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Abstract

We study state-dependent quantum cloning that can outperform universal cloning (UC). This
is possible by using some a priori information on a given quantum state to be cloned.
Specifically, we propose a generalization and optical implementation of quantum optimal
mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known
modulus of the expectation value of Pauli’s Z operator. Our results can be applied to cloning
of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in
special cases UC and phase-covariant cloning. We show that the cloning is optimal by
adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz
2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal
mirror phase-covariant 1 — 2 cloning of a qubit, for which the mean probability of successful
cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be
cloned. The qubits are represented by polarization states of photons generated by the type-I
spontaneous parametric down-conversion. The scheme is based on the interference of two
photons on an unbalanced polarization-dependent beam splitter with different splitting ratios
for vertical and horizontal polarization components and the additional application of
feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is
carefully studied including various kinds of imperfections and losses. Moreover, we briefly
describe two possible cryptographic applications of the optimal mirror phase-covariant cloning
corresponding to state discrimination (or estimation) and secure quantum teleportation.

PACS numbers: 03.67.—a, 42.50.Dv, 42.50.Ar

(Some figures may appear in colour only in the online journal)

1. Introduction As perfect quantum cloning is impossible, much attention

has been devoted to approximate [2—4] and probabilistic [5]
The no-cloning theorem [1, 2] states that unknown quantum quantum cloning. Such studies are particularly important not
states cannot be copied perfectly, which is implied by the only for quantum cryptography [6, 7] and quantum state
linearity of quantum mechanics. The no-cloning theorem estimation [8], but also for quantum communication [9] and
guarantees, e.g., the security (or privacy) of quantum quantum computation [10].

communication protocols including quantum key distribution It is worth noting that quantum cloning is not only of
and excludes naive protocols of superluminal communication theoretical interest. In fact, a few experimental realizations of
with entangled particles. quantum cloning have been reported [11-15]. In particular,
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quantum cloning with prior partial information, which is the
main topic of our paper, was experimentally demonstrated
using nuclear magnetic resonance [16, 17] and optical
systems [18-23]. Also quantum-dot implementations of
cloning machines were considered [24, 25].

The first 1 — 2 optimal cloning machine was designed by
Buzek and Hillery [3]. This cloning machine, referred to as the
universal cloning machine (UC), prepares two approximate
copies of an unknown pure qubit state with the same fidelity
F =5/6. This means that the UC is state independent (i.e.
the cloning is equally good for any pure qubit state) and
symmetric (i.e. the copies are identical). The case of the
UC producing an infinite number of copies [26] allowed the
classical limit of F =5/6 for copying quantum information
to be established, which corresponds to the best copying
operation achieved by classical operations.

The concept of optimal cloning was further extended
to include cloning of qudits, cloning of continuous-variable
systems and state-dependent cloning (non-universal cloning).
The state-dependent cloning machines can produce clones of
a specific set of qubits with higher fidelity than that for the
UC, i.e. F =5/6 [27-37] (see also the reviews [38, 39] and
references therein). The study of state-dependent cloning is
well motivated since we often have some a priori information
about a given quantum state that we want to clone and
by employing the available information, we can construct a
cloning machine that surpasses the UC for some a priori
specified set of qubits. For example, if the qubits are taken
from the equator of the Bloch sphere, then by using the
so-called optimal phase-covariant cloners (PCCs) [30, 34],
one can achieve the fidelity F = 1/2(1 +1/+/2) much higher
than F =5/6.

The phase-covariant and phase-independent clonings
were further generalized by Fiurasek [32], who studied the
PCCs of qubits of known expectation value of Pauli’s Z = &,
operator and provided two optimal symmetric cloners: one for
the states in the northern hemisphere and the other for those
in the southern hemisphere of the Bloch sphere.

Further works on phase-independent cloning described
cloning of qubits uniformly distributed on a belt of the Bloch
sphere [35] and the so-called mirror phase-covariant cloning
(MPCC) [36], for qubits of known modulus of the expectation
value of Pauli’s &, operator. Finally, the unified approach to
1 — 2 cloning of arbitrary phase-independent distributions of
qubits was presented in [37].

