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The Uhlmann-Jozsa fidelity (or, equivalently, the Bures distance) is a basic concept of quantum communication
and quantum information, which however is very difficult to measure efficiently without recourse to quantum
tomography. Here we propose a direct experimental method to estimate the fidelity between two unknown
two-qubit mixed states via the measurement of the upper and lower bounds of the fidelity, which are referred
to as the superfidelity and subfidelity, respectively. Our method enables a direct measurement of the first-
and second-order overlaps between two arbitrary two-qubit states. In particular, the method can be applied to
measure the purity (or linear entropy) of a single two-qubit mixed state in a direct experiment. We also propose
and critically compare several experimental strategies for measuring the sub- and superfidelities of polarization
states of photons in various linear-optical setups.
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I. INTRODUCTION

Fidelity plays a fundamental role in classical [1] and
quantum [2,3] communication theories as a quantitative
measure of the accuracy of imperfect transmission of signals
through a communication channel. Fidelity has also other basic
applications in quantum information, quantum optics, and even
condensed-matter physics.

The most popular definition of fidelity between two mixed
quantum states ρ1 and ρ2 (corresponding to, e.g., the input
and output states of a communication channel) was given by
Uhlmann [4] and Jozsa [5] as

F (ρ1,ρ2) ≡ [Tr (
√√

ρ1ρ2
√

ρ1)]2, (1)

which is also referred to as the Uhlmann transition probability
[4]. To avoid confusion, we note that the root fidelity

√
F is

sometimes referred to as the fidelity (see, e.g., Ref. [2]). The
fidelity vanishes for orthogonal states and is equal to 1 for iden-
tical states. If one of the states is pure, say ρ1 = |ψ1〉〈ψ1|, then
the fidelity simplifies to F = 〈ψ1|ρ2|ψ1〉. The fidelity has a few
important and useful properties including [4–7] (a) bounds 0 �
F (ρ1,ρ2) � 1, (b) symmetry F (ρ1,ρ2) = F (ρ2,ρ1), (c) unitary
invariance [i.e., F (ρ1,ρ2) = F (Uρ1U

†,Uρ2U
†) for an arbi-

trary unitary operator U ], (d) multiplicativity [e.g., F (ρ1 ⊗
ρ2,ρ3 ⊗ ρ4) = F (ρ1,ρ3)F (ρ2,ρ4)], (e) concavity, and (f) joint
concavity.

A physical interpretation of the fidelity as a measure of
distinguishability can be given as follows [4,5]: In a deco-
herence scenario, based on purifications instead of collapses
of states, an arbitrary mixed state ρS can be given by a
pure state |ψSE〉 of a subsystem S entangled with some
larger system (environment) E, which is reduced to S, i.e.,
ρS = TrE(|ψSE〉〈ψSE |). Then the fidelity corresponds to the
maximum taken over all such purifications |ψn〉 ≡ |ψ (n)

SE〉 of
states ρn ≡ ρ

(n)
S for n = 1,2, i.e., F (ρ1,ρ2) = max |〈ψ1|ψ2〉|2.
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The fidelity is simply related to the Bures metric [8]
(the Helstrom metric [9]) as DB(ρ1,ρ2)2 = 2[1 − √

F (ρ1,ρ2)],
which can be considered a quantum generalization of the
Fisher information metric. The Bures metric can be used to
quantify quantum entanglement [10,11], nonclassicality [12],
and polarization [13]. The Braunstein-Caves distinguishability
metric [14], defined via the Bures metric, is a useful tool
of quantum estimation theory. Entanglement measures based
on the Bures metric are also useful for identifying and
characterizing quantum phase transitions, e.g., as indicators
of their criticality [15].

An important question arises as to how to measure the
fidelity F (ρ1,ρ2) (or its bounds) between two mixed states.
Obviously, one can apply a method for quantum state tomog-
raphy for the complete reconstruction of the states ρ1 and
ρ2. Then, with this knowledge, the fidelity can be calculated
explicitly. However, this approach is extremely inefficient as it
requires measuring redundant information to finally determine
just a single value of the fidelity. Note that the fidelity, given
by Eq. (1), between two mixed states is difficult not only to
measure directly but even to calculate analytically. We note
that analytical formulas for the fidelity are known only for
a few types of states, including single-qubit states [3] and
multimode Gaussian states [16].

