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Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of
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Amplitude damping changes entangled pure states into usually less-entangled mixed states. We show, however,
that even local amplitude damping of one or two qubits can result in mixed states more entangled than pure
states if one compares the relative entropy of entanglement (REE) for a given degree of the Bell–Clauser-Horne-
Shimony-Holt inequality violation (referred to as nonlocality). By applying Monte Carlo simulations, we find the
maximally entangled mixed states and show that they are likely to be optimal by checking the Karush-Kuhn-Tucker
conditions, which generalize the method of Lagrange multipliers for this nonlinear optimization problem. We
show that the REE for mixed states can exceed that of pure states if the nonlocality is in the range (0,0.82) and the
maximal difference between these REEs is 0.4. A former comparison [Phys. Rev. A 78, 052308 (2008)] of the REE
for a given negativity showed analogous property but the corresponding maximal difference in the REEs is one
order smaller (i.e., 0.039) and the negativity range is (0,0.53) only. For appropriate comparison, we normalized
the nonlocality measure to be equal to the standard entanglement measures, including the negativity, for arbitrary
two-qubit pure states. We also analyze the influence of the phase-damping channel on the entanglement of the
initially pure states. We show that the minimum of the REE for a given nonlocality can be achieved by this
channel, contrary to the amplitude-damping channel.

DOI: 10.1103/PhysRevA.87.042108 PACS number(s): 03.65.Ud, 03.67.Mn

I. INTRODUCTION

Quantum entanglement and nonlocality [1,2], which are
two special aspects of quantum correlations, are among
the central concepts in quantum theory providing powerful
resources for modern quantum-information processing [3].
Nevertheless, despite much progress (as reviewed in, e.g.,
Ref. [4]), our understanding of the relation between entan-
glement and nonlocality is very incomplete.

Quantum nonlocality is often discussed in the context
of Bell’s theorem, which can arguably be considered “the
most profound discovery of science” [5]. The Bell inequality
violation (BIV) for a given state implies that there is no
physical theory of local-hidden variables which can reproduce
the predictions for the state [1]. Although the BIV does
not necessarily imply nonlocality and vice versa (see, e.g.,
Ref. [6]), for convenience, we use the terms BIV and
nonlocality interchangeably.

Because of the prominent role of quantum entanglement,
much effort has been devoted to investigating measures of
entanglement that can be used for its quantification. Currently,
a variety of formal and operational entanglement measures
can be applied [4] depending on the physical and information
contexts. For example, if one is interested in distinguishing
entangled from separable states, a convenient choice is the rel-
ative entropy of entanglement (REE) [7]. However, if one con-
siders the cost of entanglement under operations preserving the
positivity of partial transpose (PPT) [8], the appropriate choice
of entanglement measure is the (logarithmic) negativity [9,10].
The concurrence [11] is yet another popular measure of entan-
glement, which quantifies the entanglement of formation [12].
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For two-qubit pure states, entanglement and nonlocality
are equivalent resources as shown by Gisin [13]. The interest
in comparisons of BIV and entanglement was arguably
triggered by the discovery of two-qubit entangled mixed states
(now called the Werner states) admitting a hidden-variable
model [14]. For mixed states, not only the entanglement and
nonlocality become inequivalent phenomena, but even the
measures of entanglement become, in general, inequivalent.
For example, two-qubit mixed states of the same value of
a given entanglement measure can correspond to different
values of entanglement quantified by other measures. Thus,
it can happen that entangled states ordered according to one
entanglement measure can be ordered differently by another
measure [15–18].

The most interesting entangled states are, arguably, the
boundary states, which are extremal in one measure for a
given value of another measure. They can serve as “waymarks”
for entangled states providing means for their systematic
classification. Moreover, it turns out that some of the most
entangled states according to the REE for a given value of
another entanglement measure as, e.g., the negativity [19], are
mixed states.

In this paper, we find maximally entangled mixed states
(MEMS) corresponding to the largest REE for a given degree
of nonlocality using the Horodecki measure [20,21]. We also
show that these MEMS are more entangled than pure states
for a wide range of this nonlocality degree. As an indicator
of extremality of the found MEMS we use the Karush-Kuhn-
Tucker (KKT) conditions in a refined method of Lagrange
multipliers.

The Horodecki measure B(ρ) of BIV [20] for two-qubit
states ρ enabled detailed quantitative comparisons with other
measures of quantumness including entanglement. The work
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of Verstraete and Wolf [22], where the upper and lower
bounds of B(ρ) for a given value of the concurrence C(ρ)
were found, is especially relevant to the present paper,
where we find the bounds of B(ρ) for a given value of the
REE, ER(ρ), for arbitrary two-qubit states. Other studies
were usually limited to specific classes of two-qubit states
generated in some physical processes (including decoherence).
For example, the nonlocality measures were such compared
with the concurrence C(ρ) (or, equivalently, the entropy of
formation) [16,23–30], negativity N (ρ) [16], fidelity F (ρ)
[30,31], as well as the purity P (ρ) = Tr(ρ2) [27,28] and the
closely related degrees of mixedness as measured by either
their linear entropy SL(ρ) = 1 − P (ρ) [24,27] or participation
ratio R(ρ) = 1/P (ρ) [32].

