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It is well known that the violation of Bell’s inequality in the form given by Clauser, Horne, Shimony, and Holt
(CHSH) in two-qubit systems requires entanglement, but not vice versa, i.e., there are entangled states which do
not violate the CHSH inequality. Here we compare some standard entanglement measures with violations of the
CHSH inequality (as given by the Horodecki measure) for two-qubit states generated by Monte Carlo simulations.
We describe states that have extremal entanglement according to the negativity, concurrence, and relative entropy
of entanglement for a given value of the CHSH violation. We explicitly find these extremal states by applying the
generalized method of Lagrange multipliers based on the Karush-Kuhn-Tucker conditions. The found minimal
and maximal states define the range of entanglement accessible for any two-qubit states that violate the CHSH
inequality by the same amount. We also find extremal states for the concurrence versus negativity by considering
only such states which do not violate the CHSH inequality. Furthermore, we describe an experimentally efficient
linear-optical method to determine the highest Horodecki degree of the CHSH violation for arbitrary mixed states
of two polarization qubits. By assuming to have access simultaneously to two copies of the states, our method
requires only six discrete measurement settings instead of nine settings, which are usually considered.
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I. INTRODUCTION

Since the seminal paper of Einstein, Podolsky, and Rosen
[1], there has been much interest in the two seemingly inter-
related phenomena of quantum entanglement and nonlocality.
Especially during the last three decades much theoretical and
experimental work has been done in order to better understand
the implications of these phenomena not only in physics but
even in biology and philosophy.

Quantum entanglement is nowadays relatively well un-
derstood [2]. It is defined as the inseparability of quantum
states and can be viewed as an algebraic concept. Quantum
nonlocality is more related to experimental statistics. Namely,
it can be considered as a type of correlation between measure-
ment outcomes, obtained in spatially and temporally separated
laboratories, that cannot be explained by local hidden-variable
theories. Bell-type inequalities [3,4] are often used to address
this nonlocality quantitatively [5]. In this paper we focus
on the violation of Bell’s inequality in the form derived by
Clauser, Horne, Shimony, and Holt (referred to as the CHSH
inequality) [4].

For two qubits, Bell inequalities can be violated only if
their states are entangled. However, as shown by Werner [6],
there are entangled states that can still exhibit correlations
which do not violate any Bell inequality for any possible local
measurements; that is, unless a sequence of measurements,
or several copies, or other more sophisticated scenarios are
applied [5]. Note that Werner considered only projective
measurements, but his conclusions apply also to the case
of general measurements [positive operator-valued measures
(POVMs)] [5].

*bartkiewicz@jointlab.upol.cz

Werner’s states are defined as [6]

ρ̂W (p) = p|�−〉〈�−| + 1 − p

4
I ⊗ I, (1)

which is a mixture of the singlet state |�−〉 = (|01〉 − |10〉)/√
2 and the maximally mixed state I ⊗ I , where I is the

single-qubit identity operator and the parameter p ∈ [0,1].
The Werner states violate the CHSH inequality if and only
if 1/

√
2 < p � 1, while they are entangled if and only if

1/3 < p � 1. Thus, for p ∈ (1/3,1/
√

2], the Werner states
are entangled and they satisfy the CHSH inequality [6]. These
properties of the Werner states can be easily revealed by
applying the Horodecki theorem [7].

Therefore, a natural question can be raised as to how much
entangled states can be without violating the CHSH inequality
or, more generally, for any fixed degree of the CHSH violation.
The intuitive guess is that different measures of entanglement
imply different answers for this question.

A degree of entanglement of two-qubit states can be
described by various entanglement measures including [2]
(i) the relative entropy of entanglement (REE) [8], which
is a quantum version of the Kullback-Leibler divergence;
(ii) the Peres-Horodecki negativity [9], which is a measure
of the entanglement cost under operations preserving the
positivity of partial transpose (PPT) [10]; and (iii) the Wootters
concurrence [11], a measure of the entanglement of formation
[12]. On the other hand, the Horodecki theorem [7] enables not
only testing the CHSH inequality violation but also quantifying
the degree of this violation for arbitrary two-qubit states.
This degree is often referred to as a single-copy nonlocality
measure [5].

In this paper we shall use the listed measures of entangle-
ment to answer the question about the relation between the
CHSH violation and entanglement quantitatively. In particular
we find states that have extreme entanglement for all the
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above-mentioned entanglement measures for a given degree
of the CHSH violation. For the purpose of our optimization
procedure we shall use the so-called Karush-Kuhn-Tucker
(KKT) conditions in a generalized method of Lagrange
multipliers, which provide powerful tools for solving such
optimization problems [13]. We also use other tools for testing
the optimality of the states obtained, namely, the optimality
conditions for the concurrence provided in Ref. [14] and Monte
Carlo simulations.

Verstraete and Wolf [14] found the regions of possible
extremal CHSH violation for a given concurrence. This
comparison is an important result, but it does not indicate
the regions of extremal CHSH violation for other important
entanglement measures including the negativity and REE. For
example, in contrast to the Verstraete-Wolf results, pure states
are not extremal if the CHSH violation is compared with
the REE (for values not too close to 1) as recently shown
in Ref. [15]. Here we give a deeper comparison of the REE
and CHSH violation. More importantly, we find the regions of
the extremal negativity for a given CHSH violation.

