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OPTIMALITY PROOF OF THE CLONERS

Average fidelity of cloning a set of qubits

While considering optimal symmetric1 → 2 cloning the
optimized figure of merit is the average single-copy fidelity.
We express the average fidelity asF = Tr (Rχ), where
the operatorχ is isomorphic to a completely-positive trace-
preserving map [1] (CPTP) which performs the cloning oper-
ation andR = 〈ρT⊗ (ρ⊗ 1+1⊗ρ)〉/2, whereρ = |ψ〉〈ψ| is
the density matrix of a qubit from the cloned set. The matrix
R is given explicitly for any phase-covariant cloner as:

R =
1
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0 4c22 0 0 0 0 0 s21
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, (1)

wheresji = 〈sinj(θ/i)〉 and cji = 〈cosj(θ/i)〉 for i, j =
1, 2, 3..., and the angle bracket stands for averaging over the
input qubit distributiong(θ, φ). We find the optimal cloning
mapχ by maximising the functionalF .

The necessary conditions for optimality of the MPCC

First, let us note that the optimal cloning mapχ must
satisfy the following symmetry conditions imposed by the
symmetry of a mirror phase-covariant set of qubits, i.e.,
∀φ∈[0,2π][Rz(φ)

∗ ⊗ Rz(φ)
⊗2, χ] = 0 and[σ⊗3

x , χ] = 0. Sec-
ond, we assume symmetric cloning, and therefore we require
that both clones have the same fidelity. Thus, we demand
[11in ⊗ SWAP, χ] = 0. Moreover, we can show that elements
of χ must be real since maximized fidelity depends linearly
only on the real part of the off-diagonal elements. We must
also remember thatχ must preserve trace, i.e.,Trout [χ] = 11.
All the above conditions imply the following form of the map

χ being a mixture of two CPTP maps:

χ = (1− p)
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+ p(|011〉〈011|+ |100〉〈100|). (2)

whereΛ̄2 + Λ2 = 1 and1 ≥ Λ, p ≥ 0 are free parameters.
Since we can write the cloning fidelity asF = (1 − p)FΛ +
ps21/2 it is apparent that in order to achieve maximal fidelity
assumingF > 1/2 we must setp = 0. Now, we can derive
the expression forΛ demanding thatdF/dΛ = 0. As one of
the solutions we obtain

Λ(c21) =

√

1

2
+

c21
2
√
P
, (3)

whereP = 2 − 4c21 + 3c41. However, at this point we cannot
conclude that it is optimal.

The sufficient conditions for optimality of the MPCC

As noted by Audenaert and De Moor [2] the problem of de-
signing an optimal cloning machine can be solved by means
of semidefinite programming. Moreover, it was noted that
as long asχ is a CPTP map in a convex set, there are only
global extrema. It can be shown thatχ maximizes fidelity
F = Tr[Rχ] if the following conditions are satisfied:

(A−R)χ = 0, (4)

A−R ≥ 0, (5)

whereA = λ ⊗ 11 ≥ 0 is a positive semidefinite matrix
of Lagrange multipliers ensuring thatχ is CPTP map, i.e.,
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Trout(χ) = 11in. The operatorλ = Trout(Rχ) is derived by
demanding that the variance of fidelityF overχ should be
equal to zero. If the condition (4) is satisfied, then for any
CPTP mapχ we obtainTr[(A − R)χ] ≥ 0. It also follows
from the trace preservation condition thatTr(Aχ) = Trλ.
Hence, the fidelityF is bounded by the trace preservation con-
dition andF ≤ Tr[λ]. If inequality is saturated byχ, thenχ
represents the optimal cloning transformation.

For MPCC we have

λ =
1

4
[(1 + c21)Λ

2 + Λ̄2 +
√
2(1 − c21)ΛΛ̄] 11in. (6)

Henceforth, it can be easily shown thatTrλ − F = 0. The
eigenvalues of operator∆ = A−R can be expressed in terms
of R matrix elements in the following way:

δ1 =
1

2

(

F − 1

2

)

,

δ2 =
1

2

(

F − 1− c21
2

)

,

δ3,4 =
1

2

(

F −R1,1 −R2,2 ± R̄
)

, (7)

whereR̄2 = (R1,1 −R2,2)
2 + 8R2

1,6. All the eigenvalues are
double degenerated. Moreover, we have

F = R1,1 +R2,2 + R̄. (8)

Thus,δ3 = F−(2+c21)/4 andδ4 = 0. SinceF > 3/4,∀iδi ≥
0, we conclude that∆ is a positive semidefinite matrix. Thus,
we have shown that the conditions (4) and (5) are satisfied,
which completes the proof.