The paper is organized as follows. In Sec. II, we introduce
some basic definitions of the nonlocality and entanglement
measures used in our paper. In Sec. III, we demonstrate
analytically that there are mixed states more entangled than
pure states when analyzing the REE for a fixed nonlocality (and
negativity). In Sec. IV, we describe how to physically obtain
an important class of entangled states, which, as we show in
Sec. V, are the boundary states if quantified by the REE for
given values of the nonlocality, negativity, and concurrence.
The most important result in this paper is finding the states
exhibiting the highest and lowest REEs for a given value of
the nonlocality and demonstrating that mixed states can be
more entangled than pure states if the fixed nonlocality is less
than 0.8169.

II. DEFINITIONS

Hereafter, we study general two-qubit density matrices ρ,
which can be expressed in the standard Bloch representation
as

ρ = 1

4

(
I ⊗ I + �x · �σ ⊗ I + I ⊗ �y · �σ +

3∑
n,m=1

Tnm σn ⊗ σm

)
,

(1)

where �σ = [σ1,σ2,σ3] and the correlation matrix Tij =
Tr[ρ(σi ⊗ σj )] are given in terms of the three Pauli matrices,
and xi = Tr[ρ(σi ⊗ I )] (yi = Tr[ρ(I ⊗ σi)]) are the elements
of the Bloch vector �x (�y) of the first (second) subsystem.
Expressing the two-qubit density matrix by Eq. (1) is very
convenient since it allows a direct application of an effective
criterion for the nonlocality.

A. Nonlocality measure

The two-qubit Bell inequality in the form derived by
Clauser, Horne, Shimony and Holt (CHSH) [2] can be
formulated as

|Tr (ρ BCHSH)| � 2, (2)

where the Bell-CHSH operator BCHSH is given by

BCHSH = �a · �σ ⊗ (�b + �b′) · �σ + �a′ · �σ ⊗ (�b − �b′) · �σ , (3)

and its expected value is maximized over real-valued three-
dimensional unit vectors �a, �a′, �b, and �b′. According to the
Horodecki theorem, the maximum expected value of the Bell-

CHSH operator for a given state ρ reads as [20,21]

max
BCHSH

Tr(ρ BCHSH) = 2
√

M(ρ) (4)

given in terms of the parameter

M(ρ) = max
j<k

{hj + hk} � 2, (5)

where hj ( j = 1,2,3) are the eigenvalues of the real symmetric
matrix U = T T T constructed from the correlation matrix T

and its transpose T T . Hence, the condition for violating the
Bell-CHSH inequality is M(ρ) > 1 [20,21]. For convenience,
we refer to nonlocality as the violation of the Bell-CHSH
inequality.

To quantify a degree of the nonlocality, one can directly use
M(ρ) or 2

√
M(ρ) (see, e.g., Refs. [33,34]), or more naturally

max [0,M(ρ) − 1 ] (see, e.g., Ref. [23]). However, we decided
to use another function of M(ρ), denoted by B(ρ), which for
two-qubit pure states is equal to the concurrence and negativity.
This measure can be given as [18]

B(ρ) ≡
√

max [0,M(ρ) − 1]. (6)

We see that B(ρ) = 0 if a given state ρ satisfies the Bell-CHSH
inequality, given by Eq. (2), and B(ρ) = 1 if the inequality is
maximally violated. The value of B > 0 increases with M ,
thus it can be used to quantify the BIV. We refer to this BIV
degree as the nonlocality measure.

B. Entanglement measures

Now, we recall some definitions of a few selected measures
of entanglement applicable for two-qubit entangled states.

In our considerations, the most important entanglement
measure is the REE defined as ER(ρ) = minσ∈DS(ρ||σ ),
which is the relative entropy S(ρ||σ ) = Tr(ρ log2 ρ −
ρ log2 σ ) minimized over the setD of separable states σ [7,35].
This measure is a quantum counterpart of the Kullback-Leibler
divergence quantifying the difference between two classical
probability distributions. Evidently, the REE is limited, by
definition, to distinguishing a density matrix ρ from the closest
separable state (CSS) σ only. Note that the REE is not a true
metric, since it is not symmetric and does not fulfill the triangle
inequality. However, the REE has a desirable property of a
good entanglement measure that, for pure states, it reduces to
the von Neumann entropy of one of the subsystems.

Unfortunately, as discussed in Refs. [36–39], it is very
unlikely to find an analytical compact formula for the REE
of a general two-qubit mixed state, which would correspond
to finding its CSS. Numerical procedures for calculating the
two-qubit REE correspond usually to an optimization problem
over 79 or more real parameters [19,35,40]. On the other hand,
there is a compact-form solution of the inverse problem: If a
CSS is known then all the entangled states (having the same
CSS) can be given analytically not only for two qubits [37,38]
but even for arbitrary multipartite states of any dimension [41].

The second measure studied here is the negativity [15,
42,43], defined as N (ρ) = max{0, − 2μmin}, where μmin =
min eig(ρ�) and � denotes partial transpose. The negativity is
related to the logarithmic negativity, log2[N (ρ) + 1], which is
a measure of the entanglement cost under the PPT operations
[8,44]. These two related measures reach unity for the Bell
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states and vanish for separable states, however, for clarity of
our further presentation, we will use only the negativity.

The last entanglement measure applied in this paper is
the concurrence introduced by Wootters [11] as C(ρ) =
max{0,2λmax − ∑

j λj }, where λ2
j = eig[ρ(σ2 ⊗ σ2)ρ∗(ρ2 ⊗

σ2)]j and λmax = maxj λj . This measure is directly related
to the entanglement of formation, EF (ρ) [12]. However, for
the same reason as in the case of the negativity we use the
concurrence instead of EF (ρ).

