parameters of the state.

We conjecture that in the case of the symmetric two-qubit
states any minimum can be reached by symmetric mea-
surement. We have performed both analytical and numerical

searches and found no counterexample to this hypothesis so
far. However, for higher dimensions it may not be true since,
as we know, there are numerous properties that break there.

C. Adaptive and nonadaptive upper bounds

We now turn to the upper bound for the CC discord. Using
the adaptively measured states, given by Eqs. (9) and (10), we
obtain the following upper bound from Eq. (7) for α = 2.

Theorem. For an arbitrary two-qubit state the adaptive upper
bound D

(aub)
S (ρ) for the CC discord can be given by

D
(aub)
S (ρ) = min

i=S ′,S ′′
‖ρ − σi‖2 = ‖ρ‖2 − max

i
‖σi‖2, (24)

where the CC states σS ′ and σS ′′ are

σS ′ = f (|xS ′ 〉,|yS ′ 〉,TS ′ ) = σ(k̂x ,l̂y )S (ρ)

= f (〈k̂x |x〉|k̂x〉,〈l̂y |y〉|l̂y〉,|k̂x〉〈k̂x |T |l̂y〉〈l̂y |), (25)

σS ′′ = f (|xS ′′ 〉,|yS ′′ 〉,TS ′′ ) = σ(l̂x ,k̂y )S (ρ)

= f (〈l̂x |x〉|l̂x〉,〈k̂y |y〉|k̂y〉,|l̂x〉〈l̂x |T |k̂y〉〈k̂y |), (26)

where |k̂x〉, |k̂y〉,|l̂x〉, and |l̂y〉 are the eigenvectors correspond-
ing to the maximum eigenvalue of

Kx = �x �xT + T T T ≡ |x〉〈x| + T T T, (27)

Ky = |y〉〈y| + T T T , (28)

Lx = |x〉〈x| + T |k̂y〉〈k̂y |T T, (29)

Ly = |y〉〈y| + T T |k̂x〉〈k̂x |T , (30)

respectively. Note that σS ′ in general differs from the σ ∗
S used

in Eq. (19). Explicitly, the norms are given by

‖σS ′ ‖2 = 1
4 (1 + ‖�xS ′ ‖2 + ‖�yS ′ ‖2 + ‖TS ′ ‖2)

= 1
4 (1 + 〈k̂x |x〉2 + 〈l̂y |y〉2 + 〈k̂x |T |l̂y〉2), (31)

‖σS ′′ ‖2 = 1
4 (1 + ‖�xS ′′ ‖2 + ‖�yS ′′ ‖2 + ‖TS ′′ ‖2)

= 1
4 (1 + 〈l̂x |x〉2 + 〈k̂y |y〉2 + 〈l̂x |T |k̂y〉2). (32)

Note that the measurement on direction |l̂x(y)〉 corresponds
to the adaptive measurement M∗

A(B),ρ , since the correlation
matrix of the optimally measured state on A (B) is, according
to Eq. (17) [Eq. (18)], given by |k̂x〉〈k̂x |T (T |k̂y〉〈k̂y |).
Intuitively, the adaptive upper bound D

(aub)
S (ρ) can also be

found by applying the following relation between the three
discords valid for an arbitrary two-qubit state: If DA(ρ) = 0,
then DS(ρ) = DB(ρ), and analogously, if DB(ρ) = 0, then
DS(ρ) = DA(ρ) as given by Lemma 2. The bound can be
constructed as follows (see Fig. 1):

D
(aub)
S (ρ) = min(DS ′ ,DS ′′ ), (33)

where

DS ′ = ‖ρ − σ ∗
A‖2 + ‖σ ∗

A − σS ′ ‖2 = ‖ρ‖2 − ‖σS ′ ‖2,
(34)

DS ′′ = ‖ρ − σ ∗
B‖2 + ‖σ ∗

B − σS ′′ ‖2 = ‖ρ‖2 − ‖σS ′′ ‖2,

and σS ′ and σS ′′ , given by Eqs. (25) and (26), were calculated
from the repeated application of Eqs. (17) and (18). It is also
worth noting that

D
(aub)
S (ρ) = 0 ⇔ DS(ρ) = 0 ⇔ DA(ρ) = DB(ρ) = 0. (35)
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So, in particular, it means that D
(aub)
S (ρ) is nonzero iff ρ is not

a CC state, and thus it may serve as an indicator of quantum
correlations itself.

The nonadaptive upper bound (i.e., product bound) for a
two-qubit state ρ can be given by

D
(nub)
S (ρ) = ‖ρ‖2 − ∥∥σS0

∥∥2
, (36)

where

σS0 = f (〈k̂x |x〉|k̂x〉,〈k̂y |y〉|k̂y〉,|k̂x〉〈k̂x |T |k̂y〉〈k̂y |), (37)

for which∥∥σS0

∥∥2 = 1
4 (1 + 〈k̂x |x〉2 + 〈k̂y |y〉2 + 〈k̂x |T |k̂y〉2). (38)

We have the following inequalities:

max(DA,DB) � DS � D
(aub)
S � D

(nub)
S , (39)

where the last inequality can be immediately concluded by
comparing Eqs. (31) and (32) with Eq. (38).

