Experimental linear-optical implementation of a multifun ctional
optimal qubit cloner
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OPTIMALITY PROOF OF THE CLONERS x being a mixture of two CPTP maps:
Average fidelity of cloning a set of qubits A> 0 000 A_\/g A_\/g 0
0 4 4000 0 A
While considering optimal symmetric — 2 cloning the 0 f\; f\; 00 0 0 %
optimized figure of merit is the average single-copy fidelity 0 0 0000 0 02
We express the average fidelity @& = Tr(Ry), where x=0=-21 69 0 0000 0 0
the operatory is isomorphic to a completely-positive trace- AL g 0 00 A2 A
preserving map [1] (CPTP) which performs the cloning oper- V2 22
ationandrR = (p" @ (p@ 1+ 1@ p))/2, wherep = |) (| is 50 0004 4 0
the density matrix of a qubit from the cloned set. The matrix 0 A—ﬁ A—ﬂ 00 0 0 A2
R is given explicitly for any phase-covariant cloner as: + p(011)(011] + [100)(100]). @)
8¢5 02 0 0 0 s s 02 whereA? + A2 = 1and1l > A, p > 0 are free parameters.
0 de 02 00 00 °1 Since we can write the cloning fidelity @ = (1 — p)F) +
1 8 8 4(0)2 222 8 8 8 501 ps1/2 it is apparent that in order to achieve maximal fidelity
R="= L, . (D assumingF’ > 1/2 we must sep = 0. Now, we can derive
8 02 00 0 2y 02 0 0 the expression foA demanding thadl 7//dA = 0. As one of
51 0 0 0 0 4s3 02 0 the solutions we obtain
s 0 0 0 0 0 4s5 0
0 s2 2 0 0 0 0 8s3 2
C 2 Meh =[5+ 5 ©
wheres! = (sin’(6/i)) and¢l = (cos? (6/i)) for i,j = 2ve

1,2,3..., and the angle bracket stands for averaging over thg harep — 9 — 42 + 34,
input qubit distributiong (6, ¢). We find the optimal cloning ! !
mapy by maximising the functionat’.

However, at this point we cannot
conclude that it is optimal.

The sufficient conditions for optimality of the MPCC
The necessary conditions for optimality of the MPCC

As noted by Audenaert and De Moor [2] the problem of de-
First, let us note that the optimal cloning mapmust  signing an optimal cloning machine can be solved by means
satisfy the following symmetry conditions imposed by the of semidefinite programming. Moreover, it was noted that
symmetry of a mirror phase—covariant set of C]UbitS, i.e.,as |Ong asy is a CPTP map in a convex set, there are On|y

Voe(o.2m[R:=(6)" @ Ro(6)%? x] = 0and[o®, x] = 0. Sec-  global extrema. It can be shown thgtmaximizes fidelity
ond, we assume symmetric cloning, and therefore we requirg’ — Tr[Ry] if the following conditions are satisfied:
that both clones have the same fidelity. Thus, we demand

[1;, ® SWAP, x| = 0. Moreover, we can show that elements (A—R)x =0, (4)
of x must be real since maximized fidelity depends linearly A-R>0, (5)
only on the real part of the off-diagonal elements. We must

also remember that must preserve trace, i.ey.,¢ [x] = 1. whereA = A ® 1 > 0 is a positive semidefinite matrix
All the above conditions imply the following form of the map of Lagrange multipliers ensuring thgtis CPTP map, i.e.,



2

Trout(x) = Lin. The operatod = Trout(RX) is derived by  wherex (x = 1 for 4 + v = 1) is a constant value fixed by
demanding that the variance of fidelify over y should be the parameters of the PDBS (in our case 0.838), and both
equal to zero. If the condition (4) is satisfied, then for anyry and Ty, should have the largest possible values in order
CPTP mapy we obtainTr[(A — R)x] > 0. It also follows  to maximize the efficiency of the setup. Therefore, we apply
from the trace preservation condition tHBEt(Ay) = TrA. an additional unconditional filtering only for tHé-polarized
Hence, the fidelity" is bounded by the trace preservation con-photons since the optimal transmittances afe = « and
dition andF < Tr[A]. If inequality is saturated by, theny 74 = 1. Please note that for our PDBS < 1 and in the
represents the optimal cloning transformation. opposite case the best choice of the parametefs is 1 and
For MPCC we have 7w = 1/k. Moreover, if there are any other systematic uni-
1 . - form polarization-depen.dent lossels and{, we can com-
A=l +e) AT+ A%+ V2(1—c})AAJ L. (6)  pensate for them by setting= 74, /7!, x (21 — 1)/(1 — 2v).
To summarize the above-mentioned corrections, the overall