III. ANALYTICAL COMPARISON OF ENTANGLEMENT
AND NONLOCALITY FOR SPECIAL STATES

In Fig. 1, we presented several curves corresponding,
in particular, to the Horodecki states, Bell-diagonal states,
and pure states. The REE for these states can be calculated
analytically so let us first discuss and compare them to
demonstrate the main point of our paper.

A. Pure states

We can simply relate all the above-mentioned entanglement
and nonlocality measures in a special case of an arbitrary two-
qubit pure state |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉 (with
the normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1) as

B(|ψ〉) = C(|ψ〉) = N (|ψ〉) = 2|ad − bc|. (7)

Moreover, in this special case B, N , and C are simply related
to the REE and von Neumann’s entropy S as

W(B) = ER(|ψ〉) = S(ρi), (8)

where W(B) ≡ h( 1
2 [1 + √

1 − B2]) is the Wootters function
[11] given in terms of the binary entropy h(x) = −x log2 x −
(1 − x) log2(1 − x), and ρi = Tr3−iρ is the reduced density
matrix of the ith qubit (i = 1,2).

B. Horodecki states

Let us also analyze a mixture of a Bell state, say |ψ+〉 =
(|01〉 + |10〉)/√2, and vacuum state, i.e.,

ρ(H)(p) = p|ψ+〉〈ψ+| + (1 − p)|00〉〈00|, (9)

which is referred to as the Horodecki state. By applying Eq. (5),
we find that M(ρ(H)) = p2 + max[p2,(1 − 2p)2]. Thus, the
nonlocality B is given by

B(ρ(H)) =
√

max(0,2p2 − 1). (10)

On the other hand, the entanglement measures are the
following: the concurrence is C(ρ(H)) = p, the negativity is
N (ρ(H)) =

√
(1 − p)2 + p2 − (1 − p), and the REE reads as

ER(ρ(H)) = 2h(1 − p/2) − h(p) − p

= (p − 2) log2(1 − p/2) + (1 − p) log2(1 − p).

(11)

It is seen that the Horodecki state is entangled for 0 < p � 1,
while it is violating the Bell-CHSH inequality only for 1/

√
2 <

p � 1. By comparing the REEs for a given nonlocality for the
Horodecki and pure states we find that

E
(H)
R (B) > E

(P)
R (B) for 0 < B < B6,

E
(H)
R (B) < E

(P)
R (B) for B6 < B < 1, (12)
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FIG. 1. (Color online) Monte Carlo simulations of about 106 two-
qubit states ρ for the relative entropy of entanglement ER(ρ) versus
(a) concurrence C(ρ), (b) negativity N (ρ), and (c) nonlocality B(ρ)
corresponding to the Bell-CHSH inequality violation. Red regions
correspond to mixed states more entangled than pure states in terms
of the ER(ρ). Key: P, pure states; D, the Bell-diagonal states (α =
0.5); A′ (A′′), the MEMS, which are the amplitude-damped states
optimized for the case (b) [(c)], H, the Horodecki states, and the
coordinates of points ρn (where n = 1,...,6) are given in Table I.

where B6 ≡ B(ρ6) = 0.5856 and E
(H)
R (B6) = E

(P)
R (B6) =

0.4520 [see Table I and Fig. 3(c)]. This means that mixed
states can be more entangled than pure states at least for
B < B(ρ6). Figure 1(c) shows that this property holds up
to B < B(ρ5) = 0.8169 but for other mixed states, which is

042108-3



BOHDAN HORST, KAROL BARTKIEWICZ, AND ADAM MIRANOWICZ PHYSICAL REVIEW A 87, 042108 (2013)

TABLE I. Nonlocality and entanglement measures of the
amplitude-damped states ρn = ρ(A)(α,p) (for n = 1,...,6), given
by Eq. (25), corresponding to the characteristic points marked in
Fig. 1.

State α p C N ER B

ρ1 0.0369 1.0000 0.3770 0.3770 0.2279 0.3770
ρ2 0.0751 1.0000 0.5271 0.5271 0.3847 0.5271
ρ3 0.2198 0.8536 0.7070 0.5756 0.4039 0.0000
ρ4 0.3510 0.9565 0.9130 0.8706 0.7445 0.8169
ρ5 0.2116 1.0000 0.8169 0.8169 0.7445 0.8169
ρ6 0.0947 1.0000 0.5856 0.5856 0.4520 0.5856

demonstrated in Sec. V. Here, E
(H)
R as a function of B is

explicitly given by Eq. (11) for p =
√

(1 + B2)/2 � 1/
√

2.
Analogous comparison of the REEs for a given negativity N

for the Horodecki and pure states [see Fig. 1(b)] shows that [19]

E
(H)
R (N ) > E

(P)
R (N ) for 0 < N < N1,

E
(H)
R (N ) < E

(P)
R (N ) for N1 < N < 1, (13)

where N1 ≡ N (ρ1) = 0.3770 and E
(H)
R (N1) = E

(P)
R (N1) =

0.2279 [see Table I and Fig. 3(b)]). Note that E
(H)
R as

a function of N can be given explicitly by Eq. (11) for
p = √

2N (1 + N ) − N .
It is convenient to introduce a parameter �ER(X), which is

the maximal difference in the REE between a given mixed state
ρ and some pure state ρ(P) = |ψ〉〈ψ | having the same value of
either the nonlocality (X = B) or negativity (X = N ), i.e.,

�ER(X′) = max
X

{ER[ρ(X)] − ER[ρ(P)(X)]}
= ER[ρ(X′)] − ER[ρ(P)(X′)], (14)

where X′ is the optimal value of X. For the Horodecki state,
we observe that this maximal difference for the nonlocality
is equal to �E

(H)
R (B ′) = 0.2949, which occurs for B ′ = 0,

while for the negativity is only �E
(H)
R (N ′) = 0.0391, which

is for N ′ = 0.1540. We also note that the Horodecki states are
the lower bound of the REE vs concurrence [22] as shown in
Fig. 1(a).