The inequivalence of such results for different entanglement
measures in comparison to the CHSH violation can be under-
stood by recalling that these measures have fundamentally
different physical meanings (as discussed in Sec. II) even for
two-qubit states. Only in special cases, including pure states,
the negativity and concurrence become equal and equivalent
to the REE. As an example of such basic discrepancies, we
will show explicitly that these three entanglement measures
do not necessarily imply the same ordering of states even if
the CHSH violation is fixed at some value. Actually, as shown
in Ref. [16], all “good” nonidentical asymptotic entanglement
measures (such as those studied in this paper) cannot impose
consistent orderings for all quantum states.

We study the relation between the CHSH violation and
negativity (and other entanglement measures) for arbitrary
two-qubit states analogously to the comparisons of the CHSH
violation with the concurrence [14,17] and REE [15]. Note that
many other comparative studies of the concurrence and CHSH
violation were limited to some specific classes of two-qubit
states usually in a dynamical context [18–26].

It is worth noting an increasing interest in developing
device-independent approaches to entanglement testing and
quantifying, which are based on various Bell inequality
violations (see, e.g., Refs. [5,27] and references therein). For
example, semi-device-independent upper and lower bounds
on the concurrence were studied in Ref. [28], and device-
independent lower bounds on the negativity were found
recently in Ref. [27]. These approaches often correspond to
testing only sufficient conditions for the CHSH violation. They
are, however, beyond the scope of this work, which is focused
on the maximal violations of the CHSH inequality based on
the necessary and sufficient conditions as described by the
Horodecki measure. For example, Ref. [27] employed some
methods and results obtained in the studies of matrices of
moments for continuous-variable systems related to the criteria
(i.e., witnesses instead of measures) of entanglement [29] and
nonclassicality [30].

We focus on the CHSH inequality, although there are
stronger Bell inequalities as was shown for the Werner
states by, e.g., Vertesi [31]. Note, however, that the CHSH

inequalities even though simple (there is a variety of other
Bell inequalities involving more measurement settings) are
very powerful since the stronger inequality requires at least
465 settings on each side for the Vertesi inequality. The Werner
states violate the Vertesi inequality for p > 0.7056, while the
CHSH inequality is violated, as already mentioned for p >

1/
√

2 ∼ 0.7071 only. There are other Bell inequalities that are
not equivalent to the ones already mentioned. Notably, there
is the Śliwa-Collins-Gisin inequality [32], i.e., the so-called
I3322 inequality.

Furthermore, we describe an efficient experimental method
for estimating the Horodecki measure of the CHSH violation
for two polarization qubits in an unknown arbitrary state. By
assuming we have access simultaneously to two copies of the
state, we show how to perform such a measurement with only
six discrete measurement settings for estimating the Horodecki
measure. Of course, with an a priori (even partial) knowledge
of a given state or, in particular, of the optimal experimental
settings for its detection, one can further simplify the proposed
method. For example, optimized experimental settings for the
best measurement of the CHSH violation for an a priori known
class of two-qubit states were studied in Ref. [33].

The paper is organized as follows. In Sec. II we review some
basic definitions used throughout the paper. In the following
Sec. III we provide the boundary states for a given value
of the CHSH violation and analytic expressions for their
entanglement in terms of the degree of CHSH violation.
The extremality conditions for the negativity and concur-
rence versus the CHSH violation are tested in Sec. IV and
Appendix A, respectively. In Sec. V we compare the concur-
rence and negativity for states satisfying the CHSH inequality.
Section VI presents a description of an experimental proposal
for measuring the maximal CHSH violation degree using the
same six settings regardless of the investigated two-qubit state.
We conclude in Sec. VII.

II. PRELIMINARIES

Throughout this paper we study correlations in two-qubit
systems described by density matrices ρ, which can be
expressed in the standard Bloch representation as follows:

ρ = 1

4

(
I ⊗ I + �x · �σ ⊗ I + I ⊗ �y · �σ +

3∑
n,m=1

Tnm σn ⊗ σm

)
,

(2)

where the correlation matrix Tij = Tr[ρ(σi ⊗ σj )], and the
vectors �σ = [σ1,σ2,σ3] and �x (�y) with elements xi =
Tr[ρ(σi ⊗ I )](yi = Tr[ρ(I ⊗ σi)]), are expressed in terms of
the Pauli matrices. As discussed further in the text, this form of
two-qubit density matrix is very convenient for investigating
the CHSH violation.

A. Measure of CHSH violation

The CHSH inequality for a two-qubit state ρ ≡ ρAB can be
written as [2,4]

|Tr (ρ BCHSH)| � 2 (3)
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in terms of the CHSH operator

BCHSH = �a · �σ ⊗ (�b + �b′) · �σ + �a′ · �σ ⊗ (�b − �b′) · �σ , (4)

where �a,�a′ and �b,�b′ are unit vectors describing the measure-
ments (i.e., detector settings) on sides A (Alice) and B (Bob),
respectively. As shown by Horodecki et al. [7] by optimizing
the vectors �a,�a′,�b,�b′, the maximum possible average value of
the Bell operator for the state ρ is given by

max
BCHSH

|Tr (ρ BCHSH)| = 2
√
M(ρ), (5)

whereM(ρ) = maxj<k{hj + hk} � 2, and hj (j = 1,2,3) are
the eigenvalues of the matrix U = T T T constructed from
the correlation matrix T and its transpose T T . The CHSH
inequality is violated if and only if M(ρ) > 1 [7]. In order
to quantify the violation of the CHSH inequality, one can use
M(ρ) or, equivalently,

B(ρ) ≡
√

max [0,M(ρ) − 1], (6)

which yields B = 0 if the CHSH inequality is not violated and
B = 1 for its maximal violation. In Sec. VI we will describe
how to measure the symmetric matrix T T T providing a method
for efficient estimation of B and M.