In this paper, we propose an optical implementation
of the MPCC [36] based on a generalized version of the
setup described by Cernoch er al [18] (see also [20]). The
experimental setup can equally well perform operations of
the UC, PCC and MPCC in special cases corresponding to
the proper choice of A (the explicit formulae can be found in
section 2).

In the following sections, we analyze the performance
of our setup accounting for various losses and imperfections
such as finite efficiency of generating a pair of entangled
photons in the type-I spontaneous parametric down
conversion (SPDC), the influence of choosing various
parameters of an unbalanced beam splitter (splitting ratios
for vertical and horizontal polarization components), finite
detector efficiency, dark counts and finite resolution of

applied detectors. For simplicity, we neglect the effects of
mode mismatch on the fidelity of the MPCC. Analysis of such
losses would require application of a pulse-mode formalism
(see, e.g., [42]).

Our paper is organized as follows. In section 2, we
describe the standard MPCC and introduce a generalized
MPCC. In section 3, we present a setup implementing the
optimal symmetric 1 — 2 MPCC of a qubit and study the
influence of imperfections of the beam splitter on the perfor-
mance of this cloning. In section 4, we study the performance
of the setup assuming imperfect photon detectors by means
of the positive operator valued measure (POVM) formalism.
The applicability of the proposed setup to implement the
generalized MPCC is shown in section 5. We conclude in
section 6.

2. Mirror phase-covariant cloning

The cloning transformation for the MPCC requires one ancilla
and has the following unitary form in the computational basis:

|O>in - A|00>1,2|O>anc + 1_\|w+>1,2|1>anc’
_ (H
|1>in - A|11>1,2|1>anc +A|w+)1,2|0>an05

where A2+A2=1 and |y,) = 1/+/2(|01) +|10)) is one of
the Bell states. The resulting clones are found in modes 1 and
2. The parameter A explicitly depends on the modulus of the
expectation value of 6, as follows:

A 1+00329 @)
V2 2P’

where P = P(0) =2 — 4cos?0 +3cos*0 and (6,) =cosé.
The average fidelity F over the Bloch sphere (note that MPCC
is state dependent) is F' = 0.8594 and is larger than the fidelity
for the case of the UC, which is F' = 0.8333.

Moreover, from [37] it follows that any optimal cloning
machine that copies a phase-covariant set of qubits and
exhibits mirror xy-plane symmetry is described by the same
general transformation, where A depends on the set of qubits
for which the cloning machine is optimized (see section 5).

Here, this optimal cloning of an arbitrary mirror-
symmetric (and axisymmetric) distribution of qubits on the
Bloch sphere will be referred to as the generalized MPCC.
Therefore, the proposed experimental setup can be used for
cloning an arbitrary set of qubits of the described symmetry.
It is worth noting that former proposals of realizations of
the MPCC in linear-optical systems [36, 37] and quantum
dots [36, 40] were discussed formally without referring to
experimental setups.

A question arises about the usefulness of the MPCC
for quantum information or quantum-state engineering. Here,
we briefly describe two possible cryptographic applications.
Namely, we suggest using the MPCC for secure teleportation.
It was discussed in [41] that states that are symmetric
about the equator plane of Bloch’s sphere enable secure
teleportation. Now, the limits of secure teleportation can be
studied by applying our optimal cloning transformation which
can be used by an eavesdropper Eve. The axisymmetric
cloners (ASC), corresponding to cloning of arbitrary
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axisymmetric distributions, require more prior knowledge
about qubit states to be teleported, while the optimal set of
such states just corresponds to the MPCC. In other words, it
is more practical to use the MPCC rather than the ASC in this
case. As an another obvious application of the MPCC, we note
that it can be used for effective estimation or discrimination of
mirror-symmetric states.

3. A proposal for practical photonic implementation
of mirror phase-covariant cloning

Here we present the main result of our paper which is an
optical implementation of the optimal 1 — 2 MPCC of a
qubit. In section 5, we show that the generalized MPCC and
other known optimal cloning machines can be implemented
by our setup.