C. Bell-diagonal states

Finally, let us also analyze the Bell-diagonal states (labeled
by D), which are defined by

ρ(D) =
4∑

i=1

λi |βi〉〈βi |, (15)

where |βi〉 are the Bell states and 0 < λj < 1 such that∑
j λj = 1 with the largest eigenvalue maxj λj ≡ (1 +

N )/2 � 1/2. The nonlocality of the Bell-diagonal state ρ(D) is
given by [18]

B(ρ(D))=
√

max{0,2 max
(i,j,k)

[(λi − λj )2 + (λk − λ4)2] − 1},

(16)

where subscripts (i,j,k) correspond to the cyclic permutations
of (1,2,3). By contrast, the negativity and concurrence are the

same and simply given by N (ρ(D)) = C(ρ(D)) = N. The REE
versus the negativity (and thus also the concurrence) reads as

E(ρ(D)) = 1 − h

(
1 + N

2

)
(17)

as given in terms of the binary entropy h. If maxj λj � 1/2,
then the state is separable E(ρ(N)) = 0.

It is evident that the nonlocality of the Bell-diagonal
states depends on all probabilities λi , while the entanglement
measures depend solely on the largest value maxi λi > 1/2.
Nevertheless, in some special cases of these states, the
entanglement and nonlocality measures can be equal. For
example, when only two probabilities λi corresponding to
|ψ±〉 are nonzero, the Bell-diagonal state ρ(D) reduces to

ρ(D2) = p|ψ+〉〈ψ+| + (1 − p)|ψ−〉〈ψ−|, (18)

which is studied in a physical context in Sec. IV. The
nonlocality for this rank-2 state is simply given by

B(ρ(D2)) = |2p − 1|, (19)

implying that

E(ρ(D2)) = 1 − h

(
1 + B

2

)
, (20)

which corresponds to Eq. (17).
It is seen in Figs. 1(b) and 1(c) (see also Sec. V for a partial

proof) that the lower bounds of the REE vs negativity and
the REE vs nonlocality correspond to the Bell-diagonal state
ρ(D), which satisfy the extremal KKT conditions as we show
in Sec. V. Their physical context is discussed below.

IV. MANIPULATING ENTANGLEMENT AND
NONLOCALITY VIA DAMPING CHANNELS

In Fig. 1, we have presented the entanglement and nonlo-
cality measures for 106 randomly generated two-qubit states
using the Monte Carlo simulation. It is seen that pure states
are maximally entangled in terms of the REE for an arbitrary
concurrence as shown in Fig. 1(a). However, pure states are not
always maximally entangled for the cases shown in Figs. 1(b)
and 1(c). Namely, the red regions correspond to mixed states
having the REE higher than that for pure states for given
negativity [Fig. 1(b)] and nonlocality [Fig. 1(c)].

This is a counterintuitive result, so to have a deeper
physical meaning of the states corresponding to the red
regions in Fig. 1, let us analyze the loss of entanglement
between two qubits initially in a pure state. In particular,
by taking one of the Bell states |ψ±〉 = (|01〉 ± |10〉)/√2 or
|φ±〉 = (I ⊗ σ1)|ψ±〉 as an initial state, one can achieve any
degree of entanglement between the two qubits by coupling
them to their environment(s). Note, however, that by coupling
qubits to separated and uncorrelated environments, we can
only decrease the entanglement, since any local operation
cannot increase it. Damping can occur in various ways, but we
focus on states generated from pure states by two prototype
damping models (channels), for which the ranges of the REE
for a given value of the nonlocality is shown in Fig. 2. We
show in detail that these damping channels provide us with the
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FIG. 2. (Color online) Ranges of the relative entropy of entangle-
ment for a given nonlocality for the two-qubit mixed states generated
from pure states by the amplitude-damping channel, given by Eq. (25)
(yellow and green areas) and the phase-damping channel, given by
Eq. (32) (blue and green areas).

mixed states with extreme values of the REE for a fixed value
of another entanglement or nonlocality measures.

In this section we analyze the effect of the prototype
damping channels on pure states of the form

|ψα〉 = √
α|01〉 + √

1 − α|10〉, (21)

where 0 � α � 1. When analyzing the entanglement mea-
sures, any pure two-qubit state, as given above Eq. (7),
can be equivalently expressed by means of the Schmidt
decomposition, in the form given by Eq. (21). Although
damping of these pure states can lead to inequivalent states,
for simplicity, we confine our analysis only to the input states
|ψα〉.