In this article we show how to directly measure the super-
and subfidelities which are, respectively, the upper and lower
bounds on the fidelity F (ρ1,ρ2) between two arbitrary two-
qubit mixed states ρ1 and ρ2 [7,17]. Moreover, we describe
here an experimental method for measuring the purity χ (ρ),
which is a degree of information about the preparation of a
quantum state ρ as defined by the trace norm of ρ:

χ (ρ) = ||ρρ†|| = ||ρ2|| = Tr(ρ2). (2)

The purity ranges from χ = 1/d for completely mixed states
ρ = I/d of dimension d to χ = 1 for pure states. By recalling
deep mathematical and physical similarities between the
classical optical polarizations and qubits, one can conclude
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that the classical degree of polarization and the quantum purity
of a qubit are close analogs [18,19].

On the other hand, the lack of information about the pre-
paration of a given state, which is referred to as the mixedness,
can be quantified by entropic measures, such as the von
Neumann and Bastiaans-Tsallis entropies, including the linear
entropy SL = 1 − χ , which is a linear approximation to the
von Neumann entropy. The linear entropy can be considered
a measure of quantum entanglement of a bipartite pure state
if one of the subsystems is traced out. For two-qubit mixed
states, the relation between the linear entropy and (i) the von
Neumann entropy, (ii) the entanglement of formation (which is
a canonical measure of entanglement), and (iii) the violations
of the Clauser-Horne-Shimony-Holt (CHSH) inequality were
studied in, e.g., Refs. [20–22]. A comparative analysis of
the mixedness (as measured by the linear and von Neumann
entropies) and quantum noise (as described by the squeezing
and Fano factors) was given in a dynamical scenario in, e.g.,
Ref. [23].

It is also important to note that the purity χ is a special case
of the first-order overlap function

O(ρ1,ρ2) = Tr(ρ1ρ2), (3)

which is equivalent to the purity if ρ1 = ρ2.
General methods to measure any polynomial function of

a density matrix were described by Ekert et al. [24] and
Brun [25]. While these approaches would also enable a direct
measurement of the purity in a special case, it is not clear
whether they enable efficient experimental implementations
(except, e.g., the single-qubit purity measurements [26]).
Indeed, as mentioned in Ref. [25]: “This proof of principle
is very far from being a proof that such a measurement is
practical.” These general approaches consist of using various
two-qubit and single-qubit gates such as the controlled-
SWAP or controlled-NOT and Hadamard gates. Note that the
success probability of the discrete-variable controlled-NOT and
controlled-SWAP gates with linear optics is limited, e.g., it
is usually equal to 1/9 assuming no additional ancillae and
feedforward (see Ref. [27] and references therein). Thus, a
setup based on these approaches would be less efficient than
specifically dedicated setups, such as the one proposed in this
paper.

In this article we show how the first-order overlap O(ρ1,ρ2)
[and, thus, the purity χ (ρ)] can be directly measured for
arbitrary single- and two-qubit mixed states in a linear-optical
experiment. We note that some experimental works on directly
measuring the purity have already been reported by Du et al.
[28] in liquid-state NMR systems of three spins-1/2 and,
by using quantum polarization states as qubits, by Bovino
et al. [29] in a four-photon system, and by Adamson et al. [26]
(based on the method proposed by Brun [25]) in two- and
three-photon systems. We note that our method requires a
smaller number of detectors in comparison to, e.g., the method
of Bovino et al. [29]. The problem of measuring the purity
of a quantum state (and the overlap between two quantum
states) within a “minimal” model was theoretically studied in
Ref. [30]. The first theoretical proposals for measuring the
sub- and superfidelities were described in detail by Miszczak
et al. [7] by applying the methods of Ekert et al. [24] and
Bovino et al. [29], respectively.

Our proposals for experiments on the first- and second-
order overlaps are inspired by the method for the measurement
of nonclassical correlations described in detail in Ref. [31],
which can also be used for measuring, e.g., the degree of the
CHSH inequality violation [32].

This article is organized as follows: In Sec. II, we recall
some basic definitions of the sub- and superfidelities. More-
over, we perform a Monte Carlo simulation of the fidelity as a
weighted mean of these fidelity bounds. In Sec. III, we describe
direct methods for measuring the first-order overlap, purity,
and superfidelity. Experimental considerations are presented
in Sec. IV. In Sec. V, we propose direct and experimentally
friendly methods for measuring the second-order overlap and
the subfidelity. We conclude in Sec. VI.

