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Method for universal detection of two-photon polarization entanglement
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Detecting and quantifying quantum entanglement of a given unknown state poses problems that are
fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum
tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been
designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective
universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us
to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount.
A different element of this method is the sequential character of its main components, which allows us to obtain
relatively complicated information about quantum correlations with the help of simple linear-optical elements. As
such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum
optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
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I. INTRODUCTION

Quantum entanglement [1,2] is a fascinating phenomenon
considered to be one of the main resources in quantum infor-
mation and quantum engineering (for reviews, see Refs. [3–5]).
In general, detecting entanglement in various physical scenar-
ios poses a significant problem. Most widely used methods
are based on measuring entanglement witnesses (see Ref. [4]),
which are efficient but, typically, not universal and require
some information about the state prior to its measurement.
On the other hand, by performing standard methods of
quantum tomography of a given state, one obtains complete
information about that state. Thus, information concerning
its entanglement can be extracted by an explicit calculation,
through the postprocessing of the complete experimental data.
However, full tomography requires measuring a large number
of parameters; this number scales with the square of the
total dimension of a measured state. Moreover, there remains
one conceptually fundamental question, namely, what is the
minimal number of parameters that are experimentally feasible
(in the sense of, e.g., linear optics) that will nevertheless
provide complete information about quantum entanglement
independently of a general input state. This can be viewed as
a question about a quantum processor with a quantum input
(state) and a classical output (giving a yes or no answer or some
quantitative information about entanglement) with minimal
processing of classical (incoherent) information inside.

Early proposals regarding the detection and quantifica-
tion of quantum entanglement without state reconstruction
were based on the identification of polynomial moments.
These methods made it possible to retrieve information on
entanglement from the data spectrum of the partial transpose
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of the two-qubit Wootters concurrence (see Refs. [6–8] for
a significant quantum-noise reduction). They enabled sharp
two-qubit entanglement tests, but required nonlinear postpro-
cessing of the data to retrieve the original information about
entanglement.

Independently of the above-mentioned line of research,
the concept of collective entanglement witnesses [9] made
it possible to construct collective observables for describing
entanglement quantitatively in experiments [10]. Moreover,
the analysis of the concurrence of Ref. [11] (see also Ref. [12]
for recent developments) eventually led to a quantitative
experimental estimation of entanglement in terms of specific
two-copy collective witnesses [13,14].

Another interesting example of collective entanglement
witnesses is a two-copy witness based on the geometric in-
tuition of the concept of metric [15]. A number of multipartite
tests based on the nonlinear functions of simple multicopy
observables were developed [16] and several other quantitative
[17–20] and qualitative [15,16,21–24] methods of detecting
entanglement without quantum tomography were proposed.
Nevertheless, these techniques, although quite powerful, are
not universal and the quality of their results depends on a given
state.

Experimental adaptive approaches [25,26] were also pro-
posed for the case of two qubits, which we shall focus on in this
paper. Although these methods are an elegant improvement,
they do not satisfy the universality requirement.

Let us stress, however, that there exists a universal witness
of entanglement (UWE) for a two-qubit state, as introduced
in Ref. [27] and defined here in Sec. II. This UWE can
be measured by performing the joint measurements on the
four copies of a given state [27]. However, so far no
experimental implementation for such a measurement has been
proposed. The aim of this paper is to propose a constructive
measurement procedure that outputs the mean value 〈W (4)

univ〉
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of the above witness for any two-qubit polarization state
of a pair of photons, thereby allowing us to detect the
arbitrary quantum entanglement of such systems. This is an
experimental proposal of a universal (sharp) entanglement
test with (i) elementary (linear) optics and (ii) practically
trivial (direct substitution for polynomial) postprocessing of
experimental data. To be more specific, the procedure has
the unique advantage that it can be (probabilistically) utilized
with the help of just linear-optical methods involving only a
sequence of beam splitters and the Hong-Ou-Mandel (HOM)
interference. Quite remarkably, no polarizing beam splitters
or phase rotators are needed. This is especially important here
because we consider only the polarization-encoded qubits.