A convenient description of damping can be given in terms
of the Kraus operators Ei (specified below). Two-side damping
of the state ρin(α) = |ψα〉〈ψα| leads to the following output
state

ρ(α,q1,q2) =
∑
i,j

[Ei(q1) ⊗ Ej (q2)]ρin(α)[E†
i (q1) ⊗ E

†
j (q2)],

(22)

where the Kraus operators satisfy the normalization relation∑
i E

†
i (q)Ei(q) = I . In the special case of the one-side

damping (say q2 = 0), Eq. (22) reduces to

ρ(α,q1) =
∑

i

[Ei(q1) ⊗ I ]ρin(α)[E†
i (q1) ⊗ I ]. (23)

A. Amplitude-damping channel

The Kraus operators for the single-qubit amplitude-
damping channel (ADC) are the following [3]:

E0(qi) = |0〉〈0| + √
pi |1〉〈1|, E1(qi) = √

qi |0〉〈1|,
(24)

where qi ≡ 1 − pi is the amplitude-damping coefficient. One
can find that the pure state |ψα〉 after passing through the ADC

is changed into the following mixed state:

ρ(ADC)(α,q1,q2) = p|ψα′ 〉〈ψα′ | + q|00〉〈00| ≡ ρ(A)(α′,p),

(25)

where the effective damping constant reads as q ≡ 1 − p =
αq2 + (1 − α)q1 and |ψα′ 〉 is given by Eq. (21) but for
α′ = αp2/[αp2 + (1 − α)p1], which can take values from 0
to α, where α′ = α is achieved for the symmetric two-side
ADC, i.e., when q1 = q2. The state given by Eq. (25) is
sometimes referred to as the generalized Horodecki state (see,
e.g., Refs. [19,38]). Hereafter, we refer to the discussed states
ρ(A)(α′,p) as the amplitude-damped states. The range of the
REE for a given nonlocality for the ADC state, given by
Eq. (25), is shown in Fig. 2.

In the special case, when αp2 = (1 − α)p1, which implies
α′ = 1/2, the ADC reduces to the Horodecki state (see, e.g.,
Ref. [45]), i.e.,

ρ(H)(p) = ρ(A)
(

1
2 ,p

) = p|ψ+〉〈ψ+|+q|00〉〈00|, (26)

as given by Eq. (9). These states can be obtained from the
initial Bell state |ψ+〉 subjected to the symmetric two-side
ADC, but they can be also obtained by asymmetric two-side
ADC (or even the one-side ADC) of the initially nonmaximally
entangled pure state |ψα〉.

We find that the nonlocality of the ADC state for any α is
given by

B(ρ(A)) =
√

max{0, max[x,(1 − 2p)2] + x − 1}, (27)

where x = 4(1 − α′)α′p2. By comparison, the negativity reads
as

N (ρ(A)) =
√

(1 − p)2 + x − (1 − p), (28)

and the concurrence is C(ρ(A)) = √
x. By contrast to these

simple formulas, there is no analytical formula for the REE
for ρ(A) for arbitrary α and p, except some special cases. For
example, the REE can be calculated analytically, according to
Eq. (11), for the Horodecki states, given by Eq. (26).

Our numerical calculations shown in Fig. 1(c) indicate that
the Bell-diagonal states are likely to be the lower bound for
the REE vs nonlocality. Thus, let us analyze whether the ADC
states can be diagonal in the Bell basis. By denoting the Bell
states as follows |β1〉 = |ψ−〉, |β2〉 = |ψ+〉, |β3〉 = |φ−〉, and
|β4〉 = |φ+〉, we find that the ADC state can be given in the
Bell basis as

ρ(ADC)(α,q1,q2)

= r−|β1〉〈β1| + r+|β2〉〈β2| + r|β3〉〈β3|
+ r|β4〉〈β4| + (t |β2〉〈β1| + r|β4〉〈β3| + H.c.), (29)

where t = α(1 − q2) + r − 1
2 , r± = 1

2 [1 − 2r ± C(ρ(A))], and
r = 1

2 [(1 − α)q1 + αq2]. So, this state is diagonal in the Bell
basis only if α = 0 and 1. Note that for α = 1/2, one has
r− = 1

4 (p1 − p2)2, which vanishes for p1 = p2, but another
off-diagonal term r = 1

4 (q1 + q2) vanishes only if there is no
damping at all. This shows (as also confirmed numerically in
Fig. 2) that the ADC states do not have the minimum of the
REE for a given nonlocality except only two points for B = 0
and 1. By contrast, Figs. 1(c) and 2 show that the ADC states
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are likely to be the upper bound of the REE vs nonlocality.
This observation is confirmed analytically in Sec. V.

B. Phase-damping channel

The Kraus operators for the single-qubit phase-damping
channel (PDC) can be given by [3]

E0(qi) = |0〉〈0| + √
pi |1〉〈1|, E1(qi) = √

qi |1〉〈1|, (30)

where qi = 1 − pi is the phase-damping coefficient. Thus, one
can find that the pure state |ψα〉 after being transmitted through
the PDC is changed into the following mixed state:

ρ(PDC)(α,q1,q2) = α|01〉〈01| + (1 − α)|10〉〈10|
+ y(|01〉〈10| + |10〉〈01|), (31)

where y = √
α(1 − α)p1p2. This state can be also given as

ρ(PDC)(α,q1,q2) = p′′|ψα′′ 〉〈ψα′′ | + q ′′|01〉〈01|, (32)

where the effective damping constant can be defined as q ′′ ≡
1 − p′′ = α(1 − p1p2) and the pure state |ψα′′ 〉 is given by
Eq. (21) but for α′′ = αp1p2/p

′′, which takes the values 0 �
α′′ � α.