COMPENSATING FOR IMPERFECT TRANSMITTANCES

In our case the equation relating beam-splitter transmit-
tances (µ + ν = 1) does not hold and we haveµ + ν 6= 1.
Hence additional filtering operations are required in orderto
maintain the maximum achievable fidelity of the setup. This
additional filtering manifests itself in two ways. First, one
needs to unbalance the ancilla-dependent filtering performed
by filters F in both BDAs. We requireτ1 = τ andτ2 = ωτ
for the BDA1 and BDA2, respectively, where

ω =
τ2
τ1

=
µν

(1− µ)(1− ν)
. (9)

Note thatω = 1 in the ideal case forµ+ν = 1 andω = 0.726
for the applied PDBS. Second, the realization of the MPCC
with the PDBS whereµ + ν 6= 1 requires applying an ad-
ditional unconditional filtering. This filtering is polarization-
dependent and is performed regardless of the state of the an-
cillary photon. The polarization dependent transmittancesτH
andτV for theH andV -polarized photons, respectively, need
to satisfy the following relation:

κ =
τV
τH

=
2µ− 1

1− 2ν
, (10)

whereκ (κ = 1 for µ + ν = 1) is a constant value fixed by
the parameters of the PDBS (in our caseκ = 0.838), and both
τH and τV should have the largest possible values in order
to maximize the efficiency of the setup. Therefore, we apply
an additional unconditional filtering only for theV -polarized
photons since the optimal transmittances areτV = κ and
τH = 1. Please note that for our PDBSκ < 1 and in the
opposite case the best choice of the parameters isτV = 1 and
τH = 1/κ. Moreover, if there are any other systematic uni-
form polarization-dependent lossesτ ′H andτ ′V we can com-
pensate for them by settingκ = τ ′H/τ

′
V × (2µ− 1)/(1− 2ν).

To summarize the above-mentioned corrections, the overall
filtering operations in the first mode are described by

τ1,H = τδV,s andτ1,V = κτδH,s , (11)

and in the second mode by

τ2,H = (ωτ)δV,s andτ2,V = κ(ωτ)δH,s , (12)

whereδV,s (δH,s) is Kronecker’s delta and is equal to 1 iff the
polarizations of the ancillary photon isV (H).

To implement the required filtering, additional polarization-
independent filters FA1 and FA2 are placed at the output
modes. These two filters together with the filters in both
BDAs are sufficient to perform filtering operation described
by Eqs. (11) and (12).

The usage of additional filtering saves the maximum
achievable fidelity at the expense of lowering the success
probability of the scheme. Using PDBA transmittances and
the parameterΛ of the cloned state one can express the ex-
pected success probability of the scheme in the form of

Pth = (1 − 2µ)2/2 + µντκ, (13)

whereκ = (2µ− 1)/(1− 2ν).

IMPLEMENTING THE GENERALIZED PCC AND
AXISYMMETRIC CLONING

By using the same setup we implemented the generalized
PCC (see Tab. I) which is a special case of the axisymmetric
cloner described in Ref. [3]. In order to perform arbitrary ax-
isymmetric cloning we set parameters of filters according to
the following relations:
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whereα± is given by Eq. (14) from [3] ands = H, V stands
for polarization of the ancillary state. For the generalized PCC
we pickeds deterministically. We setα+ = π/2 andα− = 0
for s = H when we cloned a qubit from the northern hemi-
sphere, alternatively we setα+ = 0 andα− = π/2 for s = V
each time when the cloned qubit was from the southern hemi-
sphere. Please note that we could have also picked ancillary
state at random (as for the MPCC), but then we would have
had to block all the output modes for half of the cases.

MEASURING THE SUCCESS PROBABILITY

In order to measure success probability we need to estimate
the inherent technological losses of the scheme and the initial
photonic rate. The technological losses occur as a result of
detector efficiencies, fiber coupling losses or back reflections.
The coincidence rateCclon measured at the end of the working
cloner can be expressed as

Cclon = PexτtechCinit, (16)

where Pex denotes the success probability of the cloning
scheme,τtech denotes the transmittance of the setup due to
technological losses andCinit is the initial rate of photon pairs
from the source. To compensate for the technological losses
and the initial photon rate we use the following calibration
procedure: PDBS is placed on a translation state allowing us
to shift it slightly so that the reflected beam is no longer cou-
pled. We use|H1H2〉 for the input state knowing that the
beam splitter would decrease the coincidence rate by the fac-
tor of 1/µ2. In this configuration we remove all the neutral
density filters and measure the calibration coincidence rate
Ccalib at the end of the scheme. One can clearly see that

Ccalib = µ2τtechCinit (17)

so the success probability of the cloning operation can be ex-
pressed by combining Eqs. (16) and (17):

Pex = µ2 Cclon

Ccalib
. (18)

This equation allows us to obtain the success probability ofthe
cloning operation from the measurement of two coincidence
rates: the first is the coincidence rate of the working cloner
and the second is the calibration coincidence rate. Note that
Eqs. (13) and (18) describe the same quantity.