We start the presentation of our results with the analysis
of the properties of the UWE symmetries of the observables
needed for reproducing the three moments �i (i = 2,3,4).
Then we shall provide the optical HOM interference methods
for reproducing the values of the moments. Having found these
values, one just needs to substitute them into the polynomial (1)
and to check the sign of the final value.

This paper is organized as follows. In Sec. II we recall
the definition of the UWE and show how the negativity and
concurrence are bounded by some functions of the UWE.
In Sec. III we present the main idea of how to measure
the UWE. A detailed derivation of one of our important
formulas is given in the Appendix. In Sec. IV we relate
our results to Makhlin’s invariants and find the minimum
number of independent measurements required for detecting
entanglement. In Sec. V we describe our proposal of an
experimental photonic implementation for the UWE detection.
In Sec. VI we present two alternative implementations. We
discuss our results and summarize in Sec. VII.

II. UNIVERSAL ENTANGLEMENT WITNESS AND
BOUNDS ON NEGATIVITY AND CONCURRENCE

The UWE, provided in Ref. [27], is an operator W (4)
univ such

that its expected value corresponds to the determinant of the
partially transposed (marked by �) two-qubit matrix ρ, i.e.,

det ρ� = 〈
W (4)

univ

〉
:= tr

(
W (4)

univρ
⊗4)

= 1
24

(
1 − 6�4 + 8�3 + 3�2

2 − 6�2
)
, (1)

which is given in terms of the moments �n = tr[(ρ�)n]. For
convenience, we refer to the observable W (4)

univ, but also to its
expectation value 〈Wuniv〉 as the UWE. It follows from the
positive partial transpose criterion that a two-qubit state is
entangled if and only if 〈W (4)

univ〉 < 0. The explicit form of this
witness, which is the mean value of the Hermitian observable
W (4)

univ on the four copies ρ⊗4 of qubit pairs in a given state ρ, is
explicitly provided in Ref. [27] and constructed from permu-
tation matrices. The main advantage of this UWE compared to
other universal methods of two-qubit entanglement detection
is that this is a linear observable that does not require solving
(unfolding) nonlinear polynomial equations, which are more
sensitive to errors, to obtain the information about a given state
(see Refs. [6–8]). Another advantage of this witness is that its
rescaled value w := max[0,−16〈W (4)

univ〉] provides tight upper
and lower bounds [27] on the negativity N (ρ) and concurrence

f(w)

4
√

w

0 0.2 0.4 0.6 0.8 1
w

0

0.2

0.4

0.6

0.8

1

N
,
C

FIG. 1. (Color online) Tight lower and upper bounds for the two-
qubit negativity N and concurrence C in terms of the universal witness
value w = max[0,−16〈W (4)

univ〉]. Red (blue) dots correspond to the
concurrence (negativity) for 104 density matrices ρ generated by a
Monte Carlo simulation (see also [27]).

C(ρ) of a two-qubit state ρ,

f (w) � N � C � 4
√

w, (2)

where f (w) is the inverse of the polynomial w(C) = C(C +
2)3/27 on the interval C ∈ [0,1]. We recall that the negativity
N of a two-qubit state ρ can be defined as [4]

N (ρ) = 2 max{0,−min[eig(ρ�)]}, (3)

i.e., via the minimum (negative) eigenvalue of the partially
transposed density matrix ρ� , while the concurrence C of a
two-qubit state ρ is given by [28]

C(ρ) = max

⎛
⎝0,−

∑
j

λj + 2 max
j

λj

⎞
⎠ , (4)

where {λ2
j } = eig[ρ(σ2 ⊗ σ2)ρ∗(ρ2 ⊗ σ2)] and σ2 is the Pauli

operator. The lower bound f (w) can be given explicitly in
terms of the universal witness value w as

f (w) = 1
2 (−3 + √

z +
√

3 − z + 2/
√

z), (5)

where z = 1 + x − 36w/x, and

x = 3
3

√
2
√

w2(16w + 1) − 2w. (6)

This lower bound and the upper bound are shown in Fig. 1.