II. SUBFIDELITY, SUPERFIDELITY, AND THE
ESTIMATION OF FIDELITY

The density matrix of a single qubit in the Bloch represen-
tation can be written compactly as

ρ = 1
2Rm0 σm (4)

by using the Einstein summation convention. The elements
Rm0 = Tr (ρσm) of the Bloch vector are defined by the Pauli
matrices σm for m = 0,1,2,3, where σ0 = I is the identity
operator. Furthermore, we study two-qubit (quartit) systems
described by density matrices ρ, which are expressed in the
standard Bloch representation as

ρ = 1
4Rmn σm ⊗ σn (5)

in terms of the correlation-matrix elements Rmn = Tr (ρσm ⊗
σn), with m,n = 0, . . . ,3. We can see that a single-qubit
density matrix can be obtained after tracing out the second
qubit from the two-qubit density matrix. Thus, in this article
we focus on quartits, bearing in mind that the qubit case can
be obtained simply after taking one of the qubits out of the
picture.

Let us denote compactly F (ρ1,ρ2) = [Tr (A)]2, where A =√√
ρ1ρ2

√
ρ1. For single-qubit states, A is a 2 × 2 matrix,

which satisfies the characteristic equation

A2 − ATr (A) + Idet(A) = 0; (6)

thus

F (ρ1,ρ2) = O(ρ1,ρ2) +
√

[1 − O(ρ1,ρ1)][1 − O(ρ2,ρ2)],

(7)

which can be directly measured by our proposed method.
For two-qubit (and higher-dimensional) density matrices

the situation is quite different. Nevertheless, we can use the
upper and lower bounds on the fidelity, given by [7]:

E(ρ1,ρ2) � F (ρ1,ρ2) � G(ρ1,ρ2), (8)

where

E(ρ1,ρ2) = Tr (ρ1ρ2) +
√

2[Tr (ρ1ρ2)]2 − 2Tr [(ρ1ρ2)2], (9)

G(ρ1,ρ2) = Tr (ρ1ρ2) +
√[

1 − Tr
(
ρ2

1

)][
1 − Tr

(
ρ2

2

)]
, (10)
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which are referred to as the subfidelity and superfidelity,
respectively. These formulas can be rewritten as

G(ρ1,ρ2) = O(ρ1,ρ2) +
√

SL(ρ1)SL(ρ2), (11)

E(ρ1,ρ2) = O(ρ1,ρ2) +
√

2[O2(ρ1,ρ2) − O ′(ρ1,ρ2)]. (12)

Thus, to measure these bounds directly, we need to measure
the first-order overlap O(ρ1,ρ2), given by Eq. (3), and the
second-order overlap

O ′(ρ1,ρ2) = Tr (ρ1ρ2ρ1ρ2), (13)

together with the linear entropies (purities), SL(ρn) = 1 −
O(ρn,ρn) (for n = 1,2), which are the special cases of
O(ρ1,ρ2). Let us note that if (at least) one of the states ρ1,ρ2 is
pure, then the superfidelity is equal to the fidelity and is given
only by the first term, i.e., the overlap O(ρ1,ρ2). Thus, after
finding that either ρ1 or ρ2 is pure, the fidelity can be found by
measuring the overlap O(ρ1,ρ2) only.

In any other case the fidelity F can be estimated as an
average of the subfidelity E and superfidelity G with some
certain error. The error can be minimized in two ways: (i) by
finding tighter measurable bounds on the fidelity or (ii) by
using the best expression for the mean value (arithmetic,
harmonic, geometric, etc.). In our article we focus only on
this second aspect and numerically optimize the generalized
mean (power mean) defined as

F̄ (ρ1,ρ2) = [wEm(ρ1,ρ2) + (1 − w)Gm(ρ1,ρ2)]1/m, (14)

which for balanced weights w = 1 − w = 1/2, and in special
cases for m = −1,0,1, becomes the harmonic, geometric, and
arithmetic mean, while for m = −∞,∞ it reduces to F̄ =
E,G, respectively. Thus, the generalized mean is bounded
from below by E and from above by G, i.e., for m ∈ (−∞,∞)

E(ρ1,ρ2) � F̄ (ρ1,ρ2) � G(ρ1,ρ2). (15)

From our Monte Carlo simulation for 107 pairs of random
two-qubit states (as shown in Fig. 1) we found with the method
of least squares that the optimal m = −2.13 and w = 0.568
providing the smallest estimation error � =

√
〈(F̄ − F )2〉 =

0.0278, which is an improvement in comparison to the arith-
metic mean providing � = 0.0652. Our method of calculating
means is not the most general one (e.g., one can use a
generalized f mean). However, one must remember that true
fidelity values are to be found between E and G, so the
maximal estimation error is greater than the error average.