3.1. Initialization

The initial entangled state is prepared by using parametric
down conversion of the first type (see [43—46]). The output of
a pulsed laser (PL), with angular frequency wy, is frequency
doubled in a nonlinear crystal to produce pulses of ultraviolet
(UV) light of angular frequency 2wy. The UV pulses are then
used to pump twice (in the forward and backward directions)
a pair of nonlinear crystals which are stacked together such
that their optical axes are orthogonal to each other [43, 47].
The crystals are type-I SPDC to produce photon pairs in
two modes (idler and signal) of the same polarization and
of half the frequency of the PL. In the forward pumping
direction, the polarization of the UV beam is set to vertical
so that an H-polarized photon pair in modes 2 and 0 is
generated. The remaining (not down-converted) portion of the
UV beam first passes through a quarter-wave plate (QWP;)
which changes its polarization into an ellipsoidal polarization.
A mirror M; placed after the QWP, reflects this beam and
sends it through the QWP; again which further changes
the polarization of the beam into diagonal polarization.
This diagonally polarized beam pumps the crystals in the
backward direction, creating the entangled photon pair |y,) =
(1a)ollv); + |1V)0|1H)1)/«/§. However, the total state of the
system in modes 0, 0’, 1 and 2 is more complex than

W) = [¥a)oq 1 lu)o 1n)2, 3

which we use in our further analytical considerations. On
the one hand, the SPDC is probabilistic and the state |¥)
consists also of the vacuum and higher-order SPDC terms.
On the other hand, for the circuit to work we require fourfold
coincidence count in all modes and a very low dark-count
rate of modern photon detectors (dark count probability of the
order of 107®) allows us to effectively eliminate the vacuum
state from the further considerations. The measurement of a
photon in mode 0 is polarization dependent, which is further
used in the feedforward processing. So, finally, the system is
prepared in the state

(W) =N [y |9 )or ) g 1)y +y 7™

x (1V:)01 120)0 120)2 + 1€)o1 1 1o | 1)2) + O(rH],
4)

where
l€)or = 3 Tulv)o+1Ta1v) 1+ 121)012v)1 + 2v)0120)1)-

Moreover, y describes the efficiency of the SPDC and
depends on the amplitude of the incident field and properties
of the nonlinear crystal, ¢ is the phase shift caused by the
SPDC and A is the normalization constant. Typically y? =
0.01 [47], so for simplicity, we will almost always neglect
the terms of amplitude of order higher than y? since the
probability of occurrence of such events is very low as
|O(y?))?> = O(y%). We will consider a more complete form
of |¥) only in section 4.

Next, we prepare the arbitrary state to be cloned in
mode 2 by a combination of a half-wave plate (HWP;) and
QWP,. The input state is passed into mode 2. This is given in
the following form:

[¥)2 = (@ady + Baly)10)2, (5)

where o =cos(6/2) and B = elsin(@ /2). Later, modes 1
and 2 are mixed on an unbalanced polarization-dependent
beam splitter (PDBS). The PDBS transforms the input in the
following way:

&-II-H - m&}-’H - \/ﬁ&;l—lv

At ~F At
aly = V1 —va)y +/vayy,

(6)
&;H - \/ﬁ&I’H +y 1= /’L&;’H’
aly = Vvaly — V1T —vahy.

The MPCC can be implemented when p + v = 1. In fact, if the
above condition is not fulfilled some compensation method
can be applied ensuring maximal theoretical fidelity at the
expense of the lower success probability of the setup. The
most convenient situation is when u=puo=(1-1/ V3) /2
and v=vy=(1+1//3)/2,ie. 1 =2u=2v—1=2uv =
1/+/3. Analogous conditions for the PCC were given by
Fiurasek [32]. Finally, the state of the system after the action
of the PDBS (for u = v) is given by the following expression:

V') = N adyy (X&T’H&;H - xa;’]—la;]—l + y&;H&;H)
+ ﬂ&SV(U&T’H&T’V + Mag/HazT/v - X&;H&;V - xalT’VaZT’H)
+ “&SH (MélT/HélT/v + V&;H&;V + xa}.’V&;’H + X&T'Hag'v)
+ ﬁ&(-l)-H(x‘A’-ll-'v&-ll-'v - x&;V&;V + y&-ll-'v&-zr'v)]&-z‘./}{ 10},

where x = /v, y=1-—2u, |0) =1|0)gp1> and N’ is a
normalization constant.