We find that the nonlocality, negativity, and concurrence for
the PDC state are equal to each other and are given by

B(ρ(PDC)) = N (ρ(PDC)) = C(ρ(PDC)) = 2y. (33)

The range of the REE for a given nonlocality for the PDC
state, given by Eq. (32), is shown in Fig. 2. Note that it is
unlikely that there is an analytical formula for the REE for the
PDC states for arbitrary parameters α, q1, and q2. However,
the REE can be found in some special cases. For example, if
α = [1 + p1p2]−1 ≡ α′, then Eq. (32) reduces to

ρ(PDC)(α′,q1,q2) ≡ ρ(V)

= 2(1 − α′)|ψ+〉〈ψ+| + (2α′ − 1)|01〉〈01|,
(34)

which means that |ψ ′
α′ 〉 becomes the Bell state |ψ+〉. For this

state, one finds that

B ′ ≡ B(ρ(V)) = C(ρ(V)) = N (ρ(V)) = 2(1 − α′). (35)

The state ρ(V), the same as pure states, reaches the upper bound
for the negativity versus concurrence [17]. The CSS for ρ(V)

reads as σ (V) = (1 − B ′/2)|01〉〈01| + (B ′/2)|10〉〈10|. Thus,
the REE can simply be given by

ER(ρ(V)) = h
(

1
2B ′) − h

{
1
2 [

√
(1 − B ′)2 + (B ′)2 + 1]

}
.

(36)

Now, we show that the minimum of the REE vs nonlocality
can be reached by the PDC states. In the Bell basis, the PDC
state is given by

ρ(PDC)(α,q1,q2) = (
1
2 − y

)|β1〉〈β1| + (
1
2 + y

)|β2〉〈β2|
+ (

α − 1
2

)
(|β1〉〈β2| + |β2〉〈β1|), (37)

which clearly becomes diagonal for initial Bell states (i.e., for
α = 1/2), given by Eq. (18) for q ≡ 1 − p = 1/2 − y (see,
e.g., Ref. [45]). The REE for the state ρ(D) is given by Eq. (20).
Hereafter, we consider only the case when α = 1/2 and use
the shorthand notation ρ(D) ≡ ρ(D2).

V. KARUSH-KUHN-TUCKER CONDITIONS FOR THE
REE VS NONLOCALITY

In this section, we derive the KKT conditions, as a
generalization of the method of Lagrange multipliers, in order
to find the states with extremal values of the REE for a fixed
value of the nonlocality.

Thus, let us consider the following Lagrange function:

L = Tr(ρ ln ρ) − Tr(ρ ln σ ) + l[Tr(ρBCHSH) − β]

− Tr(Xρ) + λ(Tr ρ − 1), (38)

where l, λ, and X are Lagrange multipliers and β = 2
√

M(ρ).
For a small deviation of ρ → ρ + �, we have

L → L + Tr(� ln ρ) − Tr(� ln σ )

+ Tr

(
ρ

∫ ∞

0

1

ρ + z
�

1

ρ + z
dz

)

+ l Tr(�BCHSH) − Tr(�X) + λ Tr �

→ L + Tr[�(ln ρ − ln σ + P

+ lBCHSH − X + λ)], (39)

where P is a projector on the support space of ρ. Thus, the KKT
conditions on the parameters l, λ, and X are the following:

ln ρ − ln σ + P + lBCHSH − X + λ = 0, (40a)

X � 0, Tr(Xρ) = 0. (40b)

From the condition Eq. (40a), we obtain

0 = Tr(ρ ln ρ) − Tr(ρ ln σ ) + Tr(ρP )

+ l Tr(ρBCHSH) − Tr(ρX) + λ Tr ρ

= γER(ρ) + 1 + lβ + λ, (41)

where γ = 1/ log2 e and e is the base of the natural logarithm.
Thus, λ = −γER(ρ) − 1 − lβ. Now, we can rewrite Eq. (40a)
and obtain the simplified KKT conditions:

0 = ln ρ − ln σ + P + lBCHSH − X

− γER(ρ) − 1 − lβ, (42a)

X � 0, Tr(Xρ) = 0. (42b)

One can easily confirm that the condition

P [ln ρ − ln σ + lBCHSH − γER(ρ) − lβ]P = 0 (43)

is a new KKT condition since PX = 0.
We search for the boundary states among the rank-2 states.

We have strong numerical evidence (see points for randomly
generated density matrices in Fig. 1) implying that the extreme
two-qubit states can be found within the rank-2 class of mixed
states. Thus, let us now consider the case where ρ is a rank-2
mixed state, i.e., ρ = λ1|e1〉〈e1| + λ2|e2〉〈e2|, where λi are
nonzero eigenvalues of ρ, and |ei〉 are the corresponding
eigenstates. From Eq. (42b), we have

〈e1| ln σ |e2〉 = l〈e1|BCHSH|e2〉, (44a)

γER(ρ) + lβ = ln λ1 − 〈e1| ln σ |e1〉 + l〈e1|BCHSH|e1〉,
(44b)
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from which l is determined. Then, there must exist X

such that

X = ln ρ − ln σ + P + lBCHSH

− [γER(ρ) + 1 + lβ] � 0, (45a)

Tr(Xρ) = 0. (45b)

The KKT conditions, given by Eqs. (44a)–(45b), are the
necessary conditions in searching for the boundary (extreme)
states among rank-2 mixed states.

A. Lower bound of REE vs nonlocality

Here, we show the KKT conditions are satisfied by the
Bell-diagonal states, given by Eq. (18), as obtained by the
phase damping of the Bell states |ψ+〉 or, equivalently, |ψ−〉
assuming p ↔ 1 − p.