We focus on the analysis of nonlinear properties of two-
qubit states because they play an important role in quantum
protocols exploiting quantum correlations. Thus, establishing
methods of testing various properties of these states is well
motivated. This is especially important for photonic qubits
since photons are typical carriers of quantum information used
in quantum communication protocols.

III. EFFICIENT MEASUREMENTS OF FIRST-ORDER
OVERLAP, PURITY, AND SUPERFIDELITY

The purity χ can be observed directly if we assume that
we have access to two copies of the two-qubit system. The
first-order overlap (or the purity in the special case for ρ1 = ρ2)
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FIG. 1. (Color online) Fidelity F (ρ1,ρ2) versus generalized mean
F̄ (ρ1,ρ2), corresponding to (a) subfidelity E(ρ1,ρ2) for m = −∞, (b)
optimized mean for m = −2.137, (c) arithmetic mean for m = 1, and
(d) superfidelity G(ρ1,ρ2) for m = +∞, as calculated in our Monte
Carlo simulation for 107 pairs of two-qubit states. The estimation error
is given by � =

√
〈(F̄ − F )2〉. Note that if the fidelity bounds E and

G were tighter, then the area covered by the simulation outcomes
would be smaller, converging to the G = E line.

can be calculated directly as

O(ρ1,ρ2) = 1
16R(1)

mnR
(2)
kl Tr [(σmσk) ⊗ (σkσl)], (16)

where R(k) are the correlation matrices of ρk for k = 1,2, as
defined below Eq. (5). The multiplication of the Pauli matrices
is given as

σaσb = iεabcσc + δabσ0, (17)

where i is the imaginary unit, δab is the Kronecker δ, and εabc is
the Levi-Cività symbol, which is εabc = 0 if a · b · c = 0 or at
least two indices are equal. Note that σn matrices are traceless
except for n = 0; thus

Tr (σaσb) = 2δab. (18)

Hence, we can rewrite Eq. (16) as

O(ρ1,ρ2) = 1
4R(1)

mnR
(2)
mn. (19)

We can express R(k)
mn as expectation values of the Pauli matrices:

R(1)
mn = Tr [(σm ⊗ σn)ρ1], (20)

R(2)
mn = Tr [(σm ⊗ σn)ρ2]; (21)

hence

O(ρ1,ρ2) = 1
4 Tr [(σm ⊗ σn ⊗ σm ⊗ σn)(ρ1 ⊗ ρ2)]

= 1
4 Tr [(σm ⊗ σm) ⊗ (σn ⊗ σn)(ρ1 ⊗ ρ2)′]

= 1
4 Tr [(VA1A2 ⊗ VB1B2 )′(ρ1 ⊗ ρ2)], (22)
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where V = σm ⊗ σm = 2I⊗2 − 4|	−〉〈	−|, with |	−〉 denot-
ing the singlet state, and (ρ1 ⊗ ρ2)′ = SA2B1 (ρ1 ⊗ ρ2)SA2B1 .
The self-adjoint transformation SA2B1 = I ⊗ S ⊗ I is the
operation swapping modes A2 and B1, which is given in terms
of the SWAP operator

S =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ . (23)

We can now introduce the Hermitian overlap operator


 = SA2B1VA1A2VB1B2SA2B1 , (24)

which, if measured on ρ1 ⊗ ρ2, provides the value of the
overlap O(ρ1,ρ2) and, in the special case, the purity if ρ1 = ρ2.
Hence, the overlap is a real observable measured on a system
consisting of two copies of the investigated state ρ. Let us note
that measuring the purity is, thus, equivalent to measuring a
product of V operators, which was shown in Ref. [31] to be
experimentally accessible using linear optics. If the two-qubit
state is produced at frequency 1/τ , we delay every second state
ρ and we can measure the product of V operators directly as
shown in Fig. 2.