We note here that the adaptive bound, given by Eq. (24),
is very effective. Indeed, the largest gap to the exact value
� = D

(aub)
S (ρ) − DS(ρ), observed by us numerically, is just a

few percent, and it is usually of the order 10−4 or 10−5 for
randomly generated rank 4 states. Interestingly, we have also
observed that it is exactly 0 for almost all classes of states for
which there are known analytical expressions for DS .

V. DISCORDS AND UPPER BOUNDS FOR SOME
CLASSES OF STATES

A. Examples of a simple relation between discords
and their upper bounds

Here, we present some examples of analytical calculation
of the CQ and CC discords and the adaptive upper bound to
show their relations.

Example 1. For (a) pure states, (b) Bell diagonal states, and,
also, (c) states with both marginals vanishing, i.e., |x〉 = |y〉 =
0, it holds that

DA = DB = DS = D
(aub)
S . (40)

For these states, DS can be easily found by showing explicitly
that the lower bound DA = DB is equal to the upper bound
D

(aub)
S .
Example 2. For states with a maximally mixed single

marginal, e.g., |x〉 = 0 (and analogously for |y〉 = 0), we have

4‖σ ∗
S ‖2 = 1 + 〈x|x̂∗

S〉2︸ ︷︷ ︸
=0

+〈y|ŷ∗
S〉2 + 〈x̂∗

S |T |ŷ∗
S〉2

= 1 + 〈y|ŷ∗
S〉2 + 〈x̂∗

S |[T |ŷ∗
S〉〈ŷ∗

S |T T ]|x̂∗
S〉. (41)

Since |x̂∗
S〉 maximizes ‖σS‖2, then it holds that

|x̂∗
S〉 = T |ŷ∗

S〉√〈ŷ∗
S |T T T |ŷ∗

S〉 . (42)

Thus, we obtain

4‖σ ∗
S ‖2 = 1 + 〈y|ŷ∗

S〉2 +
[
〈ŷ∗

S |T T

(
T |ŷ∗

S〉√〈ŷ∗
S |T T T |ŷ∗

S〉

)]2

= 1 + 〈y|ŷ∗
S〉2 + 〈ŷS |T T T |ŷ∗

S〉
= 1 + 〈ŷ∗

S |(|y〉〈y| + T T T )|ŷ∗
S〉

= 1 + max [eig(|y〉〈y| + T T T )], (43)

so finally,

DS = 1
4 {〈y|y〉 + ‖T ‖2 − max[eig(|y〉〈y| + T T T )]}, (44)

which is equal to the QC discord DB and the adaptive upper
bound D

(aub)
S , which follows from a simple direct calculation.

By performing an analogous derivation for |y〉 = 0, we
conclude that

|x〉 = 0 ⇒ DA � DB = DS = D
(aub)
S ,

(45)
|y〉 = 0 ⇒ DB � DA = DS = D

(aub)
S .

B. Example of a nontrivial relation between discords
and their upper bounds

Here, we give an example of a nontrivial relation between
CC, CQ, and QC discords and their tight upper bounds as
shown in Figs. 2 and 3. Specifically, we study mixtures
of Bell’s state |�φ〉 = [|01〉 + exp(iφ)|10〉]/√2 and |00〉
(i.e., state separable and orthogonal to |�φ〉) as defined
by Refs. [1,13]

ρ(p,φ) = p|�φ〉〈�φ| + (1 − p)|00〉〈00| (46)
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FIG. 2. (Color online) Geometric discords and their tight upper
bounds for the state ρ(p,φ = π/2), given by Eq. (46), as a function
of the parameter p: The CC discord, DS [solid (blue) curve], and
CQ and QC discords, DA = DB [dotted (magenta) curve], together
with the adaptive upper bound, D

(aub)
S [dashed (red) curve], and

unoptimized nonadaptive upper bounds, D
(nub)
S11 = D

(nub)
S22 [dot-dashed

(green) curve]. We note that the optimized upper bound D̃
(aub)
S = DS

and D
(aub)
S = D̃

(nub)
S12 = D̃

(nub)
S21 for any p. All the upper bounds, except

D̃
(aub)
S , are discontinuous at p = 1/2, while the corresponding vertical

lines are added for clarity only.

042123-5



ADAM MIRANOWICZ et al. PHYSICAL REVIEW A 86, 042123 (2012)

0 π/2 π 3π/2 2π
0.15

0.2

0.25

0.3

phase φ

di
sc

or
ds

 &
 u

pp
er

 b
ou

nd
s

D
S11
(nub)

D
S
=D

S
(aub)=D

S12
(nub)

D
A
=D

B

FIG. 3. (Color online) Same as Fig. 2, but for the state ρ(p,φ) as
a function of phase φ for fixed p = 2/3.

for 0 � p � 1. We find that the CC discord for these states is
given by

DS = 1
4 min[2p2,7p2 − 8p + 3]

=
{

1
2p2 if p � 3

5 ,

1
4 (7p2 − 8p + 3) otherwise.