3.2. Feedforward

In order to implement the MPCC, we also apply a feedforward
technique (see [48, 49]), i.e. photons of the same polarization
as detected in mode O are damped in modes 1’ and 2'. The
element implementing the damping is based on a Pockels cell
and two PBSs and is presented in figure 1. As was shown
in [48], such an operation can be performed with a high
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Figure 1. Scheme of the experimental setup used to implement the
MPCC. We use the following acronyms for the standard optical
elements: QWP, quarter-wave plate; HWP, half-wave plate; PBS,
balanced polarizing beam splitter; PDBS, polarization-dependent
beam splitter for different splitting ratios for H and V polarizations;
D, detector; PC, Pockels cell; PL, pulsed laser; SHG,
second-harmonic generation; and M, mirror. Double solid lines
denote transfer of classical information. The intermediate state
[W)oo12 1s prepared by means of SPDC of type-I (see, e.g., [43])
using a stack of two B-barium borate (BBO) crystals. Next, |W)oy12
is transformed into |W')g o1/> by first setting the input state |/), to
be cloned with the QWP, and HWP, and then mixing modes 1 and 2
on the PDBS (this can be considered as the first step of the actual
cloning). Finally, |¥')oy /2 is subject to classical feedforward,
driven by the measurement outcomes of D; and D,. As a result, we
obtain state P that is the outcome of the cloning machine as long
as there is one photon in modes 1” and 2”. Detector Dj is used as a
trigger for the experiment, which practically eliminates the
probability of having vacuum in mode 2. This is due to the low
dark-count rate of modern photon detectors.

fidelity of more than 99%. The final density matrix of the
system is given as

Pon=Tray [ (0118, Dy Dl + (10, 118, B/ DY) Y,
@)

where p’ = /) (| is the output of the state after the action
of the unbalanced PDBS, DH = f‘l/Hf‘er, DV = f‘yvf‘z/v,
where f‘,-v (f‘iH) is the operation acting on photons in
the ith spatial mode, which corresponds to the conditional
application of a Pockels cell (see figure 1). fI;H (IQI;V) are
the POVM operators describing the probability of detection of
the j H(V)-polarized photons in the ith mode. The damping
operation can be described as

[y slmu, ny) ;= [8;(=2)" VA8 1.5, lmy, ny) ;,

where 8;; is Kronecker’s delta, §;=1-—8;, i and j
enumerate the spatial modes 1’ and 2/, while §;, is
Kronecker’s delta, where s and r denote polarization modes H
or V. Moreover, X is a damping parameter, which in the case of

a perfect PDBS is equal to A = A/A. Negative A means that,
in addition to damping, a phase flip needs to be applied.

3.3. Post-selection

The cloning procedure is successful as long as there is only
one photon in every outgoing mode. The probability of the
coincidence count (i.e. the probability of success) is given by
the following expression:

Pyuccess = Tr 3,4(ﬁoutniﬂn%”) = &7 (8)
where 1/ V2 < A <1 for the MPCC. Hence, the probability
of successful cloning Pyyccess Varies from 1/3 to 1/6 (given
that we work with perfect detectors and a perfect source
of entangled photons) depending on the states we want to
clone in an optimal way. The proposed implementation is
probabilistic, but the probability of successful cloning is
much higher than in the case of using the simple quantum
circuit proposed in [36], which requires four controlled NOT
(CNOT) gates, with the best known nondestructive optical
CNOT gates having a success rate of 1/4 due to Pittman [50]
(for areview see [51]). The optimal cloner constructed in such
a way will have a success rate of 1/256.