For these states the CSS is given by

σ (D) = 1
2 (|ψ+〉〈ψ+| + |ψ−〉〈ψ−|), (46)

and the Bell-CHSH operator is

B(D)
CHSH = η[−σ3 ⊗ σ3 + (2p − 1)σ1 ⊗ σ1]

= 2η[p(|ψ+〉〈ψ+| − |φ−〉〈φ−|)
+ (1 − p)(|ψ−〉〈ψ−| − |φ+〉〈φ+|)], (47)

where η = 2/
√

1 + (2p − 1)2. So, by applying Eqs. (4)
and (6), one can find the simple expression, given by Eq. (19),
for the nonlocality.

Since it holds 〈e1| ln σ (D)|e2〉 = 〈e1|B(D)
CHSH|e2〉 = 0,

Eq. (44a) is satisfied for any l. From Eq. (44b), l is determined
through

ln p + 1 + 2ηpl = γE
(D)
R + lβ, (48)

where β = 2
√

1 + (2p − 1)2 and the REE is given by

E
(D)
R ≡ ER(ρ(D)) = 1 − h(p), (49)

where h(p) is the binary entropy defined below Eq. (8). Then,
the KKT conditions are satisfied if

X = −[
γE

(D)
R + 1 + lβ + 2ηl(1 − p)

]|φ+〉〈φ+|
−[

γE
(D)
R + 1 + lβ + 2ηlp

]|φ−〉〈φ−| � 0, (50)

for all values of p. Hence, the Bell-diagonal states can yield
the extreme (in this case minimum) value of the REE for a
given value of the nonlocality. This conclusion is confirmed
by our Monte Carlo simulations (see Fig. 1).

B. Upper bound of REE vs nonlocality

Here, we show that the KKT conditions are also satisfied
by the amplitude-damped states ρ(A)(α,p), given by Eq. (25),
for properly chosen parameters α and p. These MEMS having
the highest REE for a given nonlocality are shown by curves
A′′ in Figs. 1(c) and 3(b).

The support space of ρ(A)(α,p) is given by the eigenvectors
|e1〉 = |00〉 and |e2〉 = |ψα〉. The corresponding CSS is given
as [19]

σ (A)(α,p) = R1|00〉〈00| + R4|11〉〈11|
+ λ+|λ+〉〈λ+| + λ−|λ−〉〈λ−|, (51)
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FIG. 3. (Color online) Ranges of the relative entropy of entan-
glement for given values of (a) negativity and (b) nonlocality. It is
seen that the maximal difference in the REE between the optimal
states and pure states is equal to (a) � = �ER(N ′) = 0.0391 at
the negativity N ′ = 0.154 and (b) � = �ER(B ′) = 0.404 at the
nonlocality B ′ = 0. Pure states become more entangled than the
Horodecki states ρ(H)(p) = ρ(A)( 1

2 ,p) for (a) N > N (ρ1) = 0.377
and (b) B > B(ρ6) = 0.586, while pure states become optimal for
(a) N > N0 ≡ N (ρ2) = 0.527 and (b) B > B0 ≡ B(ρ4) = B(ρ5) =
0.817. The states ρn (for n = 1,...,6) are specified in Table I.

where

λ± = 1
2 [R2 + R3 ±

√
(R2 − R3)2 + 4R1R4],

|λ±〉 = ±[(λ± − R3)|01〉 +
√

R1R4|10〉], (52)

normalized by ± = [(λ± − R3)2 + R1R4]−1/2. To calculate
the CSS we have to compute

R2 = 1
4 [1 + 3(1 − p) + 2pα − 4R1 − √

δ],

R4 = R1 − 1 + p, (53a)

R3 = 1 −
∑

i=1,2,4

Ri,

δ = (4 − 3p)2 − 4α(1 − α)p2 − 8R1(2 − p)

+ 16
√

R1(R1 − 1 + p)p2α(1 − α), (53b)
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where R1 is obtained by solving

αp = R2 + 2R4(R2
2 − R2R3 + 2R1R4)/z2

+ 2R4(R2 − R3)/(Lz), (54)

where z =
√

(R2 − R3)2 + 4R1R4 and L = ln(R2 + R3 −
z) − ln(R2 + R3 + z). The Bell-CHSH operator in this case
reads as

B(A)
CHSH =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η1[(1 − 2p)σ⊗2
3 + 2p

√
(1 − α)ασ⊗2

1 ]
if 4p2(1 − α)α − (1 − 2p)2 < 0

η2p
√

(1 − α)α
(
σ⊗2

1 + σ⊗2
2

)
otherwise,

(55)

where η1 = 2/
√

(1 − 2p)2 + 4p2α(1 − α), η2 =
2/

√
8p2(1 − α)α. Thus, by applying Eqs. (4) and (6),

we find that the nonlocality is given by Eq. (27). Since we fix
the value of β or equivalently B ≡ B(ρ(A)), we can express p

in terms of B and parameter α in the following way:

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4p

(2p −
√

2(2p2 − B2 − 1))

if 2
√

2 + 2B2 � 4p � 2 + √
2 + 2B2

1
2p

(p −
√

5p2 − 4p − B2)

if 2 + √
2 + 2B2 < 4p � 4.