B. Entanglement measures

In our considerations we apply three popular entanglement
measures: negativity, concurrence, and REE.

“Among all entanglement measures negativity arguably is
the best known and most popular tool to quantify bipartite
quantum correlations” [34]. The negativity for a bipartite state
can be defined as [35,36]:

N (ρ) = max

[
0, −2

∑
j

μj

]
, (7)

where the sum is taken over the negative eigenvalues μj of the
partially transposed ρ with respect to one of the subsystems,
as denoted by ρ� . In the case of two qubits, Eq. (7) simplifies
to

N (ρ) = max[0, −2 min eig(ρ�)], (8)

since ρ� has at most one negative eigenvalue in this case.
The negativity is directly related to the logarithmic negativity,
which has a direct physical meaning of the entanglement cost
under PPT operations [10,37]. However, for convenience, we
use the negativity instead.

For higher-dimensional systems, the negativity has another
important interpretation as an estimator of entangled dimen-
sions, i.e., how many degrees of freedom of two subsystems are
entangled [34]. We note that the dimension of Hilbert spaces
can also be tested by the violations of Bell’s inequality [38].

The Wootters concurrence [11] is defined as

C(ρ) = max

{
0,2 max

j
λj −

∑
j

λj

}
, (9)

where {λ2
j } = eig[ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)]. This measure is

a monotonic and convex function of the entanglement of
formation [12]. As in the case of the negativity and logarithmic

negativity, it is often more convenient to operate with the
concurrence instead of the entanglement of formation.

The REE is defined as

ER(ρ) = minσ∈DS(ρ‖σ ) = S(ρ‖σ0), (10)

where S(ρ||σ ) = Tr (ρ log2 ρ − ρ log2 σ ) is the relative en-
tropy to be minimized over a setD of separable states σ [8,39].
The REE is used to distinguish a density matrix ρ from the
closest separable state (CSS) σ0. For pure states, the REE
reduces to the von Neumann entropy of one of the subsystems.
However, the REE is not a true metric, because it is not
symmetric and does not fulfill the triangle inequality. An
analytical formula for σ0 (and thus for the REE) for a given
general two-qubit state ρ is very unlikely to be found [40].
Nevertheless, there is a solution of the inverse problem [41].
Probably, the most efficient numerical method for calculating
the REE was described in Ref. [42] and, thus, it is used here.

III. EXTREMAL ENTANGLEMENT
FOR A GIVEN CHSH VIOLATION

For each of the three entanglement measures listed in
Sec. II, we can ask about the states that are extremal, i.e.,
have the maximal or minimal value of one entanglement
measure for a given fixed value of another entanglement
measure [40,43–46] or the CHSH violation measure [14,15].
Similarly, we state a more specific question about the max-
imal entanglement for vanishing of any other fixed degree
of the CHSH violation. In this section we show that for
all the above-mentioned entanglement measures, the states of
the highest (lowest) entanglement for a given violation of the
CHSH inequality are in fact the same class of states denoted
as ρmax (ρmin).

A. Optimal amplitude-damped states

The amplitude-damped states can be defined by [15]

ρ(α,p) = p|ψα〉〈ψα| + (1 − p)|00〉〈00|, (11)

where |ψα〉 = √
α|01〉 + √

1 − α|10〉 with p,α ∈ [0,1]. As
discussed in detail in Ref. [15], these states can be obtained
by subjecting pure states |ψα′ 〉 to amplitude damping. In the
special case for α = 1/2, the state ρ(α,p) is referred to as the
Horodecki state, which is a mixture of a Bell state (in our case,
the singlet state) and a separable state orthogonal to it.

The amplitude-damped states, which provide the upper
bound for the REE for a given value B of the CHSH violation,
are shown in Figs. 1(bottom) and 2. Moreover, as found in
Ref. [15], the amplitude-damped states ρ(α,p) ≡ ρmax(B0),
having the maximal value of the REE, ER, max, for a given
value B, are the following:

p =
{

1
4 (2 + √

2 + 2B2) if B < B0,

1 if B > B0,
(12a)

1 � p � 1

4

(
2 +

√
2 + 2B2

0

)
if B = B0, (12b)

α = 1

2p
(p −

√
5p2 − 4p − B2), (12c)
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FIG. 1. (Color online) From the top: the negativity N , concur-
rence C, and relative entropy of entanglement ER versus the CHSH
violation B for 106 random two-qubit states. The extremal states
are marked as P for pure state, D for Bell-diagonal states ρmin,
and M for ρmax. The maximal values of Nmax(B = 0) = 0.575 67,
Cmax(B = 0) = 0.707 11, and ER, max(B = 0) = 0.404 are reached
for the M states ρmax.

where B0 = 0.816 86. For the negativity and concurrence for
a given value of B, the states ρmax(B0) are also optimal but
for B0 = 1 [so p = 1

4 (2 + √
2 + 2B2) for any B] as shown in

Sec. IV and Appendix A, respectively. Thus, the maximal
values of the entanglement measures for a given value of
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FIG. 2. (Color online) Comparison of the extremal values of the
relative entropy of entanglement ER , concurrence C, and negativity
N as functions of the CHSH violation B.