The setup shown in Fig. 3 can be used in a direct
measurement of the overlap (thus, also of the linear entropy)
of a two-qubit state, since O(ρ1,ρ2) = 〈
〉 = Tr [(VA1A2 ⊗
VB1B2 )(ρ1 ⊗ ρ2)′]/4. The possible outcomes for a single
measurement instance are ak = −8,0,4,16, which are the
products of two outcomes of the coincidence detections in
the left and right arms of the setup in Fig. 3 marked as −4,0,2.
The outcome 2 is assigned to the coincidence detection in the
outermost detectors of the V blocks, −4 for the coincidence
detection in the middle detectors, and 0 if neither of the two
coincidences has been detected. Useful values of ak appear
for K0 = η4K/4 of the cases when the states ρ1 and ρ2 are
delivered, assuming that η is the quantum efficiency of the

FIG. 2. (Color online) Method for a single iteration of the
measurement of the overlap Tr(ρ1ρ2) (and, in a special case, the purity
χ and linear entropy SL = 1 − χ ) between any two-qubit states ρ1

and ρ2 produced at constant time intervals τ . The subsystem of the first
(second) qubit is called A (B). The measurement should be repeated
until some large enough number K of values is accumulated. The
delay is implemented at times t = 2kτ , where k = 0,1,2, . . . ,K − 1
and 2Kτ is the duration of the measurement. The delay can be
implemented using fast switching between, e.g., two paths of the
optical-length difference corresponding to delay τ . This method
works also if the states ρ1 and ρ2 are qubits, given that we removed
the measurement VB1B2 or VA1,A2 .

FIG. 3. (Color online) Setup implementing a direct measurement
of the first-order overlap O(ρ1,ρ2) = Tr(ρ1ρ2) between arbitrary two-
qubit mixed states ρ1 and ρ2. The setup consists of two V blocks as
in Ref. [31]. Due to the probabilistic nature of the path taken by
photons after the BS interaction the setup can provide conclusive
results in at most 1/4 of the cases when ρ1 and ρ2 are delivered (as
discussed in Fig. 2). This maximum performance is achieved when
the photons are deterministically antibunched (i.e., always projected
onto the singlet state) if both of them impinge on BS3. Note that the
BSs are asymmetric, i.e., the photon is phase shifted by π only when
reflected from the black-shaded side of the BSs. If ρ1 and ρ2 are single
photons then only one V block is required and the measurement setup
corresponds to the one used in Ref. [33].

detectors. The obtained expectation value of the overlap reads

O(ρ1,ρ2) = 〈
〉 ≈ 1

4K0

K∑
k=1

ak, (25)

where

K0 =
K∑

k=1

δak,4 (26)

and δak,4 is the Kronecker δ. As for any measurement,
equality is reached in the limit of K0 → ∞. Thus, we have
demonstrated how the first-order overlap O(ρ1,ρ2) and the
purity χ can be measured directly.

IV. EXPERIMENTAL CONSIDERATIONS

The setup in Fig. 3 provides a simple way to understand how
the entire purity measurement protocol works. It is, however,
impractical from the experimental point of view. First of all,
it requires eight detectors that have to be calibrated to give
the same detection efficiency. Further, to do that, it requires
also six beam splitters (BSs) that have to be well adjusted in a
real experimental setup, and even if this could be done, their
number diminishes the effectiveness of the protocol. The setup,
as depicted in Fig. 3, gives the maximum success probability
(conclusive coincidences) in 1/4 of the cases when all photons
are delivered. This value can be increased together with
experimental simplification of the procedure in several ways.
In this section we discuss several strategies experimentally
suitable for various linear-optical platforms.
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FIG. 4. (Color online) Experimentally friendly methods for the
measurement of the V block as described in the text based on
(a) a removable beam splitter, (b) a Mach-Zehnder interferometer,
(c) a partially movable beam splitter, and (d) two-photon overlap
alignment. BS, balanced beam splitter; PS, phase shifter; FC, fiber
coupler; and D, detector. Motorized translation (double arrow) is used
to tune the temporal delay between the photons in order to switch
between the measurement regimes as explained in the text.

The first strategy involves just a removable beam splitter and
a pair of detectors [see Fig. 4(a)]. In this case, one inserts a bal-
anced beam splitter to the setup for a half of the measurement
time (assuming that photons are distributed uniformly in time).
Thus, the singlet-state projection is performed with the beam
splitter inserted, while the identity projection with the beam
splitter removed. As in the original method, the coincidence
counts with the beam splitter are attributed to the value (−4),
while those without the beam splitter are multiplied by the
value of 2. The effectiveness of this method, as defined in
the caption of Fig. 3, reaches 1. Also the number of beam
splitters is reduced to two (one for each V block), while the
number of detectors is reduced to four. Unfortunately, this
strategy would not be very experimentally friendly in the
case of bulk or integrated optics. On both these platforms,
removing and reinserting the beam splitter is accompanied by
a demanding adjustment especially if the beam splitter has to
be as balanced as possible. In fiber optics, this strategy can be
implemented more easily with beam splitters with a tunable
splitting ratio [34].