III. HOW TO MEASURE UNIVERSAL ENTANGLEMENT
WITNESS: PRINCIPLE IDEA

In order to directly determine the witness 〈W (4)
univ〉, we can

measure all the moments �n = tr(ρ�)n separately. We know
how to measure �2 (see Ref. [29]), since it is equivalent to
the purity of ρ = ρa1,b1 . The remaining problem is how to
measure �3,4. As already mentioned, these moments were
originally reproduced as the mean values of the observables
constructed from permutation operators. However, the direct
measurement of the observables seems to be difficult due
to their relatively complicated structure. Fortunately, we can
express the moments �n (for n = 3,4) differently, i.e., by
decomposing the nth cycle into the products of inversions (the
SWAP operations S) as

�n = tr(AnBnρ
⊗n), (7)
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where n = 2,3,4 and

A2 = Sa1,a2 ⊗ Ib1 ⊗ Ib2 ,

B2 = Ia1 ⊗ Ia2 ⊗ Sb1,b2 ,

A3 = Sa1,a2 ⊗ Ia3 ⊗ Ib1 ⊗ Sb2,b3 ,

B3 = Ia1 ⊗ Sa2,a3 ⊗ Sb1,b2 ⊗ Ib3 ,

A4 = Sa1,a2 ⊗ Sa3,a4 ⊗ Ib1 ⊗ Sb2,b3 ⊗ Ib4 ,

B4 = Ia1 ⊗ Sa2,a3 ⊗ Ia4 ⊗ Sb1,b2 ⊗ Sb3,b4 , (8)

together with the SWAP operator S = |HH 〉〈HH | + |HV 〉
〈V H | + |V H 〉〈HV | + |V V 〉〈V V | and the single-qubit iden-
tity operator I , where |H 〉 and |V 〉 are the states of the
horizontally and vertically polarized photons, respectively.
The products AnBn are not Hermitian for n = 3,4, so they
cannot be measured directly. However, the operators An and
Bn taken separately are Hermitian and have other useful
properties, i.e., tr(AnBnρ

⊗n) = tr(BnAnρ
⊗n) and A2

n = B2
n =

I⊗n. By applying these properties we can express higher-order
moments of the partially transposed matrix as

�n = 1
2 tr[(An + Bn)2ρ⊗n] − 1, n = 3,4. (9)

Note that this method displays some analogy to the method
of calculating the collective spin of two parties. Let us
define Xn = (An + Bn)2. Then, in order to measure these two
moments, we have to perform projections on the eigenspaces
of X3 and X4. The implementation of these operations might be
difficult for two reasons: (i) the large number of different eigen-
values of the operators Xn (positive-operator-valued measures)
and (ii) the complicated structure of the corresponding
eigenspaces with the eigenvectors corresponding to entangled
multiqubit states. Fortunately, the operator X3 has only two dif-
ferent eigenvalues (1,4), resulting in two eigenspaces, and the
operator X4 has only three different eigenvalues (0,2,4), hence
it has three eigenspaces. Therefore, one has to perform only the
measurement of five projections on some of the eigenspaces
to measure both �3 and �4. The remaining problem is to find
the eigenspaces and associate them with the specific settings of
a multiphoton interferometer. Measuring the second moment
�2 requires two projections. Thus, the complete measurement
of W (4)

univ can be decomposed into seven projections (this
value may be even lower if some optimization is applied)
onto subspaces spanned by highly entangled multiqubit states,
which is twice as efficient as a full two-qubit tomography.
There is, however, another method of measuring the products
of An and Bn for n = 3,4 that is better regarding the complexity
of these projections. We can express An = P +

n − P −
n in terms

of the projectors onto the symmetric (P +
n ) and antisymmetric

(P −
n ) subspaces. Then, as shown in the Appendix, we have

�n = tr[BnP
+
n ρ(n)P +

n ] − tr[BnP
−
n ρ(n)P −

n ] (10)

for an arbitrary ρ. It is convenient to define P ±
m,n =

1
2 (Iam

⊗ Ian
± Sam,an

) and P̄ ±
m,n = 1

2 (Ibm
⊗ Ibn

± Sbm,bn
). Then

the symmetric (P +
n ) and antisymmetric (P −

n ) projectors for
n = 3,4 read

P ±
3 = P ∓

1,2 ⊗ P̄ −
2,3 + P ±

1,2 ⊗ P̄ +
2,3, (11)