(56)

We can easily check by using Eqs. (55) and (51) that the
condition, given by Eq. (44a), is always satisfied. Thus, the
condition, given by Eq. (44b), is also satisfied. To check
the remaining conditions, we need an explicit expression
for the REE and multiplier l, which is equivalent to solving
Eq. (54). This equation contains logarithms and can be easily
solved only in special cases such as, e.g., the Horodecki states
(α = 1/2). Nevertheless, our numerical analysis reveals that
for ρ(A)(α,p), for which the REE reaches the largest value
for a given value of nonlocality, Eq. (45b) is satisfied for the
following coefficients of the amplitude-damped states:

p =
{ 1

4 (2 + √
2 + 2B2) if B < B0

1 if B > B0,
(57a)

1 � p � 1

4
(2 +

√
2 + 2B2

0 ) if B = B0, (57b)

α = 1

2p
(p −

√
5p2 − 4p − B2), (57c)

where B0 = 0.816 86 [see Fig. 3(b)].
Thus, by comparing the REEs for a given nonlocality for

the optimal mixed states (denoted by superscript A′′) and pure
states, we can conclude that

E
(A′′)
R (B) > E

(P)
R (B) for 0 < B < B0,

E
(A′′)
R (B) < E

(P)
R (B) for B0 < B < 1, (58)

where B0 = B(ρ4) = B(ρ5) = 0.816 86 and E
(A′′)
R (B0) =

E
(P)
R (B0) = 0.7445 [see Table I and Fig. 3(b)]. On the other

hand, by comparing the REE for a given negativity for the
optimal mixed states (denoted by superscript A′) and pure
states, it holds [19] that

E
(A′)
R (N ) > E

(P)
R (N ) for 0 < N < N0,

E
(A′)
R (N ) < E

(P)
R (N ) for N0 < N < 1, (59)

where N0 = N (ρ2) = 0.5271 and E
(A′)
R (N0) = E

(P)
R (N0) =

0.3847 [see Table I and Fig. 3(a)]. As a reminder, superscripts
A′ (A′′) correspond to the amplitude-damped states ρ(A′) (ρ(A′′))
optimized for the REE vs negativity (nonlocality). As shown
in Fig. 1, the states ρ(A′) and ρ(A′′) are, in general, inequivalent.
The maximal differences, as defined by Eq. (14), are equal to
�ER(N ) = 0.0391 for N = 0.1540, and �ER(B) = 0.4040
for B = 0. It is seen that ranges of mixed states, which are
more entangled than pure states, are much smaller for the REE
vs negativity in comparison to the REE vs nonlocality.

VI. CONCLUSIONS

We studied the relation between the relative entropy of en-
tanglement ER and the nonlocality measure B corresponding
to a degree of the violation of the Bell-CHSH inequality in
two-qubit systems. We found states of the extremal value of
ER for a given value of B. We showed that the obtained states
satisfy the Karush-Kuhn-Tucker conditions, derived in Sec. V,
as well as they provide a boundary for the REE values obtained
by our Monte Carlo simulations presented in Fig. 1.

We demonstrated that mixed states can be more entangled in
terms of ER than pure states if the nonlocality B ∈ (0,0.82) and
the maximal difference between these REEs is �ER = 0.4 as
shown in Fig. 3(b). As discussed in Ref. [19], ER as a function
of the negativity N can also exhibit this property but (i) the
maximal difference �ER is one order smaller (i.e., �ER =
0.039) and (ii) mixed states are optimal for a shorter range of
the negativity, i.e., N ∈ (0,0.53), as presented in Fig. 3(a). For
appropriate comparison, we normalized B to be equal to N for
any two-qubit pure state.

We showed that these maximally entangled mixed states can
be obtained from pure two-qubit entangled states by locally
subjecting one or both qubits (of the entangled pair) to the
amplitude-damping channel, while the minimally entangled
states can be generated from pure states by subjecting one or
both qubits to the phase-damping channel. We found that the
amplitude-damped states (yellow and green areas in Fig. 2) are
more entangled than the phase-damped states (blue and green
areas) for a given nonlocality B < 0.8169 (corresponding to
the nonlocality of the states ρ4 and ρ5 shown in Fig. 1 and
Table I).

However, for values B > 0.5856 (point ρ6) there exists
a range of states, obtained either by the amplitude or phase
damping, which have the same value of ER for a given B (green
area in Fig. 2). Moreover, we found that the upper bound on
the REE of the phase-damped states (blue and green areas in
Fig. 2) for a given nonlocality is provided by pure states (curve
P in Fig. 2). However, pure states have the highest REE only
for B > 0.8169.

Thus, we found that for a large range of the nonlocality,
mixed states can be more entangled than pure states, and,
surprisingly, these mixed states can by obtained by the ordinary
amplitude damping of pure states.

We note that two-qubit pure states are extremal (i.e., they
are on the lower bound) for the concurrence C vs B, as shown
in Ref. [22], and the negativity N vs B [46] for arbitrary
B ∈ [0,1]. This means that all mixed states are more entangled
than pure states or, at least, the same entangled in terms of C

and N for a given B. The distinctive feature of the relation of
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the REE vs B, is that pure states are extremal (i.e., they are on
the upper bound) in some range of B only. Thus, in the other
range of B, mixed states can be both more and less entangled
than pure states.

Finding relations between the REE and nonlocality (or other
measures of quantum correlations) is impeded by the lack of
an analytical formula for the REE for general two-qubit mixed
states. By contrast, such formulas are known for the two-qubit
concurrence and negativity. Thus, a related problem of compar-
ing these two quantities with the nonlocality is much simpler.

We believe that these results can stimulate a further quest
for practical protocols of quantum information processing for
which mixed states are more effective than pure states.
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