Henceforth, it can be easily shown tHatA — F* = 0. The fjitering operations in the first mode are described by
eigenvalues of operatdx = A — R can be expressed in terms

of R matrix elements in the following way: g =70V andryy = K70, (11)
5 = 1 (F _ l) and in the second mode by
2 2)’
1 1 — 2 ToH = (wT)‘SV’S andryy = /-@(wT)‘SHvs, (12)
62 = 5 (F - 2 1) 5

wheredy ; (0m,s) is Kronecker’s delta and is equal to 1 iff the
34 = 1 (F —Ri1—Roo+ R) , (7) polarizations of the ancillary photon i$” (H).
2 To implement the required filtering, additional polaripati
whereR? = (Ri1 — Ro)*+ 8R%6' All the eigenvalues are independent filters FA1 and FA2 are placed at the output

double degenerated. Moreover, we have modes. These two filters together with the filters in both
B BDAs are sufficient to perform filtering operation described
F=Ri1+Ryo+R. (8)  byEgs. (11) and (12).

The usage of additional filtering saves the maximum
achievable fidelity at the expense of lowering the success
robability of the scheme. Using PDBA transmittances and
he parameteA of the cloned state one can express the ex-
pected success probability of the scheme in the form of

Thus,ds = F—(2+c?)/4andds = 0. SinceF’ > 3/4,V,6; >

0, we conclude thad\ is a positive semidefinite matrix. Thus,
we have shown that the conditions (4) and (5) are satisfie
which completes the proof.

COMPENSATING FOR IMPERFECT TRANSMITTANCES Py = (1= 2)*/2 + prs, (13)
) ) ) _wherex = (2p—1)/(1 — 2v).
In our case the equation relating beam-splitter transmit-
tances  + v = 1) does not hold and we haye+ v # 1.
Hence additional filtering operations are required in otder
maintain the maximum achievable fidelity of the setup. This IMPLEMENTING THE GENERALIZED PCC AND

additional filtering manifests itself in two ways. First,en AXISYMMETRIC CLONING
needs to unbalance the ancilla-dependent filtering peddrm
by filters F in both BDAs. We require; = 7 andr, = wr By using the same setup we implemented the generalized
for the BDAL and BDA2, respectively, where PCC (see Tab. 1) which is a special case of the axisymmetric
T v cloner described in Ref. [3]. In order to perform arbitraky a
w= no m ) isymmetric cloning we set parameters of filters according to

the following relations:
Note thatv = 1 in the ideal case fat+» = 1 andw = 0.726

for the applied PDBS. Second, the realization of the MPCC o [cosas 2 21— (1—v)
with the PDBS where: + v # 1 requires applying an ad- TV (Si“m )2 (1-2p) fors=H,  (14)
ditional unconditional filtering. This filtering is polaation- T2H (C,OSM) 2py
dependent and is performed regardless of the state of the an- ' ™" sna-/ (1=2u)
cillary photon. The polarization dependent transmittange 5
andry for the H andV -polarized photons, respectively, need
to satisfy the following relation: TLH (sin oy )2 (2v—1)2
Ti,v  \cosa_ 2(1—p)(1—v) o
TV 2 1’ (10) ron (Sin‘o¢+ )2 (2v_1)* fors=V,  (15)
TH 1—2u T2,V cos 2uv



wherea4 is given by Eq. (14) from [3] and = H, V stands

- . . Angle § Fex [%] Fin [%]
for polarization of the ancillary state. For the generaliP€C
. S 0 99.84+ 0.4 100.0
we pickeds deterministically. We set; = 7/2 anda_ =0
w/12 99.3+ 0.4 99.8

for s = H when we cloned a qubit from the northern hemi-

sphere, alternatively we sety = 0 anda_ =nw/2fors =V m/5 98.0£ 08 98.8

each time when the cloned qubit was from the southern hemiz/3 95.7+£0.8 95.3

sphere. Please note that we could have also picked ancillar§m/8 924+15 93.4

state at random (as for the MPCC), but then we would haver/2.25 88.7+ 1.1 89.4

had to block all the output modes for half of the cases. /2 84.1+0.5 85.4

w/1.8 87.9+0.7 89.4

5m/8 91.3+1.0 93.4

MEASURING THE SUCCESS PROBABILITY 27 /3 95.0+ 0.8 95.3

4 /5 979+ 0.7 98.8

In order to measure success probability we need to estimafe, ; /15 98.4+ 1.0 208
the inherent technological losses of the scheme and thalinit — 99.8+ 04 100.0

photonic rate. The technological losses occur as a result ot
detector efficiencies, fiber coupling losses or back retiesti