P ±
4 = P ∓

3 ⊗ P −
3,4 + P ±

3 ⊗ P +
3,4. (12)

FIG. 2. (Color online) Conceptual diagram for measuring the
moment �4. The four copies of a given two-photon state ρa,b are
marked by small rectangles, where the white (black) part corresponds
to the a (b) photon. Solid (dashed) curves connect photons that are
measured simultaneously at the first (second) stage. The state ρa,b

is split into the symmetric and antisymmetric parts by the projectors
P +

4 and P −
4 (solid arrows), respectively. This can be considered as

a transformation that is deterministic in principle. Next, the two
branches are split again into the symmetric (by the projector P̄ +

4 )
and antisymmetric (P̄ −

4 ) parts (dashed arrows). These projectors are
applied to the two subgroups of qubits, as indicated by the red (blue)
curves for the symmetric (antisymmetric) subspace projections. There
are four possible outcomes of this procedure. The events, indicated
by dotted arrows, correspond to measuring the value +1 (−1) with
the probability p±,± (p∓,±), where p+,+ + p+,− + p−,+ + p−,− = 1
and 〈�n〉 = p+,+ − p+,− − p−,+ + p−,−. The same procedure can
be used for measuring the lower-order moments �n for n = 2,3 if
the last (4 − n) copies of ρa,b are removed.

For the operator Bn = P̄ +
n − P̄ −

n , we can apply the same
procedure but with the subsystems of the multiqubit density
matrix swapped as a ↔ b. Then, we have

�n = tr(P̄ +
n QP̄ +

n ) − tr(P̄ −
n QP̄ −

n ), (13)

where Q = P +
n ρ(n)P +

n − P −
n ρ(n)P −

n , which means that

�n =
1∑

x,y=0

(−1)x+y tr
[
P̄ x

n P y
n ρ(n)P y

n P̄ x
n

]
, (14)

where P̄ 0
n = P̄ +

n and P̄ 1
n = P̄ −

n . Thus, it appears to be more
convenient to project ρ(n) onto the symmetric or antisymmetric
subspace of An first and then to measure Bn = P̄ +

n − P̄ −
n , as

shown in Fig. 2.

IV. MAKHLIN’S INVARIANTS AND MINIMAL NUMBER
OF INDEPENDENT MEASUREMENTS

The moments �{1,2,3,4} are interrelated. In order to demon-
strate this property, let us express the two-qubit density
matrix ρ in terms of the Pauli matrices σi for i = 1,2,3
and the single-qubit identity matrix σ0. The resulting matrix
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reads

ρ = 1
4σ0 ⊗ σ0 + 1

2 siσi ⊗ σ0 + 1
2pjσ0 ⊗ σj + βijσi ⊗ σj ,

(15)

where the elements of the correlation matrix β̂ are βij =
tr[(σi ⊗ σj )ρ] and the Bloch vectors s and p have the following
elements of si = tr[(σi ⊗ σ0)ρ] and pj = tr[(σ0 ⊗ σj )ρ], re-
spectively. It can be directly shown, after tedious calculations,
that

�1 = 1,

4�2 = 1 + x1,

16�3 = 1 + 3x1 + 6x2,

64�4 = 1 + 6x1 + 24x2 + x2
1 + 2x3 + 4x4, (16)

where

x1 = I2 + I4 + I7, x2 = I1 + I12,

x3 = I 2
2 − I3, x4 = I5 + I8 + I14 + I4I7 (17)

are functions of nine local invariants of the two-qubit matrix
ρ as defined by Makhlin in Ref. [30], i.e., I1 = det β̂, I2 =
tr(β̂T β̂), I3 = tr(β̂T β̂)2, I4 = s2, I5 = [sβ̂]2, I7 = p2, I8 =
[β̂p]2, I12 = sβ̂p, and I14 = eijkelmnsiplβjmβkn, where eijk

is the Levi-Cività symbol. It is apparent that only six (instead
of nine) linear combinations of Makhlin’s invariants need to be
measured to estimate the values of xn for n = 1, . . . ,4. These
invariants read

y1 = I2, y2 = I3, y3 = I4, y4 = I7,

y5 = I1 + I12, y6 = I5 + I8 + I14. (18)