ξ 2 = B2 + 1 are found as

Nmax(ξ ) =
√

2

4
(ξ +

√
5ξ 2 − 2

√
2ξ + 2 ) − 1

2
, (13)

Cmax(ξ ) =
√

2ξ 2 + 2ξ

2
√

ξ 2 + 2
√

2ξ + 2
, (14)

while ER, max(B) is given in Ref. [15].

B. Optimal phase-damped states

The lower bound on the three entanglement measures vs
the CHSH violation B is achieved by the Bell-diagonal states

ρD =
4∑

i=1

λi |βi〉〈βi |, (15)

as labeled by D in Fig. 1. Here |βi〉 are the Bell states and the
parameters λj are non-negative and normalized,

∑
i λi = 1.

The reason why the Bell-diagonal states provide the lower
bound for B given for a fixed function of the spectral properties
of two-qubit density functions was explained in Ref. [14]. The
Bell-diagonal states can be produced by two-qubit pure states
subjected to phase damping [15]. These states, assuming that
λ3 = λ4 = 0, can be given in terms of the CHSH violation
degree B as follows:

ρmin = 1
2 [(1 + B)|β1〉〈β1| + (1 − B)|β2〉〈β2|], (16)

where |β1〉 and |β2〉 denote two orthogonal Bell states. Note
that the relation between the CHSH violation and entanglement
for the Bell-diagonal states is very simple, as given by

Nmin(B) = Cmin(B) = B, (17a)

ERmin(B) = 1 − h[(1 + B)/2], (17b)
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where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy.

IV. EXTREMALITY CONDITIONS FOR NEGATIVITY
FOR A GIVEN CHSH VIOLATION

Here we show that the amplitude-damped states given by
Eq. (11), for the parameters:

p = 1

4
(2 +

√
2ξ ), (18a)

α = 1

2

(
1 −

√
1 − 4ξ 4

(ξ 2 + √
2ξ )2

)
, (18b)

where ξ 2 = 1 + B2, are likely to provide the upper bound of
the negativity N for a given value B of the CHSH violation.
For this purpose we apply a generalized method of Lagrange
multipliers and test the KKT conditions [13].

Thus, let us consider the following Lagrange function:

L = B(ρ) + l

[
N

2
− Tr[ρ(|ψ〉〈ψ |)]

]
(19)

−Tr(Xρ) + λ(Trρ − 1), (20)

where l, X, and λ are Lagrange multipliers, and (|ψ〉〈ψ |)� is
the optimal state for ρ providing N (ρ) = −2Tr[(|ψ〉〈ψ |)�ρ].

The Lagrange function is stationary if it remains unchanged
after an arbitrary small deviation of ρ → ρ + �, where � is
defined on the support space of ρ. Thus, our Lagrange function

L → L + Tr{�[B′
CHSH + l(|ψ〉〈ψ |)� − X + λ]} (21)

should remain constant for small �, i.e.,

B′
CHSH + l(|ψ〉〈ψ |)� − X + λ = 0, (22a)

X � 0, Tr(Xρ) = 0, (22b)

where B′
CHSH is the operator satisfying B(ρ) = Tr(ρB′

CHSH).
Let us also note that X � 0 is required only for the eigenvalues
in the support space of ρ.

Moreover, it follows from Eq. (22a), after taking the mean
value for ρ, that

λ = l
N

2
− B(ρ). (23)

Thus, we can rewrite the KKT conditions as

X = B′
CHSH − B(ρ) + l

(
N (ρ)

2
+ (|ψ〉〈ψ |)�

)
� 0,

(24)
Tr(Xρ) = 0.

For the rank-2 mixed states ρ = λ1|e1〉〈e1| + λ2|e2〉〈e2|, which
we conjecture to be extremal on the basis of our numerical
simulation, we can easily derive the following expressions
that can be used with the l multiplier as

〈e1|B′
CHSH|e2〉 = −l〈e1|(|ψ〉〈ψ |)�|e2〉, (25a)

〈e1|B′
CHSH|e1〉 = −l

(
N (ρ)

2
+ 〈e1|(|ψ〉〈ψ |)�|e1〉

)
+ B(ρ).

(25b)

By applying the KKT conditions we can check if a given
state is optimal, having its B′

CHSH and (|ψ〉〈ψ |)� . The CHSH
operator for the amplitude-damped states reads as

B′
CHSH =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η1
[
(1 − 2p)σ⊗2

3 + 2p
√

(1 − α)ασ⊗2
1 − 1

]
if 4p2(1 − α)α − (1 − 2p)2 < 0,

η2
[
2p

√
(1 − α)α

(
σ⊗2

1 + σ⊗2
2

) − 1
]

otherwise,

(26)

where η1 = 1/
√

(1 − 2p)2 + 4p2α(1 − α) − 1 and η2 = 1/√
8p2(1 − α)α − 1, whereas

|ψ〉 = N [(
√

q2 + 4y2 − 1)|00〉 + 2y|11〉], (27)

where y = p
√

α(1 − α), q ≡ 1 − p, andN is a normalization
constant.