(47)

By contrast, the CQ and QC discords are given by

DA = DB = 1
2 min(p2,3p2 − 3p + 1)

=
{

1
2p2 if p � 1

2 ,

1
2 (3p2 − 3p + 1) otherwise.

(48)

Some details of the calculation of the discords are given in
Appendix C. Moreover, we find the adaptive upper bound for
state ρ(p,φ) to be

D
(aub)
S = DS ′ = DS ′′ =

{
1
2p2 if p � 1

2 ,

1
4 (7p2 − 8p + 3) otherwise.

(49)

It is seen that D(aub)
S = DS for 0 � p � 1/2 and 3/5 � p � 1.

The nonadaptive and adaptive upper bounds for this state
can be optimized as described in the next section. All these
discords and upper bounds are shown in Fig. 2. In particular,
we observe discontinuity of the upper bounds at p = 1/2. We
find that the upper bound D

(aub)
S (and D

(nub)
S ) has two different

limits:

lim
p→1/2−

D
(aub)
S = 1

8 , lim
p→1/2+

D
(aub)
S = 3

16 . (50)

By contrast, the asymmetric discords DA = DB , symmetric
discord DS , and optimized upper bounds D̃

(aub)
S (as discussed

in the next subsection) are continuous functions of any p.
Anyway, none of the discords has continuous first derivative
in p.

VI. IMPROVED UPPER BOUNDS

A. Optimization over degenerate measurement outcomes

If the maximal eigenvalues of operators Kx,y and/or Lx,y

are degenerate, then the adaptive and nonadaptive upper
bounds can be optimized by taking the minimum for the
eigenvectors corresponding to these maximum eigenvalues.
Here, we describe this method in brief and give an example
explaining Figs. 2 and 3.

First, it is worth recalling now a classic linear-algebraic
theorem stating that eigenvectors of degenerate matrices are
not necessarily orthogonal, but they can be made orthogonal
and complete, as in the nondegenerate case, by applying
Gram-Schmidt’s orthogonalization procedure. This is possible
by having the additional freedom of replacing the eigenvectors
corresponding to a degenerate eigenvalue with their linear
combinations.

Let us denote eigenvectors |k̂(i)
x 〉 (|k̂(i)

y 〉) corresponding to
the same maximum degenerate eigenvalue of operator Kx

(Ky), given by Eq. (27) [Eq. (28)]. Analogously, we denote
eigenvectors |l̂(ij )

x 〉 and |l̂(ij )
y 〉 corresponding to the maximum

degenerate eigenvalues of operators:

L(i)
x = |x〉〈x| + T

∣∣k̂(i)
y

〉〈
k̂(i)
y

∣∣T T, (51)

L(i)
y = |y〉〈y| + T T

∣∣k̂(i)
x

〉〈
k̂(i)
x

∣∣T , (52)

respectively. Thus, by applying these eigenvectors to Eqs. (31),
(32), and (38), one can obtain norms ‖σ (ij )

S0
‖2, ‖σ (ij )

S ′ ‖2, and

‖σ (ij )
S ′′ ‖2, resulting in

D
(aub)
Sij = min

r=S ′,S ′′

(‖ρ‖2 − ∥∥σ (ij )
r

∥∥2)
, (53)

D
(nub)
Sij = ‖ρ‖2 − ∥∥σ (ij )

S0

∥∥2
. (54)

Then the optimized adaptive and nonadaptive upper bounds
are simply given by

D
(aub)
S = min

i,j
D

(aub)
Sij , D

(nub)
S = min

i,j
D

(nub)
Sij , (55)

respectively.
Example. Let us analyze again the state ρ(p,φ), given by

Eq. (46). Operator Kx is degenerate, as given by Eq. (C2), so
we can choose |k̂(i)

x 〉 = |i〉. Simple calculation shows that one
can also choose |l̂(ij )

x 〉 = |j 〉 for i,j = 1,2. We find that the
nonadaptive upper bound for i = 1,2 is equal to

D
(nub)
Sii =

{
1
2p2 if p � 1

2 ,

1
4 [p2(cos2 φ) − 8p + 3] otherwise,

(56)

as shown by the dot-dashed (green) curves in Figs. 2 and 3.
By contrast, D(nub)

S12 = D
(nub)
S21 = D

(aub)
S as given by Eq. (49). So,

finally,

D
(nub)
S = min

(
D

(nub)
S11 ,D

(nub)
S12

) = D
(nub)
S12 = D

(aub)
S , (57)

as shown by the dashed (red) curve in Fig. 2. Note that such
degenerate-value optimization for D

(aub)
S is unnecessary for

this state.
By analyzing our formulas and Fig. 2, we can observe

that (i) DA = DB �= DS for p ∈ ( 1
2 ,1), (ii) D

(11)
S �= DS for

p ∈ ( 1
2 ,1) if φ �= 0, and (iii) D

(aub)
S = D

(nub)
S = D

(nub)
S11 (φ =
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0) �= DS for p ∈ ( 1
2 , 3