3.4. Fidelity of the proposed experimental setup

In order to describe the quality of the cloning we use
single-copy fidelity

Fi = (Tt Pou) ™ (| Tr 3_; Pou| V7). )

However, to describe the overall performance of a cloning
machine it is more convenient to use the average single-copy
fidelity

1 2w b4
F=§/O d¢/(; dv g(9, 9)[F1 (9, ¢) + Fo(9, )], (10)

which is an average over all possible input qubits defined by
the distribution function g (19, ¢). In the case of the MPCC, the
g distribution in (10) is given by

8o (0, ¢)=%[5(l‘/‘—9)+5(1‘/‘+9—ﬂ)], 1D
in terms of Dirac’s §-function. Moreover, we added subscript
0 to indicate a priori knowledge about the input state.

One can easily check that the resulting expression for
the average single-copy fidelity is the same as that for the
MPCC [36] and is given by

1+A% 1 -
F=Fi=Fh=— —EA(A—A\/E)sinZQ.

12)

From (12) it follows that the average cloning fidelity over
all possible input states of the MPCC (over all 6—the
average is over all possible circles and their mirror-symmetric
counterparts) is F = 0.8594.

Note that for simplicity of exposition, we focus here on
the MPCC, which is the simplest nontrivial example of
cloning of mirror-symmetric distributions g(6) on the Bloch
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sphere, where g(f) is the sum of two Dirac §-functions.
However, in the case of other mirror-symmetric
phase-covariant qubit distributions, we obtain different
values of the average cloning fidelity and the success rate of
the proposed experimental setup. For example, in the case of
the UC we obtain F = 0.8333 (the average is over the whole
Bloch sphere) and F' = 0.8536 (the average over the equator
of the Bloch sphere) in the case of the PCC. For the UC and
PCC, we have A = /2/3 and A = 1/+/2, respectively.

4. Practical considerations for experimental
implementation

4.1. Choosing the parameters of an unbalanced
polarization-dependent beam splitter

In order to perform the required quantum transformation, in
some cases one needs to use a PDBS with some strictly chosen
values of reflectance or transmittance (see [18, 47]). However,
there are no perfect polarization beam splitters (see [18, 47]).
In practice one can apply some mechanisms to compensate
for the imperfections of the beam splitter (see [18]). In our
case we use feedforward and obtain less strict requirements
on optical realization of the symmetric covariant cloner than
stated in [18], where 1 —v=1/2(1+1/4/3) and 1 —pu =
1/2(1 — 1/+/3) must have fixed values.

In the proposed experimental realization, it is enough to
satisfy the condition w+v = 1. Otherwise, the single-copy
fidelity drops and the cloning is no longer symmetric. Given
that w+v =1 is satisfied, it is enough that the damping
parameter

A —2p)
A_—Am (13)

and the fidelity of a single clone are the same as in the
perfect case (please note that only |A| < 1 is physical). Hence,
imperfections of the PDBS (given that u + v = 1) result only
in decreasing the success rate of the setup. Therefore, the
probability of successful cloning is given by the following
expression:

(1—2pu)?
Pouceess = Ta (14)
where
1(1 1>< <1(1+1> (15)
~ - T = ~ I’L X A - = .
2 V3 2 V3

We numerically compared the average over Bloch’s sphere
cloning fidelities of the first and second clones and its average
over the two clones for the MPCC, which operation depends
on || of the cloned pure state. Our analysis shows that the
average fidelity over the two clones reaches its maximum
F =0.8594 for v =1— u and pu given by (15). We observed
that the cloning fidelity is symmetric for the parameters close
to v =1 — u. The areas of high fidelity (> 0.85) are large in
all three cases. Thus, the setup is robust to variations of w
or v.

Moreover, we numerically studied the average success
probability of the proposed setup in the case of the MPCC,
which corresponds to the probability of finding one photon
in both modes 1” and 2”. The probability of successful
coincidence count in both modes increases radially from
the center of (i, v) space (balanced polarization-independent

beam splitter) where it reaches zero. One can find the best
and v by finding such conditions for which the average fidelity
and the probability of success are simultaneously maximized.
This happens when v = 1 — & and the inequality given in (15)
is saturated.