The above results allow us to conclude that the optimal
amplitude-damped states ρ(α,p), which maximize the nega-
tivity N (ρ) for a given B(ρ), are, for the parameters p and
α given by Eq. (18). These parameters are the same as those
resulting in the maximum REE for a fixed B as given by
Eq. (12) but with B0 = 1.

Then the negativity for ρmax(1) can be readily found as given
by Eq. (13), which reaches its maximum Nmax ≈ 0.575 67 for
B = 0. This result is confirmed by our Monte Carlo simulation
shown in Fig. 1(top).

Similar reasoning confirms that the minimal negativity is
reached by the ρmin states, given by Eq. (16).

V. CONCURRENCE VS NEGATIVITY
IF CHSH INEQUALITY IS SATISFIED

One can conjecture that there is a direct relation between
the concurrence and negativity for a fixed CHSH violation
for the simple case of general two-qubit mixed states, which
would then make the results of the former sections somewhat
trivial. Here we show that there is no such relation for general
two-qubit mixed states for a fixed B = 0.

It is worth noting that even if a given entangled state
does not violate any Bell-type inequality, but still can be
used for quantum teleportation, as shown by Popescu [47]
on the example of Werner’s entangled state given by Eq. (1)
for p ∈ (1/3,1/

√
2]. Popescu concluded that “The nonlocality

responsible for violations of Bell’s inequalities is not equiva-
lent to that used in teleportation, although they probably are
two aspects of the same physical property” [47]. However,
it has recently turned out that these two aspects are in fact
quite closely connected. Indeed, all entangled states useful for
teleportation lead to deterministic violation of Bell’s inequality
(so they are nonlocal resources) as shown by Cavalcanti et al.
[48] with the help of the phenomenon of superactivation of
quantum nonlocality. Moreover, as demonstrated in Ref. [49],
all bipartite entangled states are useful as a nonclassical
resource for quantum information processing.

Figure 3 shows the area covered by two-qubit states
ρ satisfying the CHSH inequality [i.e., B(ρ) = 0] for the
concurrence C(ρ) plotted vs the negativity N (ρ). The marked
points Xk = (Nk,Ck), with k = 1, . . . ,4, correspond to the
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FIG. 3. (Color online) Concurrence C vs negativity N for two-
qubit states satisfying the CHSH inequality (B = 0). All these
states cover the region marked in bright yellow. States generated
by our Monte Carlo simulations correspond to dark brown dots. The
extremal states are marked as D for the Bell-diagonal states, H for
the Horodecki states, and A for the amplitude-damped states given
by Eq. (11) with the proper choice of parameters p,α. The points
Xk = (Nk,Ck) and other details are specified in the text.

following negativities:

N1 = 1√
2

+
√

2 −
√

2 − 1 ≈ 0.4725,

(28)

N2 = 1

4
(
√

2 +
√

14 − 4
√

2 − 2) ≈ 0.5757,

N3 = √
2 − 1 ≈ 0.4142, and N4 = 1

4 (3
√

2 − 2) ≈ 0.5607, as
well as to the concurrences C1 = C2 = 1/

√
2 ≈ 0.7071, and

Ck = Nk for k = 3,4. The upper bound of this area for
N ∈ [0,N1] is given by

C(N ) =
√

2N (N + 1) − N, (29)

or, equivalently, by N (C) =
√

(1 − C)2 + C2 − (1 − C). This
bound can be reached by the Horodecki states (labeled by H),
given by Eq. (11) for α = 1/2 and p = C(ρ). We note that
the upper bound of the concurrence vs negativity without
specifying the CHSH violation is also given by Eq. (29) but
for the whole range 0 � N � 1 [43,45]. The upper bound
for N ∈ [N1,N2] is likely to be C(N ) = 1/

√
2, which can be

reached by the amplitude-damped states (labeled by A) given
by Eq. (11) for p = 1/[2

√
2α(1 − α)] and α = [α−,α+], with

α± = 1/2 ±
√

8
√

2 − 11. The lower bound for N ∈ [0,N4] is
simply given by C = N and can be reached by the rank-4
Bell-diagonal states, given by Eq. (15) for λ1 = λ2 = λ3 =
(1 − N )/6 and, thus, λ4 = maxn λn = (1 + N )/2. The lower
bound for N ∈ [0,N3] can also be reached by the rank-3
Bell-diagonal states with λ1 = 0, λ2 = λ3 = (1 − N )/4, and
λ4 being the same as in the previous case. The rank-2 Bell-
diagonal states satisfying B = 0 correspond only to the point
C = N = 0. It is also worth noting that the lower bound of C

vs N for arbitrary B is also simply given by C = N but for any
0 � N � 1 [43,45]. We could not find analytical examples of
states corresponding to the lower bound for N ∈ [N4,N2]. Note
that it is a very narrow region, as equal to N2 − N4 = 0.015,
so it is even difficult to numerically simulate states satisfying
both N ∈ (N4,N2) and B = 0. Of course, one can analyze,
e.g., the mixture ρq = qρX2 + (1 − q)ρX4 , where 0 � q � 1,
of the discussed Bell-diagonal state at point X4 and the
amplitude-damped state at point X2. Then one can observe
that only for q � 0.9893 . . . is the negativity N (ρq) � N4,
which corresponds to the concurrence C(ρq) � 0.6706 > C4.
This explicitly shows that the state ρq can have the negativity
N ∈ (N4,N2) but it is not the lower bound of C vs N for q > 0.