The second strategy is a generalization of the first strategy,
bringing it closer to automation. It is depicted in Fig. 4(b) and it
involves using a Mach-Zehnder interferometer that effectively
implements a tunable beam splitter. By changing the phase
from 0 to π/2 in the interferometer, one can achieve a splitting
ratio in the range from 50:50 to 0:100. This technique is
particularly suitable for integrated optics [35]. In bulk optics
and fiber optics it is impractical because of the experimental
demands on keeping the phase in the interferometer stable
through the entire measurement. Note that the number of beam
splitters is reduced to four and so is the number of detectors.

The observed coincidences with the interferometer set to the
50:50 ratio are multiplied by (−4) and those in the 0:100
regime are multiplied by 2. The maximum success probability
of this strategy is 1.

The third strategy is also a modification of the first one
with the exception that the beam splitter is not be removed
completely, but just shifted in one direction as depicted in
Fig. 4(c). In our experience, this technique is particularly
useful in bulk optics. After shifting the beam splitter out of its
position, the reflected light no longer couples to the detectors
while the transmitted light still does. Thus, we can effectively
reach the splitting ratio 0:100, even with a balanced beam
splitter, at the expense of some losses. The readjustment of
the beam splitter back to its balanced position is easily done
using a good-quality translation stage. As in the first strategy,
the number of detectors needed is four and the number of
beam splitters is two. Since only 1/4 of the impinging photons
reach the detectors if the beam splitter is shifted out (in), we
just multiply the number of such coincidences by 8 (−4),
assuming that the measurements with the beam splitter in and
out take the same time. This technique has been used in several
of our experiments to measure technological losses in bulk
setups [36,37]. It is, however, not suitable for integrated optics
and fiber optics. Its overall maximal success probability is 5/8.

The last strategy to be discussed in this section is depicted
in Fig. 4(d). It involves a fixed balanced beam splitter and
a pair of detectors in each V block. In order to implement
singlet-state projection, two-photon overlap, corresponding to
Hong-Ou-Mandel interference [38], is obtained by suitable
position of the translation stage holding the output couplers.
On the other hand, the intensity projection is implemented by
deliberate misalignment of the output coupler position so that
the photons are separated in time by a duration much longer
than their coherence time [39]. Since the two-photon overlap
has to be adjusted anyway, a motorized translation stage is
an experimental necessity. With respect to that, this strategy
does not impose any new demands on the experimental setup.
The efficiency of this technique gives a success probability
of 3/4 since with the misaligned overlap, the photons mark
coincidence in only one-half of the cases. Assuming the
same measurement time with the output couplers aligned
and misaligned, the coincidences in the aligned position are
multiplied by (−4), while those in the misaligned position are
multiplied by 4 in order to take into account the probabilistic
nature of such events.

V. EFFICIENT MEASUREMENTS OF SECOND-ORDER
OVERLAP AND SUBFIDELITY

Measuring the first-order overlaps O(ρ1,ρ2), χ (ρ1) =
O(ρ1,ρ1), and χ (ρ2) = O(ρ2,ρ2) is enough for determination
of the superfidelity G(ρ1,ρ2). If it is known that one of the
states is pure, then we do not need to proceed with estimating
the subfidelity because in this case we already have all the data
needed for calculating the fidelity F (ρ1,ρ2) = O(ρ1,ρ2).

In the simplest qubit case, the superfidelity and fidelity are
equivalent, i.e., G(ρ1,ρ2) = F (ρ1,ρ2) and no further work is
required for estimating the fidelity. However, in the case of
quartits one also has to estimate the subfidelity E(ρ1,ρ2) to
know in what range the fidelity F (ρ1,ρ2) falls. The only miss-
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ing quantity needed for estimating the subfidelity E(ρ1,ρ2)
is the second-order overlap O ′(ρ1,ρ2), which depends on
the Hilbert-space dimension of a given system (i.e., qubit or
quartit) and requires from four to eight photons.