4.2. Influence of detector imperfections

Detectors play an important role in the proposed experiment.
As one can see in (7), the density matrix po, depends
explicitly on the measurements carried out on the ancillary
qubits. Also in practical realizations of the cloning machine,
the fidelity of the cloning process can be evaluated by
measuring the polarization of photons in modes 1”7 and 2”
in the basis of |v/) and |i/) as described in [18]. This gives
seven detectors in total; however, we analyze only the cases
when four detectors (one photon per detector) click at the
same time. For simplicity, we assume that all the detectors
are characterized by the same parameters.

There are two basic types of photon detectors that can be
used in the experiment: single-photon counters and ON/OFF
detectors. Since we cannot exclude completely the possibility
of the higher-order SPDC events (see (4)), we investigate the
implications of using both types of detectors.

4.2.1. Single-photon  counters. First we analyze
single-photon counters, which can discriminate between
vacuum, detection of one photon and detection of many
photons. We describe imperfections of these detectors by the
following POVM operators [52, 53]:

o= Y e “(1—n)"|m)(ml,

m=0
1 00
M=) e s " m" (1 —n)" " Im)(m|, (16)
n=0 m=n
Ty =111, — 1y,

where 71 is quantum efficiency of the detectors and ¢ stands
for the dark-count rate (typically of the order of 107°).

4.2.2. ON/OFF detectors. =~ We also analyze the ON/OFF
detectors (also referred to as conventional or bucket
detectors), which can discriminate only between vacuum and
any other number of photons. The difference between the
single-photon counters and ON/OFF detectors is negligible in
the case of a low dark-count rate. Since we are interested only
in such events where the number of detector ‘clicks’ is equal
to the assumed number of photons in the system, we use the
following POVM operators [52]:

[o¢]

Mo=>) e *(1—=m"m)(ml|, Tyz1=1-1M, (17)
m=0

4.2.3. Expected fidelity and probability of cloning. In our

proposed experimental setup, we use post-selection; thus
the average fidelities of the clones can be expressed via
coincidences as [18]

_Cin+GCy F _ Cn+Co

Fy . B ; (18)

PSUCCCSS PSUCCCSS
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Table 1. The influence of imperfections of the detectors (neglecting
dark counts) on the average success rate Pgyccess and the average
fidelities F, and F, of two clones, where 7 is the detector efficiency
(some achievable values can be found in [54, 55]). The results show
that the proposed cloning machine is essentially robust to finite
efficiency and finite resolution of detectors. The loss of fidelity
caused by imperfections is less than 1%. However, the theoretical
limit of the maximal cloning fidelity can be reached only in the case
of photon-number-discriminating detectors.

n PSé:lCCCSS Fla an PSlI).ICCeSS Flb sz
1.00 0.2552 0.8594 0.8594 0.2598 0.8567 0.8569
0.80 0.0671 0.8588 0.8589 0.0688 0.8555 0.8558
0.60 0.0120 0.8576 0.8578 0.0124 0.8540 0.8543
0.50 0.0041 0.8567 0.8569 0.0042 0.8531 0.8534
0.40 0.0011 0.8555 0.8558 0.0011 0.8521 0.8524
4Single-photon counters.
PON/OFF detectors.
where

Pgyccess = Coo + Co1 + Cro+ Cyy (19)

is the probability of success (i.e. the successful post-selection)
and Cj; (i, j € {0, 1}) are the following coincidences:

Cii =Tr (poulli @ T11),  Cio=Tr (Poull; ®TI)),

Cot = Tr (Pou i ®TT}),  Coop = Tr (Pou 1) @TI)).