Thus, in order to detect the entanglement via det ρ� , one needs
to measure exactly six instead of nine independent linear
combinations of fundamental invariants. It also happens that
this is also the minimal number of independent fundamental
quantities describing the negativity of an arbitrary two-qubit
state [31].

V. PROPOSAL OF EXPERIMENTAL IMPLEMENTATION

The analyzed projections P ±
n are not the products of

projections (except n = 2), thus they cannot be implemented
by local (two-qubit) operations. Let us note that the P ±

n

projectors split a collective multiqubit state into the states of
positive and negative parities. This technique was also applied
to, e.g., the cluster-state preparation [32].

We can, however, measure B3P
±
3 directly as shown in

Fig. 3. Note that B3 can be measured using only beam splitters
and photon detectors analogously to the methods applied
in Refs. [29,33,34]. In Figs. 3 and 4 we show a simple
implementation of a Bn block (for n = 3,4). To measure
the three parameters from Fig. 2 (four parameters without
normalization) instead of using the Bn block we can reuse
the P ±

n part of the relevant setup to perform a P̄ ±
n projection

(see Sec. VI).
For any P ±

n , two qubits a1 and an (bn) for even (odd) n can
be destroyed in this process. In the most complex case of P ±

4 ,
we have to perform a nondestructive parity test on six qubits,
where two of them can be destroyed before measuring B4. The

(a) (b)

FIG. 3. (Color online) Linear-optical setup for measuring B3P
±
3

directly. The principle of its operation is based on the fact that a
beam splitter (BS) performs the projection P + (P −) if the incoming
photons in b1 and b2 are bunched (antibunched). If they are bunched,
at least one photon is passed to the detection mode of the first BS.
Next, if no photon is passed to the detection mode of the second BS,
the output state is trb1 (P −ρb1,b2P

−). However, if there is no photon in
the first detection mode and there is a photon in the second detection
mode, the output state becomes trb1 (P +ρb1,b2P

+). The setup works
if both detectors D1 and D2 register a photon, and it is unknown
from where the photons have arrived. The B3 part is implemented by
distinguishing between P + and P − by means of detecting bunching
and antibunching, respectively. To guarantee the optimality of this
setup with respect to the minimal number of measured quantities,
the information about parities of individual photon pairs should be
erased as described in Sec. VI B. Here we assume that this is done by
using photon-number-resolving detectors D

a (b)
4 , but this can also be

done probabilistically using bucket detectors [29,33]. Thus, assuming
perfect detectors, one needs two measurements to determine �3.
Finally, neutral density filters F of the transmittance 1/2 ensure that
the setup works with probability 1/16.

measurement of B4P
±
4 is more challenging than that of �3.

In the comparison to the �3 setup, the main difficulty here
is the necessity to condition the outcome of nondestructive
measurements on b2 and b3. This is because both b2 and b3

FIG. 4. (Color online) Linear-optical setup for direct measuring
B4P

±
4 . The principle of its operation is similar to that in Fig. 3.

Here, for simplicity, we assume that the detectors D1 and D2 can
distinguish between the even and odd numbers of photons. Note
that this assumption is irrelevant in the setups discussed in Sec. VI.
If the even (odd) number of photons is passed to detector D1, the
measurement result is that of the B4 measurement multiplied by 1
(−1). The ancillary modes c1 and c2 are prepared in the polarization
singlet state. Note that the right-hand-side module corresponds to
that shown in Fig. 3(b) but with the replaced notation for the input
modes and detectors: (a1,a2,a3,b1,b2,b3) → (c1,b2,b1,b4,b3,c2) and
(Da