5 ). We observe that the unoptimized
nonadaptive bound can be much greater than the adaptive
bound if φ �= 0 and 1

2 < p � 1, thus including the case for
Bell’s states (p = 1). In Fig. 3, we analyze the state ρ(p,φ)
for p = 2/3. We observe here that (i) the symmetric discord
[solid (blue) line] is equal to the adaptive upper bound,
DS = D

(aub)
S = 7/36; (ii) the asymmetric discords [dot-dashed

(black) line] are DA = DB = 1/6; and (iii) the nonadaptive
upper bound [dotted (red) curve] depends on φ as D

(nub)
S11 =

DS + sin2(φ)/9. Finally, we conclude that DS = D
(aub)
S =

D
(nub)
S = D

(nub)
S12 � D

(nub)
S11 for 0 � p � 1/2 and 3/5 � p � 1.

We see that the nonadaptive bounds without optimization, on
the other hand, can fare rather badly as an estimator of the CC
discord.

B. Optimization by locally nonoptimal measurements

Here, we suggest optimizing the adaptive upper bound by
locally nonoptimal measurements, i.e., optimizing over all
measurement outcomes corresponding to all (for i,j = 1,2,3)
measurements of party A (B) on ρ producing (usually not
the closest) state σ

(i)
A (σ (i)

B ) and then measurements of party
B (A) on this state producing the state σ

(ij )
S ′ (σ (ij )

S ′′ ). Thus,
we describe the optimization of the adaptive upper bound
over all eigenvectors of Km and Lm (m = x,y) corresponding
to all eigenvalues instead of taking only those eigenvectors
corresponding to the maximum eigenvalues of these operators.
This somehow counterintuitive method can in fact be efficient
for the adaptive upper bound since Lm are constructed via
eigenvectors of Km. Clearly, the method cannot improve the
nonadaptive upper bound, as the operators Lm are not used
there.

The optimized adaptive upper bound D̃
(aub)
S can be defined

in analogy to Eq. (55) as follows:

D̃
(aub)
S = min

i,j=1,2,3
DSij = ‖ρ‖2 − max

r=S ′,S ′′
max

i,j=1,2,3

∥∥σ (ij )
r

∥∥2
.

(58)

By contrast to Eq. (55), the optimalization is over 2 × 9
parameters for any state, independent of its degeneracy. It
is convenient to form 3 × 3 matrices with elements ‖σ (ij )

r ‖2 as
done in the following.

Example. Again, we analyze the state, given by Eq. (46).
For each of the three eigenvectors |k̂(i)

m 〉 of Km (for m = x,y),
given by Eq. (C2), we find three orthogonal eigenvectors
|l̂(ij )

m 〉, according to Eqs. (51) and (52). Then we can calculate
‖σ (ij )

S ′ ‖2 = ‖σ (ij )
S ′′ ‖2 and create, e.g., the following matrices:

[∥∥σ (ij )
S ′
∥∥2] =

⎡
⎢⎣

1
4 A C

1
4 A C

C C B

⎤
⎥⎦ if p � 1

2 , (59)

[∥∥σ (ij )
S ′
∥∥2] =

⎡
⎢⎣

C C B

1
4 C A

1
4 C A

⎤
⎥⎦ if p > 1

2 , (60)

where A= (1+T 2
11)/4= (1+p2)/4, B = (1+2x2

3 +T 2
33)/4 =

[1 + 2(1 − p)2 + (1 − 2p)2]/4, and C = (1 + x2
3 )/4 = [1 +

(1 − p)2]/4. Any order of the eigenvectors (and, thus, the
order of the elements in the above matrices) can be applied.
For convenience, we ordered them here by the value of the
corresponding eigenvalues. Then we obtain

D̃
(aub)
S = ‖ρ‖2 − max(A,B,C) =

{
‖ρ‖2 − B if p � 3

5 ,

‖ρ‖2 − A otherwise,

where ‖ρ‖2 = 2p(p − 1) + 1 (see Appendix C). Thus, we
conclude that the optimized upper bound is equal to the CC
discord for any p ∈ [0,1]:

D̃
(aub)
S = 1

4 min[2p2,7p2 − 8p + 3] = DS. (61)

in agreement with Eq. (47). Note that A = B for p = 3/5
and A = C for p = 1/2. So, D̃

(aub)
S is continuous at p = 1/2,

contrary to discontinuous D
(nub)
S and D

(aub)
S (compare broken

and solid curves in Fig. 2).
In conclusion, for ρ(p,φ) with 1/2 < p < 3/5 and any φ,

we have the following inequalities:

DA = DB < DS = D̃
(aub)
S < D

(aub)
S = D

(nub)
S . (62)

This example demonstrates the usefulness of the optimization
procedure by calculating the upper bounds for all possi-
ble measurements rather than only for those measurements
corresponding to the maximum eigenvalues of Km and Lm

(m = x,y).