The coincidence raté.,,, measured at the end of the working TABLE I: Summarized data for the PCC regimé. denotes ex-
cloner can be expressed as perimentally estimated average fidelity for a given polagla on

the Bloch sphere andy, is the theoretical prediction. Note that the
error estimated as RMS is just indicative of the actual etrecause
it does not take into account the physical properties ofifidel

Celon = PetheChCinit7 (16)
where P, denotes the success probability of the cloning Angled Fo. [%] Fy, [%] P [%] Py, [%0]
scheme .., denotes the transmittance of the setup due tog 99.6+ 0.4 100.0 10.5- 2.8 13.3
technological losses artd,,;; is the initial rate of photon pairs /12 95.64 1.7 97.0 10.6- 1.9 13.3
from the source. To compensate for the technological losseg 43 896+ 04 904 10.4- 1.5 135

and the initial phojton rate we use the f(_)llowmg cahbrgtlon / 861+ 16 874 96L09 143
procedure: PDBS is placed on a translation state allowing us
PR . /4 819+ 2.0 84.1 14.6£ 2.9 16.2
to shift it slightly so that the reflected beam is no longer-cou
pled. We usdH, H,) for the input state knowing that the 80.2+ 1.5 83.3 19.5+ 3.5 18.6
beam splitter would decrease the coincidence rate by the fac™/3 823+13 840 23.7&+15 217
tor of 1/42. In this configuration we remove all the neutral 7/2 84.1+05 854 248:01 240
density filters and measure the calibration coincidence rat 57/8 82.3+1.3 84.0 23.7# 15 21.7
C.anip at the end of the scheme. One can clearly see that 27/3 80.2+ 1.5 83.3 19.5+ 3.5 18.6
) 2.19 81.9+ 2.0 84.1 14.0k 2.9 16.2
Ceality = 1" Trech Cinit A7) s 861116 87.4 96:09 143
- . . 271 89.6+ 0.4 90.4 10.4-1.5 135
so the success probability of the cloning operation can be ex11 5 956517 970 106519 133
pressed by combining Eqgs. (16) and (17): m/ - - - — :
T 99.6+ 0.4 100.0 10.5£ 2.8 13.3
C,
Pex _ MQ clon ) (18) . .
Cealib TABLE II: Same as in Table | but for the MPCC regime. Moreover

) ) ) - P.x and P;;, denote experimental and theoretical success probabili-
This equation allows us to obtain the success probability®f ijeg.

cloning operation from the measurement of two coincidence

rates: the first is the coincidence rate of the working cloner

and the second is the calibration coincidence rate. Note tha THE MPCC AND PAULI DAMPING CHANNEL
Egs. (13) and (18) describe the same quantity.

Here, we show that our implementation of the MPCC can
be interpreted as a quantum simulation of the Pauli damgenin
MEASURED VALUES channel, where an error (bit-flip error, phase-flip errorathi
occurs with some probability. This correspondence can lead
Our detailed summary of measured and predicted results i® immediate applications of the proposed device for quantu
presented in Tables I, Il, and Ill. In Fig. 1 we show how the eavesdropping. The density matrices of both clones are the
cloning fidelity of the MPCC varies with phage same as the density matrix of the copied state transmiteed vi



Polarization state Foy [%] Fin [%0]
horizontal 80.2t 3.1 83.3
diagonal 81.5t 1.5 83.3
anti-diagonal 81.3: 0.2 83.3
right-circular 825+ 1.4 83.3
left-circular 80.1+ 0.9 83.3
vertical 83.2+-0.3 83.3

TABLE lll: Same as in Tables | and Il but for the UC regime and

various polarization states.
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the noisy channel,

R AN s
Pout = Q4 Pin + Z(Umpinaz + prinay) +Qa_0.pin0z,

whereay = (1+ A% £2v2AA) /4 andA? + A% = 1. The
parameteA depends on the distributignof the cloned qubits
and pi, = [¢¥)(¥]. In the special case fok? = 2/3, the
channel becomes so-called depolarizing channel, where the
probability of all errors is the same and equal to 1/12. Irhsuc
case the corresponding cloning machine is the UC. Moreover,
for A2 = 1 the channel becomes a dephasing channel (only
the phase-flip error can occur) and the corresponding ajpnin
is optimized for covariant cloning of the eigenstates of the
phase-flip operatgh) and|1) and, thus, those two states can
be perfectly copied or transmitted through the lossy chianne
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FIG. 1: Phase (angle) dependence of fidelity of the MPCC for the [3] K. Bartkiewicz and A. Miranowicz, Phys. Rev. 82, 042330

selected values (see Table Il) of andle

(2010).