Here, the POVMs f[l and T, correspond to the detection
of a photon in the states |y) and |i/), respectively. As one
can see in (7), Pour depends on the quality and type of the
photon detectors. Moreover, it also depends on the efficiency
of generation of the entangled photon pairs (see (4)). In the
case of perfect detectors (both single-photon counters and
ON/OFF detectors) we have IT; = |1,)(1, . The influence of
imperfections of measurements on the fidelity of cloning and
success rate for single-photon counters (ON/OFF detectors)
is summarized in tables 1 and 2. Note that our numerical
results presented in table 1 indicate a surprising effect that
the fidelity F decreases with decreasing detector efficiency
n. One could predict that the smaller the n the lower the
success probability Pgycecess, but not necessarily the smaller the
F. The loss of F is minor (in the third decimal place), but still
cannot be treated as numerical noise. In fact, this effect can be
explained by the generation of undesired states, proportional
to y3 in (4), in the BBO crystals. These multiphoton states
can be wrongly interpreted as the correct states if some of the
photons are not detected assuming 1 < 1.

In summary, tables 1 and 2 show that our optical cloning
machine is essentially robust to finite efficiency and finite
resolution of detectors.

5. Applicability to arbitrary mirror-symmetric
phase-covariant cloning

For simplicity, so far we have analyzed the setup for
the MPCC [36] alone. However, the general cloning
transformation given in (1) is optimal for the cloning of
arbitrary mirror-symmetric distributions on the Bloch sphere.
Here, this cloning machine is referred to as the generalized
MPCC.

Table 2. The influence of finite dark-count rate of the detectors
assuming perfect efficiency on the average success rate Pyyccess and
the average fidelities F; and F; of two clones, where ¢ is the
detector’s dark-count rate. The influence of the dark counts for the
usual dark-count rates (¢ of the order of 107° [52]) is negligible. For
both types of detectors, the setup is robust (less than 1% drop of the
average fidelity) up to ¢ of the order of 0.001. It is seen that the
probability of coincidence count increases with ¢ for the ON/OFF
detectors and drops in the case of the photon-number-discriminating
detectors (single-photon counters). The ON/OFF detectors register
false successful events as true coincidences. The single-photon
counters are better in the case of low dark-count rates (most of the
practical situations), but for ¢ > 0.0001 we observe that the
performance of the machine is better when the ON/OFF detectors
are applied.

{ PSéli.lCCeSS Fla an PSIIJ.ICCSSS Flb sz

107 0.2552  0.8594 0.8594 0.2598 0.8567 0.8569
107 0.2550 0.8589 0.8589 0.2598 0.8566 0.8568
1072 0.2403 0.8094 0.8094 0.2620 0.8470  0.8472

4Single-photon counters.
YON/OFF detectors.

Recently, we showed [37] that the optimal symmetric
1 — 2 of an arbitrary axisymmetric qubit distribution g(0),
which is the distribution of expectation values (G,) = cos6
for a set of qubits. We call these optimal cloning machines
the axisymmetric cloners. Any g(f) can be expanded in the
basis of the Legendre polynomials P,(cos8) [56] as

1 o0
g(0) = e ;(Zn +1)a, P,(cos6), (20)
2 1
a, =/ / g(@)P,(cosB)dcosb do. 21
0 -1

In [37], we showed that the optimal cloning transformation
depends only on the first three terms of this expansion.
Moreover, we obtained a; =0 for a normalized (a9 =1)
mirror-symmetric distribution, i.e. invariant to the action of
the discrete Weyl-Heisenberg group. Such a case includes as
special cases the PCC for 8 = 7r/2, the MPCC [36] and the
UC of Buzek and Hillery [3].

By comparing the results from [36] with those from [37],
we find that A, given in (1), in general depends on a single
parameter as follows:

1 1
—+—/1
2 2\/

Thus, by using an appropriate functional form of A, we can
implement various optimal cloning machines such as the PCC,
MPCC and UC with the same experimental setup. Note that
for the UC, a, =0, and for the PCC, a, = —1/2, i.e. A =
V2/3 and A = 1/+/2, respectively.

8(1 —a)?