A closer analysis of Fig. 3 also shows that there are infinitely
many pairs of two-qubit states (say, ρ1 and ρ2) violating
the following intuitive conditions for ordering states with the
concurrence and negativity:

N (ρ1) = N (ρ2) ⇔ C(ρ1) = C(ρ2),
(30)

N (ρ1) > N (ρ2) ⇔ C(ρ1) > C(ρ2)

for a fixed CHSH violation B(ρ1) = B(ρ2). Of course, there
are also infinitely many other states satisfying these conditions.
In particular, by analyzing Fig. 3, one can find analytical non-
trivial examples of states which satisfy the CHSH inequality
and are ordered differently by these entanglement measures,
e.g.,

N (ρX1 ) < N (ρX4 ) and C(ρX1 ) > C(ρX4 ),

N (ρX1 ) = N (ρX5 ) and C(ρX1 ) > C(ρX5 ),

N (ρX1 ) < N (ρX2 ) and C(ρX1 ) = C(ρX2 ),

where ρX5 is, e.g., the Bell-diagonal state with λ1 = λ2 = λ3 =
(1 − N1)/6, λ4 = maxn λn = (1 + N1)/2, and N1 the same as
for ρX1 . Of course, one can also identify pairs of states, e.g., ρX2

and ρX4 , which are ordered in the same way, e.g., N (ρX2 ) >

N (ρX4 ) and C(ρX2 ) > C(ρX4 ).
This relativity of ordering states by different entanglement

measures is a well-known phenomenon [16,19,44–46,50–52],
which clearly shows the lack of simple relations of, e.g., the
negativity and concurrence (when the degree of the CHSH
violation is irrelevant) for two-qubit states. Here we showed the
relativity of ordering states by the negativity and concurrence
for a fixed value of the CHSH violation.

VI. PROPOSAL OF EFFICIENT MEASUREMENT
OF THE CORRELATION MATRIX T T T

Knowing the lower and upper bounds of the three entan-
glement measures for a given CHSH violation B, we are now
able to deduce the range of entanglement of any two-qubit
state for a fixed B. The expression for the CHSH violation B

depends solely on the eigenvalues of the symmetric real matrix
T T T . Here we present an efficient method for measuring this
correlation matrix T T T .

We can express the elements of this matrix using two copies
ρ1 and ρ2 of the two-qubit state ρ as

(T T T )m,n = Tr
[(

ρA1B1 ⊗ ρA2B2

)
UA1A2 ⊗ (σm ⊗ σn)B1B2

]
,

(31)
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FIG. 4. (Color online) Setup implementing the measurement of
(T T T )m,n using two sources (or a single photon source with routing
and delaying every second pair of photons) of a two-qubit state (ρ1 and
ρ2). The basic building blocks are as follows: beam splitters (BSs),
polarizing beam splitters (PBSs), quarter-wave plate (λ/4) and half-
wave plate (λ/2), and standard detectors. The values of m,n = x,y,z

are set by rotating the polarization by means of the wave plates, i.e.,
one λ/4 and one λ/2 plate, where λ is the wavelength. Circled −4 (and
±1) means that this value is assigned if the corresponding detectors
(D) click. Since the investigated function of the correlation matrix T

is symmetric we need only to measure it in six configurations, e.g.,
(m,n) = (x,x),(x,y),(x,z),(y,y),(y,z),(z,z). Due to the probabilistic
nature of the path taken by photons after the BS interaction, the setup
gives a conclusive result in half of the cases if ρ1 and ρ2 are supplied
at the input.

where ρA1B1 ≡ ρ1 and ρA2B2 ≡ ρ2 for the subsystems A and
B, whereas the operator UA1A2 = (−4|�−〉〈�−| + I )A1A2 is
given in terms of the singlet projection |�−〉〈�−| onto the
corresponding subsystems and the two-qubit identity operation
I (for a derivation see Appendix B). Since the 3 × 3 matrix
T T T is symmetric, (T T T )m,n = (T T T )n,m, so it is completely
defined by six real numbers, which can be directly measured
for, e.g., single-photon polarization qubits. We choose, e.g., |0〉
(|1〉) to represent a horizontally (vertically) polarized photon.
For such qubits, T T T can be measured by the setup shown in
Fig. 4. The left-hand-side module of this setup, which consists
of three 50:50 asymmetric beam splitters (BSs), performs the
measurement of the UA1A2 operator. The operation of this
module was described in detail (considering imperfections
including finite detection efficiency) in Ref. [53]. The possible
outcomes for a single measurement instance ak are ak ∈
{−4, −1,0,1,4}, which are the products of the outcomes
−4,0,1 corresponding to a particular coincidence detection
in the module 1, for a coincidence detection in the detectors
D1 and D4; −4, for a coincidence detection in the detectors
D2 and D3; and 0, if neither of the two coincidences has been
detected. Moreover, the right-hand-side module of the setup
in Fig. 4 measures the product σm ⊗ σn. The outcomes −1,1
of this module occur for measuring the product of the Pauli
matrices. The useful values of an �= 0 appear for one-half of
the cases when the states ρ1 and ρ2 are delivered and assuming
perfect detectors. For realistic components (see the analysis in
Ref. [53]), this setup would provide us with a good estimation
of T T T in a time period corresponding to switching between

the six settings of σm ⊗ σn instead of nine settings required
for the full tomography of the T matrix. The expected values
obtained read

〈σm ⊗ σn〉 = 1

K0

K∑
k=1

ak, (32)

where K is the number of measurements, K0 = ∑K
k=1 δ|ak |,1

and δ|ak |,1 is the Kronecker δ. Note that the depicted measure-
ment method is not limited to measuring B for any two-qubit
state. It measures T T T , which contains more information than
the sum of the two largest eigenvalues used for calculating B.