So our goal now is to describe a method for measuring
the second-order overlap O ′(ρ1,ρ2). We know that (ρ1ρ2)2 =

1
256R(1)

maR
(2)
nb R

(1)
kc R

(2)
ld (σmσnσkσl) ⊗ (σaσbσcσd ) and it can be

verified that

Tr (σmσnσkσl) = Kmnkl , (27)

where
1
2Kmnkl = δmnδkl + δnkδml − δmkδnl + 2δm0δnlδmk

+2δl0δnlδmk − 4δm0δn0δk0δl0 + iδm0εnkl

+iδn,0εklm + iδk0εlmn + iδl0εmnk (28)

is the kernel for which we describe the measurement method.
So the investigated quantity reads

Tr (ρ1ρ2)2 = 1
256KmnklKabcd

×Tr (γmnkl ⊗ γabcd )(ρ1 ⊗ ρ2)⊗2, (29)

where γmnkl = σm ⊗ σn ⊗ σk ⊗ σl . In order to design an
efficient setup we have to calculate

H = 1
16Kmnklγmnkl, (30)

and find the most convenient permutation of the qubits
comprising the eight-qubit system. This is because

Tr (ρ1ρ2)2 = Tr [(H ⊗ H )A1A2A3A4B1B2B3B4

× (ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ2)A1B1A2B2A3B3A4B4 ]. (31)

The matrix H is a permutation, so it can be decomposed into
a product of inversions, i.e., the SWAP operations. Note that
the V matrix is equivalent to the SWAP operation (see also
Ref. [24]) as V = 2S. The result reads (S34S23)H (S23S34) =
1
8S23(V12 ⊗ V34)S23V34. Thus we have

Tr (ρ1ρ2)2 = 1
64 Tr {[(V ⊗2)′(I ⊗ V )]⊗2(ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ2)′},

= 1
64 Tr {[(I ⊗ V )(V ⊗2)′]⊗2(ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ2)′}

(32)

where I in this section is the two-qubit iden-
tity operator, (ρ1 ⊗ ρ2 ⊗ ρ1 ⊗ ρ2)′ = (ρ1 ⊗

ρ1 ⊗ ρ2 ⊗ ρ2)A1B1A2B2A3B3A4B4 and the second-order over-
lap operator reads [(V ⊗2)′(I ⊗ V )]⊗2 = [(V ⊗2)A1A3A2A4 (I ⊗
V )A1A2A3A4 ] ⊗ [(V ⊗2)B1B3B2B4 (I ⊗ V )B1B2B3B4 ], which is
a product of two Hermitian operators that commute [see
Eq. (32)] for the input state (ρ⊗2

1 ⊗ ρ⊗2
2 )A1B1A2B2A3B3A4B4 ,

thus one can measure these two operators subsequently. In
the final step we just need to express I ⊗ V as I ⊗ V =
2I⊗2 − 4I ⊗ P −, where P − is the singlet-state projection that
can be performed by a beam splitter. Thus, as shown in Fig. 5,
we can perform the measurement using the approach discussed
in the previous section. Here the beam splitter is placed at or
removed to the mixed modes A3 and A4, or B3 and B4. For
each of the four cases, the final step consists of performing
the measurement on four V boxes. Note that the problem
of measuring the second-order overlap is equivalent to the
problem of measuring a first-order overlap of four-qubit states
(i.e., a 16-level qudit or quantum hex).

FIG. 5. (Color online) Proposal of the measurement setup for
the second-order overlap O ′(ρ1,ρ2) for two-qubit states. The input is
given as (ρ1 ⊗ ρ1 ⊗ ρ2 ⊗ ρ2)A1B1A2B2A3B3A4B4 . If the states are single-
qubit states then one of the blocks can be removed. Note that in our
optimized methods (as described in Sec. IV), the number of required
detectors is equal to the number of photons. Double arrows indicate
the two-photon overlap alignment as in Fig. 4(d).

From the experimentalist point of view, the setup presented
in this section is based on our fourth strategy as described in
Sec. IV. This particular choice of implementation technique
can be useful in bulk optics, where motorized translation with
a range on the order of centimeters is often used to stabilize the
two-photon overlap. On the other hand, for fiber and integrated
optics implementations, this technique might not be practical.
However, it is straightforward to swap the V blocks in the
proposed setup for any of the four alternative implementations
of the V blocks proposed in Sec. IV. The functionality of the
setup remains unaffected by this replacement.

VI. CONCLUSIONS

We proposed an effective and direct method for estimating
the bounds of the Uhlmann-Jozsa fidelity (or, equivalently,
the Bures distance) for two unknown mixed two-qubit states
without recourse to quantum state tomography. Namely, we
described how to measure the superfidelity and subfidelity,
which are the upper and lower bounds of the fidelity,
respectively [7]. We showed explicitly that the overlap of two
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density matrices is an observable which has its own Hermitian
operator 
, given by Eq. (24), and furthermore can be directly
measured in a linear-optical experiment. Our method for the
determination of the superfidelity is based on the measurement
of the first-order overlap. In a special case, the method can
be used for measuring the purity (or linear entropy) of a
mixed two-qubit state. On the other hand, our proposal of an
experimentally friendly method for direct measurement of the
second-order overlap of two arbitrary two-qubit states enables
the determination of their subfidelity.