3 ,Db
3 ,D

a
4 ,Db

4 ) → (Da
4 ,Db

4 ,D
a
5 ,Db

5 ), respectively.
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FIG. 5. (Color online) Alternative setup for the direct measure-
ment of B4P

±
4 . The method uses three known quantum gates: the XOR,

the CNOT (i.e., the reversible XOR), and the nondemolition presence
detection gate. All these gates can be implemented using linear optics
only. The XOR gate can easily be constructed using a polarizing beam
splitter and a set of half-wave plates (HWP) (see, e.g., Ref. [40]).
The CNOT gate can be built using a special partially polarizing beam
splitter (see, e.g., Ref. [36]). Finally, the nondemolition presence
detection can be achieved with the assistance of two ancillas [41] in
the polarization singlet state. The method is successful if there are
two photons registered by each pair of the photon-number-resolving
detectors D1, D3, and D4, while one photon is detected by either Da

2

or Db
2 . It is easy to show that the photon detection by Da

2 corresponds
to the B4P

−
4 measurement, while the detector Db

2 heralds the B4P
+
4

measurement.

are required in the latter part of the �4 measurement. We
can solve this problem by using ancillary photons prepared
in the polarization singlet state in the modes c1 and c2. The
corresponding setup is shown in Fig. 4. In some experimental
approaches, this setup can be further simplified by applying,
e.g., the time-bin methods [33,35]. Our alternative proposal
is discussed in the next section and shown in Fig. 5. Finally,
note that the relevant moments �n can be measured with the
subblocks of the setup in Fig. 4 if some information is ignored.

VI. ALTERNATIVE IMPLEMENTATIONS

A. Alternative setup for measuring �4

The setup depicted in Fig. 4 is fairly efficient and experi-
mentally not overly demanding. Unfortunately, it requires the
photon-number parity measurement, which (i) is experimen-
tally challenging and (ii) has photon losses in the setup that
can result in incorrect measurement outcome. Especially the
second limitation hinders the implementation of the method
since photon losses and imperfect detection efficiencies are
unavoidable in real experiments.

To overcome this problem, in addition to the time-bin
approach as already mentioned, we have devised another setup,
as shown in Fig. 5, for the direct measurement of the B4P

±
4

term. In contrast to the previous setup, shown in Fig. 4, no
parity measurement is required. On the other hand, the new
setup is much more complex and requires interferometric
stability (at some places). The idea behind the method is to use
two quantum gates: the controlled-NOT (CNOT) gate [36–39]
and the exclusive OR (XOR) gate [40]. In order to join two
CNOT gates, it is also required to introduce the nondemolition
photon presence detection gate, which uses two additional
ancillas in a Bell state [41,42]. By heralding the presence of
a qubit, this gate informs that the preceding CNOT operation
was successful. The entire measurement method is successful
if two photons are detected by each detector pair among D1,
D3, and D4, while one photon is detected by either of the
D2 detectors and the presence detection gate also heralds a
photon. Further, if the detector Da

2 fires, the method performs
the B4P

−
4 measurement, while if the photon impinges on the

Db
2 detector, the setup implements the B4P

+
4 measurement.

B. Alternative implementation of the B3 (4) block

If we take a look at the Bn blocks with n = 3,4 in
Figs. 3 and 4, respectively, we will discover that we check
for bunching and antibunching separately for each photon
pair. In additional to the information about the outcome of
the P̄ ±

n projections, we obtain the information about which of
the photon pairs is bunched or antibunched. We do not use the
which-pair information in any way (we just need to know how
may pairs bunched or antibunched) and this measurement is
not difficult to implement. However, one may argue that we
gain more knowledge from our measurement that is necessary
to measure �n.