C. Iterative procedure for the adaptive upper bound

Here, we describe in detail the iterative procedure described
in Sec. III C for the adaptive upper bound D(aub) and give
some examples. The nth iteration of the adaptive upper bound,
D

(aub n)
S , can be calculated as

D
(aub n)
S = ‖ρ‖2 − max

(∥∥σ {n}
S ′
∥∥2

,
∥∥σ {n}

S ′′
∥∥2)

, (63)

where our old D
(aub)
S is just D

(aub 0)
S and∥∥σ {n}

S ′
∥∥2 = 1

4

(
1 + 〈k̂{n}

x

∣∣x〉2 + 〈l̂{n}
y

∣∣y〉2 + 〈k̂{n}
x

∣∣T ∣∣l̂{n}
y

〉2)
,∥∥σ {n}

S ′′
∥∥2 = 1

4

(
1 + 〈l̂{n}

x

∣∣x〉2 + 〈k̂{n}
y

∣∣y〉2 + 〈l̂{n}
x

∣∣T ∣∣k̂{n}
y

〉2)
,

where |k̂{n}
x 〉 = |l̂{n−1}

x 〉 and |k̂{n}
y 〉 = |l̂{n−1}

y 〉, while |l̂{n}
x 〉, |l̂{n}

y 〉,
|k̂{0}

x 〉, and |k̂{0}
y 〉 are the eigenvectors corresponding to the

maximum eigenvalues of

L{n}
x = |x〉〈x| + T

∣∣k̂{n}
y

〉〈
k̂{n}
y

∣∣T T, (64)

L{n}
y = |y〉〈y| + T T

∣∣k̂{n}
x

〉〈
k̂{n}
x

∣∣T , (65)

K {0}
x ≡ Kx = |x〉〈x| + T T T, (66)

K {0}
y ≡ Ky = |y〉〈y| + T T T , (67)

respectively. For randomly generated rank 4 states (thus,
usually, with nondegenerate eigenvalues of K

{0}
x,y and L

{0}
x,y), the

procedure is usually effective, as can be shown be calculating
the difference

�n ≡ D
(aub n)
S − DS

between the adaptive upper bound after the nth iteration and
the exact value of the CC discord.
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TABLE I. Examples of application of the iteration procedure for
the adaptive upper bound D

(aub)
S for the states given by Eqs. (68), (71),

and (72) as described in Sec. VI C. The accuracy of the procedure is
shown by the difference �n between the adaptive upper bound after
the nth iteration, D

(aub n)
S , and the exact value of the CC discord, DS .

Iteration �n = D
(aub n)
S − DS

no. State (68) State (71) State (72)

0 8.85 × 10−4 4.28 × 10−5 1.71 × 10−4

1 0 4.77 × 10−7 8.00 × 10−6

2 – 5.53 × 10−9 3.90 × 10−7

3 – 6.44 × 10−11 1.92 × 10−8

4 – 10−13 9.50 × 10−10

5 – 10−15 4.69 × 10−11

Let us discuss just a few examples.
Example 1. Let us analyze state ρ = f (|x〉,|y〉,T ), de-

scribed by

|x〉 = |y〉 = 1
4 [1,1,1]T , T = 1

4 diag([1,−1,0]), (68)

First, we calculate the closest CQ state to be given in Bloch’s
representation as σ ∗

A = f (|xA〉,|x〉,TA), where

|xA〉 = t

⎡
⎢⎣1 + √

3

1 + √
3

2

⎤
⎥⎦ , TA =

⎡
⎢⎣ t −t 0

t −t 0
1

8
√

3
− 1

8
√

3
0

⎤
⎥⎦ , (69)

with t = (3 + √
3)/48. Analogously, the closest QC state is

σ ∗
B = f (|x〉,|xA〉,T T

A ). Thus, the CQ and QC discords are
given by DA = DB = (3 − √

3)/64 = 0.0198 . . . . By con-
trast, the closest CC state is much simpler as given by σ ∗

S =
f (|x〉,|x〉,Z), where Z is the 0 matrix. Thus, the CC discord
is simply equal to DS = 1/32 = 0.031 . . . . The nonadaptive
upper bound is D

(nub)
S = 5(3 − √

3)/192 = 0.033 . . . , which
is obtained as the Hilbert-Schmidt distance from ρ to the CC
state σS0 = f (|xA〉,|xA〉,Z), where |xA〉 is given in Eq. (69).
The CC states, defined by Eqs. (25) and (26), are equal to
σS ′ = f (|xA〉,|x〉,Z) and σS ′′ = f (|x〉,|xA〉,Z), respectively.
Thus, the (initial) adaptive upper bound is D

(aub)
S ≡ D

(aub 0)
S =

(21 − 5
√

3)/384 = 0.032 . . . . Our iteration procedure of the
adaptive upper bounds converges to DS already in the
first iteration as D

(aub 1)
S = 1/32 (see Table I) since the CC

state σ
{1}
S ′ = σ

{1}
S ′′ = f (|x〉,|x〉,Z) = σS . Thus, for the analyzed

state, we have the following inequalities:

DA = DB < DS = D
(aub 1)
S < D

(aub)
S < D

(nub)
S . (70)

Example 2. Another state is given by the same |x〉 = |y〉 as
in Eq. (68), but for

T = 1
4 diag([1,1,0]). (71)

We find that the CQ and QC discords are DA = DB = (3 −√
3)/64 as in the former example, the CC discord is given by

DS = 0.023 22 . . . , the nonadaptive upper bound is D
(nub)
S =

(28 − 11
√

3)/384 = 0.023 30 . . . , and the adaptive up-
per bound is D

(aub)
S = [57 − 11

√
3 −

√
6(62 + 3

√
3)]/768 =

0.023 26 . . . . The iteration procedure converges to DS but not
as rapidly as in the former example (see Table I for details).

Example 3. Now, let us analyze a state with |x〉 �= |y〉 as
defined by

|x〉 = 1
6 [1,2,3]T , |y〉 = 6

7 |x〉, T = 1
8 diag([1,2,3]).

(72)

Analytical formulas for the discords and their upper bounds are
quite lengthy for this state, so we give only their approximate
numerical values. The QC discord is DB ≈ 0.0259, the CQ
discord is DA ≈ 0.0262, the CC discord is DS ≈ 0.0280, the
nonadaptive upper bound is D

(nub)
S ≈ 0.0284, and the adaptive

upper bound is D
(aub)
S ≈ 0.0281. The adaptive upper bounds

D
(aub n)
S after the nth iteration are listed in Table I. In conclusion,

we have the following inequalities:

DB < DA < DS = D
(aub 4)
S − O(10−10) < D

(aub)
S < D

(nub)
S .

(73)

All the above examples show how rapidly the iterations
approach the correct values of the CC discord. Now, we give
a counterexample.

Example 4. The iteration procedure fails, e.g., for the state,
given by Eq. (46) for 1/2 < p < 3/5 (see Fig. 2), as �n =
�0 > 0 for n = 1,2, . . . . In general, this can be explained as
follows:

Criterion. If, for a given two-qubit state, the nth iteration
of the adaptive upper bound D

(aub n)
S (in particular, for n = 0)

differs from the CC discord DS , and |k̂{n}
x 〉 = |l̂{n}

y 〉 and |k̂{n}
y 〉 =

|l̂{n}
x 〉, then the iteration procedure does not converge to DS as

D
(aub,n+k)
S = D

(aub n)
S �= DS for k = 1,2, . . . .

Finally, we note that this iteration procedure can be
improved by replacing D

(aub n)
S with the optimized D̃

(aub n)
S as

described in the Sec. VI B.

VII. CONCLUSIONS

We have shown that the geometric measures of quantum
correlations, i.e., the CC, CQ and QC discords, are equal
to the minimal purity deficit under specific von Neumann’s
measurements compatible with the CC, CQ and QC classes
of states, respectively. This allowed us to quickly reproduce
known results in the case of qubits and also to give some
strong arguments that the CC discord may not, in general, be
described analytically even for a two-qubit state. The best
general two-qubit formula, given by Eqs. (B1)–(B6), still
requires minimalization over two variables. This is in contrast
to the CQ and QC discords for which analytical two-qubit
formulas are available. Therefore, we focused on analytical
approximations of the CC discord. We proposed nonadaptive
(i.e., simple product) and adaptive upper bounds for the CC
discord and applied them for two-qubit states. We showed that
they are tight and faithful, so they can be used as independent
tests of nonclassical quantum correlations. The adaptive upper
bound corresponds to an optimal measurement on one of the
parties conditioned an optimal measurement on the other party.
We also described a method of improving the adaptive upper
bound by nonoptimal single-party measurements. This refined
bound gives exact values of the CC discord for (probably)
all classes of states for which there are known analytical
expressions. For randomly generated states, the bound usually
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differs from the CC discord by the order 10−4 or 10−5.
Moreover, we described an iterative procedure for the adaptive
upper bound, which usually quickly converges to the CC
discord. We believe that this estimation of the symmetric
discord will play a role in analyzing the cases where all
the subsystems of a given quantum system interact with the
environment on equal footing. For those cases it will probably
be more adequate than asymmetric discord, which is based on
the system-apparatus picture.
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APPENDIX A: PROOFS OF OBSERVATIONS
AND LEMMAS IN SECTION II

Proof of Observation 1. Since MX(ρ) ⊂ �X, by definition,
the right-hand side of Eq. (2) is not greater than that of
Eq. (3). However, one can show that the opposite ordering
of these expressions can occur, hence proving Observation 1.
Indeed, choose any measurement M̃X commuting with σ ∗

X.
Then the difference of Eqs. (2) and (3) is equal to S(ρ‖σ ∗

X) −
S(ρ‖M̃X(ρ)) = S(M̃X(ρ)‖σ ∗

X) � 0, where the first equality
is due to Lemma 1 below. Therefore S(M̃X(ρ)‖σ ∗

X) = 0, i.e.,
σ ∗

X = M̃X(ρ), where the measurement is the optimal one.
Lemma 1 further furnishes the equivalence between the deficit
�X(ρ) and DR