A. Proposal for experimental optimization

Here we discuss an optimization of the setup to make it
experimentally more feasible. Our implementation of the left-
hand-side module, depicted conceptually in Fig. 4, requires
three balanced beam splitters and four detectors. From the
experimentalist point of view, the larger the number of
components, the larger the measurement error. For example,
the splitting ratio of beam splitters is particularly sensitive to
mount alignment and manufacturing precision. Furthermore
all the detectors have to be calibrated to the same relative
detection efficiency.

To reduce the number of required optical components, we
propose a modified measurement setup depicted in Fig. 5. As
the conceptual setup in Fig. 4 shows, there are two distinct
measurement regimes in the module. The first regime is im-
plemented by two-photon overlap on a balanced beam splitter
projecting the state onto the singlet state. The corresponding
coincidence rate is then multiplied by the factor of −4. The
second regime is just a plain coincidence count (detectors
D1 and D4). In the modified setup, we implement both these
regimes using a single beam splitter. To switch between the
regimes, we suggest a delay line to tune the temporal overlap

-42

FIG. 5. (Color online) Experiment-friendly setup replacing the
left-hand-side measurement module in Fig. 4. BS, balanced beam
splitter; FC, fiber coupler; D, detector. Motorized translation (marked
by double arrow) is used to tune the temporal delay between the
photons in order to switch between measurement regimes as explained
in the text.
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between the interacting photons. The first measurement regime
is obtained by setting the delay between the photons to
zero, while the second regime is obtained when the delay is
sufficiently larger than a single-photon coherence length. In the
second regime, the two photons impinge on the beam splitter
independently and they exit by different output ports in half
of the cases only. For this reason, this number of coincidences
has to be multiplied by 2 to implement the conceptual setup.

The benefits of the optimized setup are at least threefold:
(i) The number of beam splitters is reduced by a factor of 3.
(ii) Only one pair of detectors is used, so there is no need
for calibration within the module. The only calibration to be
performed is the mutual calibration of the efficiencies of the
detector pairs across the left- and right-hand-side modules of
the setup. (iii) Another minor benefit of the modified version
of the setup is that it can be constructed using a standardized
two-photon-state characterization device [54] routinely used in
other experiments. Note that since there is need for singlet-state
projection even in the original setup, such a delay line would
be needed in order to stabilize the setup anyway. Therefore it
does not impose any additional experimental requirements.

VII. CONCLUSIONS

We have analyzed, as summarized in Fig. 2, the relation
between the Horodecki measure of the CHSH inequality
violation (or single-copy nonlocality) and three common en-
tanglement measures: the negativity, concurrence, and relative
entropy of entanglement. We discovered optimal states that
provide the upper bound on the entanglement measures for
a given CHSH violation. We provided both numerical and
analytic evidence by testing the KKT extremality conditions
within a generalized Lagrange multiplier method in the case
of the negativity for a given CHSH violation. We also checked
that the states found satisfy the Verstraete-Wolf conditions [14]
for the extremal concurrence for a given CHSH violation.
Remarkably, the states belong to the same class of states for
all the investigated measures of entanglement, including the
REE. We showed that the states providing the upper and lower
bounds on the entanglement measures for a given value of
the CHSH violation can be simply obtained by the amplitude
and phase damping of pure states, respectively. We also found
extremal states for the concurrence versus negativity for a fixed
value of the CHSH violation (i.e., B = 0).

Moreover, we described a method to efficiently measure the
correlation matrix T T T , and, thus, to estimate the Horodecki
degree of the CHSH violation. This method together with
the found bounds on the entanglement measures discussed
provides an easy and practical way of estimating entanglement
for arbitrary two-qubit states with a fixed degree of CHSH
violation.

It is worth comparing our method with the standard
methods, in which the violation of the CHSH inequality can
be tested using four correlation measurements. Hence, one
could ask about the advantage in estimating (in a non-device-
independent way) a correlation matrix using six correlation
measurements. One might think that we use more mea-
surements to achieve less. However, this four-measurement
approach refers just to testing the CHSH violation for a given
state and for given positions of analyzers. In contrast, our work

is about quantifying the CHSH violation for a given state by
optimizing over all possible positions of analyzers to have the
greatest degree of the CHSH violation. This approach requires
more measurements than in the case of ordinary unoptimized
measurements of the CHSH violation. Namely, our approach
is based on the Horodecki measure of the CHSH violation
corresponding to finding eigenvalues of a real symmetric
3 × 3 matrix with six independent unknown parameters for
a given two-qubit state. Thus, one can conjecture that the
minimum number of optical measurements is six, at least,
if two copies of the state are simultaneously available [55]. If
only one copy is available at a given moment, then the required
number of measurements is even higher (arguably, equal
to nine [55]).