To perform the Bn measurement and not to distinguish
between the pairs of photons one would have to use the same
block as for the P ±

n measurement and to swap the modes a ↔ b
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to perform the P̄ ±
n projections. This procedure would result in

the four separate detection events P +
n P̄ +

n , P +
n P̄ −

n , P −
n P̄ +

n , and
P −

n P̄ −
n [see Eq. (14)] associated with the single observable

�n. This number of detection events is now smaller that in the
case of analyzing bunching and antibunching for each pair at
the original Bn blocks. The drawback of this method is that
it is more experimentally challenging. However, by using the
time-bin approach, analogously to that applied in Ref. [33], we
could reuse the same physical P ±

n setup to measure P̄ ±
n at a

later moment of time. To summarize, we may iterate the block
measuring P ±

n to get exactly the statistics corresponding only
to four exclusive events.

VII. DISCUSSION AND CONCLUSION

We showed how to directly measure the universal entan-
glement witness W (4)

univ by using four copies of an arbitrary
two-qubit state ρa,b of a two-photon polarization state. Our
approach consists of three measurements associated with
three moments of the partially transposed matrix ρ�

a,b, i.e.,
�n = tr[(ρ�)n] for n = 2,3,4. The key issue is to calculate
the number of parameters that were estimated in the process
of measurement. Figure 2 shows us that we can estimate
two independent quantities for each of the three moments
�{2,3,4}, which after normalization become the probabilities
p+ = p−,− + p+,+ and p− = p−,+ + p+,−. Consequently,
the output of the setup provides six parameters that are
generally independent. Note that there are nine parameters
if the normalizations are included.

The moments �{2,3,4} are interrelated. Each higher
moment is a function of lower moments and some additional
parameters. After tedious calculations, we showed that �{2,3,4}
are functions of nine fundamental Makhlin invariants [30] of ρ.
The relevant invariants are I{1,2,3,4,5,7,8,12,14} (see Sec. IV). Un-
der closer inspection we discovered that only six fundamental
quantities are needed to estimate the values of �{2,3,4}, i.e., to
detect entanglement via det ρ� (or to measure the negativity of
an arbitrary two-qubit state [31]). These are y1 = I2, y2 = I4,
y3 = I7, y4 = I1 + I12, y5 = I5 + I8 + I14, and y6 = I3.
Thus, our setup estimates no more quantities than those.

Note that local qubit unitary operations have three relevant
independent real parameters (excluding global phase). Thus,
the number of parameters of UA ⊗ UB is 6, while the total
number of parameters of a mixed two-qubit state is 15. The
resulting 9 = 15 − 6 parameters are exactly all the relevant
ones after introducing the UA ⊗ UB invariant equivalence
classes and they correspond to the nine fundamental invariants.
This number of parameters can be further reduced by swapping
the subsystems of ρ.

This is probably the reason behind the minimalist character
of this method. Indeed, it requires no unitary operations, which
may reflect the symmetry of the problem under local unitary
operations. Because of its simplicity, we believe that the
presented setup paves the way for the experimental realization
of a necessary and sufficient universal test of entanglement.

Finally, let us underscore that the key feature responsible for
the success of the proposed approach is the sequential character
of measurements. It seems that this property of the setup
reframes the paradigm for entanglement, correlations, and
any other nonlocal (i.e., not depending solely on the reduced

density matrices of subsystems) property of quantum-state de-
tection and/or estimation in practice. As a result a more general
problem can be conceived of. Given only very specific mea-
surement modules (analogous to a beam splitter in the Hong-
Ou-Mandel interference experiment), which can be repeated
in different subsystems, is it possible to estimate nonlocal
quantities and, if so, what setup would minimize the number
of required measurements?

We developed a general method of the measurement
of invariant-based moments of partially transposed density
matrices. Our detailed description of the method is focused
on the detection of the entanglement of two qubits. This
method can be generalized and applied to measure (at least
some) moments of partially transposed density matrices of
higher-dimensional systems too. Nevertheless, such detection
setups can be, in general, more complicated than the setups
for quantum-state tomography. However, let us stress again
the main result of our paper, which is a proposal of an
experimental entanglement detection without performing a
complete quantum-state tomography. Our method enables us
to detect the entanglement between two qubits in an arbitrary
state if and only if these qubits are entangled. The main idea
of our method is based on the measurement of the universal
entanglement witness, which is a necessary and sufficient
entanglement condition for an arbitrary state of only two
qubits. In this sense, our universal two-qubit entanglement
detection is not directly scalable for two-qudit or multiqubit
systems.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from
the Polish National Science Centre through Grants No.
DEC-2011/03/B/ST2/01903 (A.M.), No. DEC-2013/11/D/
ST2/02638 (K.B.), and No. DEC-2011/02/A/ST2/00305
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APPENDIX: DERIVATION OF EQ. (10)