X(ρ) of Eq. (3).
Proof of Lemma 1. Consider any von Neumann’s mea-

surement M(·) =∑i Pi(·)Pi for orthogonal projectors {Pi},∑
i Pi = I . Since any function of a Hermitian operator

commutes with the operator itself, one obtains f (M(G)) =
Mf (M(G)), and consequently, tr[Ff (M(G))] = tr[FM
(f (M(G))] = tr[F

∑
i Pif (M(G))Pi] = tr[

∑
i PiFPif (M

(G))] = tr[M(F )f (M(G))] for any Hermitian F and G.
Proof of Observation 2. To prove this Observation for the

symmetric discord DS , we consider

DS(ρ) = tr(ρ2) + min
σ∈�S

[tr(σ 2) − 2tr(ρσ )] (A1)

optimized over all the CC states σ with eigenvectors formed
by two orthonormal bases BA ⊗ BB := {|ei〉|fj 〉} and some
eigenvalues {pij } ≡ �pS . We may rewrite Eq. (A1) explicitly as

DS(ρ) = tr(ρ2) − min
�pS,BA⊗BB

[2tr(ρσ ) − tr(σ 2)]. (A2)

Let B∗
A ⊗ B∗

B be an optimal basis defining naturally the von
Neumann measurement M∗

A ⊗ M∗
B ≡ M̃∗

S . The variational
state defined in this basis of course satisfies M̃∗

S(σ ) = σ

and so (by Lemma 1) tr(ρσ ) = tr[M̃∗
S(ρ)σ ]. Denoting by

�qS the diagonal of the state M̃∗
S(ρ) (which is already of the

CC type), we obtain DS(ρ) = tr(ρ2) − max �pS
(2�qS �pS − �p 2

S ),
which yields the optimal spectrum �p ∗

S = �qS . This concludes
the proof that the optimal state σ ∗ in Eq. (A1) satisfies
σ ∗ = M̃∗

S(ρ). This, combined with Lemma 1, implies both
Eqs. (5) and (6).

Consider now the asymmetric discord DA, which is given
by

DA(ρ) = min
{pi ,σi }

min
BA={ei }

[tr(ρ2) − 2tr(ρσ ) + tr(σ 2)], (A3)

where σ =∑i pi |ei〉〈ei | ⊗ σi . Let B∗
A = {|e∗

i 〉} be an optimal
basis in Eq. (A3) now defining the von Neumann measure-
ment M∗

A and the partially optimized class of states σ ′ =∑
i pi |e∗

i 〉〈e∗
i | ⊗ σ ′

i which clearly satisfies [M∗
A ⊗ IB](σ ′) =

σ ′. By Lemma 1,

DA(ρ) = tr(ρ2) + min
{pi ,σ

′
i }

∑
i

[
p2

i tr((σ ′
i )

2) − 2piqi tr(σ
′
i ρ

′
i)
]
,

(A4)

where the parameters come from a new state,

ρ ′ ≡ [M∗
A ⊗ IB](ρ) =

∑
i

qi |e∗
i 〉〈e∗

i | ⊗ ρ ′
i . (A5)

For all measurements Mi leaving ρ ′
i values invariant we

have tr[(σ ′
i )

2] = tr[Mi(σ ′
i )

2] + δi (with δi � 0), since von
Neumann’s measurements do not increase purity. Using
Lemma 1 again, we therefore have

min
{pi ,σ

′
i }

∑
i

[
p2

i tr((σ ′
i )

2) − 2piqi tr(σ
′
i ρ

′
i)
]

= min
{pi ,σ

′
i }

∑
i

[
p2

i tr(Mi(σ
′
i )

2) + δi − 2piqi tr(Mi(σ
′
i )ρ

′
i)
]

� min
{pi ,σ

′
i }

∑
i

[
p2

i tr(Mi(σ
′
i )

2) − 2piqi tr(Mi(σ
′
i )ρ

′
i)
]

= min
{pi ,σ̃

′
i =Mi (σ̃ ′

i )}

∑
i

[
p2

i tr((σ̃ ′
i )

2) − 2piqi tr(σ̃
′
i ρ

′
i)
]

= min
σ̃ ′

[tr((σ̃ ′)2) − 2tr(σ̃ ′ρ ′)], (A6)

where

σ̃ ′ =
∑

i

pi |e∗
i 〉〈e∗

i | ⊗ Mi(σ
′
i ). (A7)

Since σ̃ ′ and ρ ′ commute having product eigenvectors (which,
however, do not form a product of the two eigenbases in
general), we are left only with the final problem of finding
optimal eigenvalues of σ̃ ′. In analogy to the solution of
Eq. (A2), one concludes immediately that the optimal spectrum
is the same as that of ρ ′. Thus, the optimal CQ state must
be equal to ρ ′, which is just the original ρ subjected to
some specific measurement M∗

A ⊗ IB . This concludes the
proof for the CQ-type discord and thus, finally, the proof of
Observation 2.