MEASURED VALUES

Our detailed summary of measured and predicted results is
presented in Tables I, II, and III. In Fig. 1 we show how the
cloning fidelity of the MPCC varies with phaseϕ.

Angle θ Fex [%] Fth [%]

0 99.8± 0.4 100.0

π/12 99.3± 0.4 99.8

π/5 98.0± 0.8 98.8

π/3 95.7± 0.8 95.3

3π/8 92.4± 1.5 93.4

π/2.25 88.7± 1.1 89.4

π/2 84.1± 0.5 85.4

π/1.8 87.9± 0.7 89.4

5π/8 91.3± 1.0 93.4

2π/3 95.0± 0.8 95.3

4π/5 97.9± 0.7 98.8

11π/12 98.4± 1.0 99.8

π 99.8± 0.4 100.0

TABLE I: Summarized data for the PCC regime.Fex denotes ex-
perimentally estimated average fidelity for a given polar angle θ on
the Bloch sphere andFth is the theoretical prediction. Note that the
error estimated as RMS is just indicative of the actual error, because
it does not take into account the physical properties of fidelity.

Angle θ Fex [%] Fth [%] Pex [%] Pth [%]

0 99.6± 0.4 100.0 10.5± 2.8 13.3

π/12 95.6± 1.7 97.0 10.6± 1.9 13.3

0.43 89.6± 0.4 90.4 10.4± 1.5 13.5

π/5 86.1± 1.6 87.4 9.6± 0.9 14.3

π/4 81.9± 2.0 84.1 14.0± 2.9 16.2

0.95 80.2± 1.5 83.3 19.5± 3.5 18.6

3π/8 82.3± 1.3 84.0 23.7± 1.5 21.7

π/2 84.1± 0.5 85.4 24.8± 0.1 24.0

5π/8 82.3± 1.3 84.0 23.7± 1.5 21.7

2π/3 80.2± 1.5 83.3 19.5± 3.5 18.6

2.19 81.9± 2.0 84.1 14.0± 2.9 16.2

4π/5 86.1± 1.6 87.4 9.6± 0.9 14.3

2.71 89.6± 0.4 90.4 10.4± 1.5 13.5

11π/12 95.6± 1.7 97.0 10.6± 1.9 13.3

π 99.6± 0.4 100.0 10.5± 2.8 13.3

TABLE II: Same as in Table I but for the MPCC regime. Moreover
Pex andPth denote experimental and theoretical success probabili-
ties.

THE MPCC AND PAULI DAMPING CHANNEL

Here, we show that our implementation of the MPCC can
be interpreted as a quantum simulation of the Pauli dampening
channel, where an error (bit-flip error, phase-flip error or both)
occurs with some probability. This correspondence can lead
to immediate applications of the proposed device for quantum
eavesdropping. The density matrices of both clones are the
same as the density matrix of the copied state transmitted via
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Polarization state Fex [%] Fth [%]

horizontal 80.2± 3.1 83.3

diagonal 81.5± 1.5 83.3

anti-diagonal 81.3± 0.2 83.3

right-circular 82.5± 1.4 83.3

left-circular 80.1± 0.9 83.3

vertical 83.2± 0.3 83.3

TABLE III: Same as in Tables I and II but for the UC regime and
various polarization states.
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FIG. 1: Phase (angleϕ) dependence of fidelity of the MPCC for the
selected values (see Table II) of angleθ.

the noisy channel,

ρ̂out = α+ρ̂in +
Λ̄2

4
(σ̂xρ̂inσ̂x + σ̂yρ̂inσ̂y) + α−σ̂z ρ̂inσ̂z ,

whereα± =
(

1 + Λ2 ± 2
√
2ΛΛ̄

)

/4 andΛ2 + Λ̄2 = 1. The
parameterΛ depends on the distributiong of the cloned qubits
and ρ̂in = |ψ〉〈ψ|. In the special case forΛ2 = 2/3, the
channel becomes so-called depolarizing channel, where the
probability of all errors is the same and equal to 1/12. In such
case the corresponding cloning machine is the UC. Moreover,
for Λ2 = 1 the channel becomes a dephasing channel (only
the phase-flip error can occur) and the corresponding cloning
is optimized for covariant cloning of the eigenstates of the
phase-flip operator|0〉 and|1〉 and, thus, those two states can
be perfectly copied or transmitted through the lossy channel.
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