Both upper and lower bounds are operationally important
especially in relation to secure quantum communication (for
a related study of secure quantum teleportation, see, e.g.,
Ref. [56]). For example, let us assume that the degree of CHSH
violation (including the case of no violation) of a given state
ρ is known. Then by applying our negativity bounds, we can
calculate the bounds on the PPT entanglement cost, which is
the asymptotic number of maximally entangled states that are
required to create the state ρ under operations preserving the
positivity of the partial transpose. Analogously, by applying
the Verstraete-Wolf concurrence bounds, one can calculate the
bounds on the entanglement of formation.

It is worth noting that by measuring the correlation matrix
T of an arbitrary unknown two-qubit state, we can find directly
the optimal measurement settings by applying the Horodecki
theorem [7]. In contrast, by measuring T T T of a general state,
we can determine the value of the CHSH violation optimized
over all possible measurement settings without knowing these
optimal settings explicitly. Only for a limited class of states,
including those with symmetric T , the optimal settings can be
determined completely from the T T T matrix.

Finally, we mention one possible application of our results.
Recently, the CHSH inequality has been proved extremely
useful for verifying the quantumness of a black box device
(say, a claimed quantum computer) programmed to win the
so-called CHSH game [57]. Thus, with the help of our results,
by looking at the results of the CHSH game, we are able
to estimate how much entanglement was used by the tested
black box.
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APPENDIX A: STATES WITH EXTREMAL
CONCURRENCE FOR A GIVEN CHSH VIOLATION

The conditions satisfied by the extremal amount of the
CHSH violation for a fixed value of the concurrence were given
by Verstraete and Wolf in Ref. [14]. Note that, for quantifying
the CHSH violation, the authors of Ref. [14] used the
parameter β = 2

√
B2 + 1. So the CHSH inequality is satisfied

for β � 2. Nevertheless, their results are valid also in our case
since B is uniquely determined by β. In order to solve the
optimization problem, the method of Lorentz transformations
on the extended correlation matrix T was used in Ref. [14] to
generate states of constant concurrence. It was found that pure
and Bell-diagonal states have the maximal concurrence for
a given value B of CHSH violation, while the lowest concur-
rence for a given B is achieved by, e.g., a mixture of a Bell state
and a separable state orthogonal to it (the so-called Horodecki
state). A summary of these results is shown in Fig. 1 (middle).

The optimality of the states ρmax, given by Eqs. (11)
and (18), for the whole range of B can be demonstrated
using the optimality conditions given in Ref. [14]. This is
straightforward since the matrix Rm,n = 〈σm ⊗ σn〉 (for m,n =
0,1,2,3, where σ0 is the identity), which was used for testing
the optimality conditions in Ref. [14], has the same structure
as ρmax. The relevant parameters as defined in Ref. [14] read

a(±) = −
√

2(ξ 2 − 2)

4(ξ + √
2)

±
√

2

4

√
ξ 2 + 2

√
2ξ + 2, (A1a)

x = y =
√

2

2
ξ, z = −

√
2ξ + ξ 2

√
2ξ + 2

, (A1b)

where ξ 2 = B2 + 1. These parameters satisfy the optimality
conditions (in fact, they saturate the last two):

−1 � z � 1, (A2a)

(1 + z)2 − (a(+) + a(−))2 � (x − y)2, (A2b)

(1 − z)2 − (a(+) − a(−))2 � (x + y)2. (A2c)

Moreover, the concurrence for amplitude-damped states is

C(α,p) = 2p
√

α(1 − α), (A3)

so, in the case of extremal states, it can be expressed by
Eq. (14). Thus, the states ρmax belong to the class of states
having the highest concurrence for a given degree B of
the CHSH violation reaching the maximum Cmax(ξ = 1) ≡
Cmax(B = 0) = 1/

√
2 as shown in Fig. 1 (middle).

APPENDIX B: TWO-COPY FORMULA
FOR CORRELATION MATRIX T T T

Here we derive a two-copy formula for the correlation
matrix T T T , given by Eq. (31), which is useful for our
experimental proposal. In the following, we use the Einstein
summation convention. Let us start by recalling that we can
express Tmn as an expectation value of the Pauli matrices,
i.e.,

Tmn = Tr[(σm ⊗ σn)ρ]; (B1)

hence

(T T T )mn = TkmTkn = Tr[(σk ⊗ σm ⊗ σk ⊗ σn)(ρ ⊗ ρ)]

= Tr[(σk ⊗ σk) ⊗ (σm ⊗ σn)(ρ ⊗ ρ)′]
= Tr{[UA1A2 ⊗ (σm ⊗ σn)B1B2 ]′(ρ ⊗ ρ)}, (B2)

where (ρ ⊗ ρ)′ = SA2B1 (ρ ⊗ ρ)SA2B1 , U = σkσk = I − 4|�−〉
〈�−|, and |�−〉 denotes the singlet state. The unitary transfor-
mation SA2B1 = I ⊗ S ⊗ I swaps the modes A2 and B1, which
can be given in terms of the swap operator

S =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ . (B3)

Equation (B2) finally results in Eq. (31).
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[18] L. Jakóbczyk and A. Jamróz, Phys. Lett. A 318, 318 (2003).
[19] A. Miranowicz, Phys. Lett. A 327, 272 (2004).
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Appl. Opt. 51, 474 (2012).
[55] P. Horodecki (private communication).
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