Proof of Lemma 2. Property i is immediate since the set �S

of all the CC correlated states is a subset of the sets �A and
�B of the CQ and QC correlated states as shown intuitively
in Fig. 1. Property ii follows from the fact that for DA(ρ) = 0
the optimal measurement M∗

B providing DB already reduces
the state ρ to a CC state. This means that combining it with
the measurementMA commuting with the left reduction of the
state yields the same value DB . This value, based on product
measurement, corresponds by definition (4) to some upper
bound of the CC discord DS . On the other hand, DB is, by
property i, a lower bound on the CC discord. Thus DS = DB .
and property iii is implied by property ii.
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APPENDIX B: NUMERICAL CALCULATION
OF THE CC DISCORD

For completeness, we give an explicit formula for numerical
calculation of the CC discord for an arbitrary two-qubit state
ρ as

DS(ρ) = ‖ρ‖2 − max
θ,φ

‖σS(θ,φ)‖2 = ‖ρ‖2 − ‖σ ∗
S ‖2, (B1)

where σS [and thus σ ∗
S = f (|x∗

S〉,|y∗
S〉,T ∗

S )] can be expressed
solely in terms of the versor

|x̂S〉 = |xS〉√〈xS |xS〉
= [sin θ cos φ, sin θ sin φ, cos θ ]T ,

as follows:

4‖σ ∗
S ‖2 = 1 + 〈x∗

S |x∗
S〉 + 〈y∗

S |y∗
S〉 + 〈x∗

S |T ∗
S |y∗

S〉
= 1 + 〈x∗

S |x〉 + 〈y∗
S |y〉 + 〈x∗

S |T |y∗
S〉

= 1 + max
x̂S ,ŷS

(〈x̂S |x〉2 + 〈ŷS |y〉2 + 〈x̂S |T |ŷS〉2)

= 1 + max
x̂S

[λy(x̂S) + 〈x̂S |x〉2]

= 1 + max
ŷS

[λx(ŷS) + 〈ŷS |y〉2], (B2)

where the quantity λy(x̂S) [λx(ŷS)] is the maximal eigenvalue
of the rank 2 matrix T |ŷS〉〈ŷS |T T + |x〉〈x| (T T |x̂S〉〈x̂S |T +
|y〉〈y|). So, explicitly,

λy(x̂S) = h+ +
√

〈x̂S |T |y〉2 + h2−, (B3)

and

λx(ŷS) = g+ +
√

〈x|T |ŷS〉2 + g2−, (B4)

where

h± = 1
2 (〈y|y〉 ± 〈x̂S |T T T |x̂S〉), (B5)

g± = 1
2 (〈x|x〉 ± 〈ŷS |T T T |ŷS〉), (B6)

in agreement with Ref. [9].

APPENDIX C: CALCULATION OF DISCORDS
FOR MIXTURES OF |00〉 AND BELL’S STATES

Here, we give more details of our calculation of the CC
and the CQ and QC discords for the states ρ(p,φ) defined by
Eq. (46).

The correlation matrix T of Bloch’s representation for state
ρ(p,φ) reads as

T =

⎡
⎢⎣p cos φ −p sin φ 0

p sin φ p cos φ 0

0 0 1 − 2p

⎤
⎥⎦ , (C1)

and the local Bloch’s vectors are |x〉 = |y〉 = [0,0,1 − p]T .
First, we note that

Kx = Ky = |x〉〈x| + T T T =

⎡
⎢⎣p2 0 0

0 p2 0

0 0 q

⎤
⎥⎦ , (C2)

where q = (1 − 2p)2 + (1 − p)2. Since p2 � q is fulfilled if
p ∈ [0, 1

2 ], so we have to analyze two solutions for p � 1
2 and

p > 1
2 . Thus, the CQ and QC discords are

DA = DB = 1
4 [tr(Kx) − max eig(Kx)]

= 1
4 [7p2 − 6p + 2 − max(q,p2)]

= 1
2 min(p2,3p2 − 3p + 1). (C3)

We can also calculate the CC discord as follows. The norm
‖σS‖2 is given by

4‖σS‖2 − 1 = max
x̂S ,ŷS

(〈x̂S |x〉2 + 〈ŷS |y〉2 + 〈x̂S |T |ŷS〉2)

= max(〈1|x〉2 + 〈1|y〉2 + 〈1|T |1〉2,〈3|x〉2

+ 〈3|y〉2 + 〈3|T |3〉2)

= max[p2,2(1 − p)2 + (1 − 2p)2]. (C4)

Moreover, ‖ρ‖2 = 2p(p − 1) + 1, since 〈x|x〉 = 〈y|y〉 =
(1 − p)2 and ‖T ‖2 = (1 − 2p)2 + 2p2. Thus, finally, we
obtain DS = ‖ρ‖2 − ‖σS‖2 given by Eq. (47). The geometric
discords DA = DB and DS for this state are plotted in Figs. 2
and 3.
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