In order to derive Eq. (10), let us start by noting that

tr(BnAnρ
⊗n) = tr[BnAn(ρ⊗n)′], (A1)

where the statistical operator

(ρ⊗n)′ = 1
2 (ρ⊗n + Anρ

⊗nAn) (A2)

can be implemented by alternating between the input state ρ⊗n

and Anρ
⊗nAn (qubits are swapped according to the definition

of An). The newly obtained density matrix (ρ⊗n)′ has a very
important property, i.e., it commutes with the operator An:

[An,(ρ
⊗n)′] = 1

2 ([An,ρ
⊗n] + [ρ⊗n,An]) = 0. (A3)

Thus, the two operators have a common set of eigenvectors
|ψ (n)

m 〉 for m = 1,2, . . . ,4n, i.e., they are both diagonal
in the same basis. Let us expand the expression
tr[BnAn(ρ⊗n)′] using the diagonal representations of
the operators An = ∑

k a
(n)
k |ψ (n)

k 〉〈ψ (n)
k |, Bn = ∑

l b
(n)
l |φl〉〈φl|

and (ρ⊗n)′ = ∑
m r (n)

m |ψ (n)
m 〉〈ψ (n)

m |. By doing so, we arrive
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at

tr[BnAn(ρ⊗n)′]

=
∑
k,l,m

tr
(
a

(n)
k b

(n)
l r (n)

m

∣∣φ(n)
l

〉〈
φ

(n)
l

∣∣ψ (n)
k

〉〈
ψ

(n)
k

∣∣ψ (n)
l

〉〈
ψ

(n)
l

∣∣)

=
∑
k,l

a
(n)
k b

(n)
l r

(n)
k

∣∣〈φ(n)
l

∣∣ψ (n)
k

〉∣∣2
. (A4)

This is equivalent to a measurement strategy consisting of
measuring An first and then measuring Bn, which can be
expressed as

∑
k

tr
[
Bna

(n)
k

∣∣ψ (n)
k

〉〈
ψ

(n)
k |(ρ⊗n)′

∣∣ψ (n)
k

〉〈
ψ

(n)
k

∣∣]

=
∑
k,l

a
(n)
k b

(n)
l

∣
∣
〈
φ

(n)
l

∣∣ψ (n)
k

〉∣
∣2〈ψ (n)

k

∣∣(ρ⊗n)′
∣∣ψ (n)

k

〉

=
∑
k,l

a
(n)
k b

(n)
l r

(n)
k

∣
∣
〈
φ

(n)
l

∣∣ψ (n)
k

〉∣
∣2. (A5)

The operator An has degenerated eigenvalues, which makes
its set of eigenvectors not unique, i.e., any linear combination
of two eigenvectors associated with the same eigenvalue is an
eigenvector itself. Thus, finding the basis {ψ (n)

k }, in which both
An and (ρ⊗n)′ are diagonal, seems to be a difficult problem
that depends on the particular form of ρ. So this approach is
not universal. However, now we can express An = P +

n − P −
n

in terms of the projectors onto the symmetric (P +
n ) and

antisymmetric (P −
n ) subspaces. From the above it follows

that

�n = tr[BnP
+
n (ρ(n))′P +

n ] − tr[BnP
−
n (ρ(n))′P −

n ]. (A6)

Moreover, we can see that

P ±
n (ρ(n))′P ±

n = P ±
n ρ(n)P ±

n . (A7)

Thus, we derive

�n = tr[BnP
+
n ρ(n)P +

n ] − tr[BnP
−
n ρ(n)P −

n ], (A8)

which corresponds to Eq. (10).
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[39] K. Lemr, A. Černoch, J. Soubusta, K. Kieling, J. Eisert, and
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