A= -
33 +4a% —4day)

(22)

6. Conclusions

We investigated experimentally feasible optimal mirror phase-
covariant cloning, i.e. optimal cloning of arbitrary sets of
qubits of known modulus of expectation value of Pauli’s &,
operator. Our definition of MPCC includes in special cases
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the UC (corresponding to cloning of a uniform distribution of
qubits on the Bloch sphere) and the phase-covariant cloning
(cloning of equatorial qubits). By identifying the class of
mirror-symmetric phase-covariant distributions of qubits as a
subclass of axisymmetric distributions, for which the optimal
cloning transformations were obtained in [37], we showed that
the cloning transformation we implemented is optimal.

We briefly discussed two possible cryptographic applica-
tions of the MPCC corresponding to state discrimination (or
estimation) and secure quantum teleportation.

We proposed an optical realization of the optimal
quantum mirror phase-covariant 1 — 2 cloning of a qubit,
for which the mean probability of successful cloning varies
from 1/6 to 1/3 depending on prior information on the set of
qubits to be cloned. The qubits are represented by polarization
states of photons generated by SPDC of the first type. The
scheme is based on the interference of two photons on a
beam splitter with different splitting ratios for vertical and
horizontal polarization components and additional application
of feedforward by means of Pockels cells.

It could be argued that the feedforward procedure
can be replaced by using a random ancilla state and the
corresponding switching of filtering. This alternative method
is simpler from a technical point of view, but this would be in
fact a pseudo-random process since it is impossible to obtain
a true random-number generator with deterministic devices.
This property is of great importance for using this cloner for
cryptographic purposes.

The phase-covariant cloning machine implemented by
Cernoch et al [18] is less general as it does not include
feedforward, which allows the setup in cases other than
implementation of the PCC to be used. Moreover, we showed
that the feedforward also allows the use of splitting ratios of
the PDBS of a wider range than that in the schemes without
feedforward.

The experimental feasibility of the proposed setup
was studied including various kinds of losses: (i) finite
efficiency of generating a pair of entangled photons in
the type-I SPDC, (ii) the influence of choosing various
splitting ratios of an unbalanced beam splitter, (iii) the
use of conventional (ON/OFF detectors) and single-photon
discriminating detectors, (iv) finite efficiency of detectors and
(v) their dark counts.

For simplicity, we studied the experimental feasibility of
our setup implementing only the standard MPCC, i.e. which
corresponds to cloning distribution g(f) described by two
Dirac §-functions. Such an analysis can be easily extended
to show the feasibility of our setup for the optimal cloning of
arbitrary distributions g(0) that are mirror symmetric on the
Bloch sphere as described in section 5.

We showed that the cloning machine is robust to losses
and imperfections; its fidelity is expected to be very close
to the theoretical limit and is expected to stay unaffected
by the imperfections of the particular elements other than
the PDBS. Robustness of the proposed experimental setup
was confirmed by an investigation of the influence of the
mentioned imperfections on the average fidelity of clones and
the success probability of the MPCC.

Both the success rate and average cloning fidelity were
estimated by means of a simplified qubit tomography (see

D?
Z,HVVPz PBS,
' DG

Pt PBS,
1u * D5
QWP, "
D4

Figure 2. The final part of the setup that can be used for
verification of the cloning operation. The HWP, and QWP; rotate
|¥) and [¢) to |1) and |1v). Cloning is successful when two of the
detectors click, one of the pair (D4, Ds) and one of the pair (D¢, D7).
Four detectors are used in order to evaluate the fidelity of the
cloning operations as given in (18), where the pairs of detectors

(D4, Ds) and (D, D7) correspond to the POVMs (T, f[l) and
(ﬁl ,II)), respectively.

figure 2) setup [57]. In our case, similarly to Cernoch
et al [18], we do not need to use the complete tomography
to determine the fidelity of the clones (since we a priori know
the input state to some extent). The probability of successful
cloning is high in comparison to the logical circuit described
in [36] with all the CNOT operations replaced with the best
optical gates.

The setup proposed in this paper is suitable not only for
the MPCC, but also for any optimal cloning of an arbitrary
set of qubits of axial and mirror xy symmetry [37] including
the universal, phase-covariant and mirror-phase covariant
clonings.
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