Concerning the purity measurement, it is worth referring to
Ref. [33], where its authors make use of Hong-Ou-Mandel
interference and a singlet-state projection performed by a
balanced beam splitter to determine the two-photon overlap.
In a special case this technique can be adapted for measuring
the purity of a single qubit. A similar setup was used in
Ref. [26], where the authors described direct and indirect purity
measurements of a single qubit. They presented two separate
strategies, one corresponding to a direct measurement using
many consecutive pairs of the investigated state and the second
corresponding to the standard quantum state tomography based
on polarization projection measurements. Since the authors of
Ref. [26] were dealing with the measurement of single qubits,
their setup requires fewer resources than the scheme presented
in our paper dedicated to two-qubit purity measurements.

Our V block is in fact the Hong-Ou-Mandel dip known
since the famous experiment of Ref. [38]. Indeed, the
Hong-Ou-Mandel two-photon interferometer has been used
to implement a projection on a singlet state, for instance,
in Ref. [33]. On the other hand, with the development of
experimental techniques, the four alternative implementations
of the V block suitable for various platforms (including bulk,
fiber, and integrated optics) have their merit.

As mentioned before, a few experiments on single-qubit
purity have already been performed but, since there are ad-
ditional interesting features (including entanglement) arising
from the transition from one to two qubits, our proposals for
direct measurement of the two-qubit purity can be an important
tool for future investigations in quantum optical engineering
and information processing.

Concerning the two-photon overlap measurements, we
note another formal method of Ekert et al. [24] based on
programmable quantum networks with controlled-SWAP gates
for estimating both linear and nonlinear functionals of arbitrary
states. As shown explicitly by Miszczak et al. [7], this network
method also enables the measurement, in a special case, of the
first- and second-order overlaps between a pair of two-qubit
states for the estimation of their fidelity bounds. This formal
method, although in principle scalable for any number of
qubits, has not been applied (even theoretically) to any physical
system. In contrast, we apply a purely algebraic method for
estimating some specific functionals of states and describe
an experimentally friendly linear-optical implementation of
our method. As in these related works [7,24], we assumed
that we have access to two copies of a given quantum state,
which can be implemented either by producing two identical
states simultaneously, or by storing the state produced earlier
in order to measure it together with the second copy of the
state available later. Concerning the optical measurement of
the purity, our proposal requires fewer experimental resources

than that of Bovino et al. [29]. Specifically, our setup requires
only four instead of six detectors and only two beam splitters
instead of four used in Ref. [29]. Every additional experimental
resource complicates the operation of the setup and is a
possible source of imperfections.

In Sec. IV we have presented several experimentally
friendly strategies based on our original method. All these
setups represent a viable alternative to be considered in
practical experimental implementations of the protocol. We
cannot claim that one of them is superior to the others since
each of them has its advantages and drawbacks. The choice
would depend on the preferred features. For instance, if the
success rate is an issue, experimentalists would probably
choose the second strategy (with a success rate up to 1). On the
other hand, for the highest experimental stability and precision
(in bulk optics, rather than in fiber optics), the fourth strategy
might be selected. Moreover, the third strategy would be a good
choice for a fiber-optical implementation, while the second
strategy can be suitable for integrated optics.

Moreover, we performed a Monte Carlo simulation of 107

mixed two-qubit states and applied the method of least squares
to estimate the fidelity as a generalized power mean of these
fidelity bounds with the minimum average estimation error.

Experimentalists frequently use the fidelity (usually deter-
mined by applying quantum tomography) as a measure of the
quality of their achievements. Remarkable progress has been
observed over the past decade as the reported experimental
values increased from 0.58 to 0.98.

However, it should be stressed that both the purity and
fidelity are important parameters for characterizing exper-
imental achievements with respect to quantum operations.
The purity alone would not be adequate to describe how
well the gate performs the requested task (for instance the
controlled-NOT operation). Similarly to that, the fidelity can
be indeed rather high even though the purity has dropped and
therefore the gate is misaligned, which typically occurs in the
case of active stabilization issues. As pointed out recently in
Ref. [40] to have 98% fidelity is not enough to be sure that the
two states are indeed similar or close to each other. The answer
depends on the specific situation and additional information
about the state is needed.

We hope that this paper can stimulate further experimental
interest in determining both the fidelity and purity for the
purposes of quantum engineering and quantum information
processing.
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