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We describe a direct method to determine the negativity of an arbitrary two-qubit state in experiments. The
method is derived by analyzing the relation between the purity, negativity, and a universal entanglement witness
for two-qubit entanglement. We show how the negativity of a two-qubit state can be calculated from just three
experimentally accessible moments of the partially transposed density matrix of a two-photon state. Moreover,
we show that the negativity can be given as a function of only six invariants, which are linear combinations
of nine invariants from the complete set of 21 fundamental and independent two-qubit invariants. We analyze
the relation between these moments and the concurrence for some classes of two-qubit states (including the X

states, as well as pure states affected by the amplitude-damping and phase-damping channels). We also discuss
the possibility of using the universal entanglement witness as an entanglement measure for various classes of
two-qubit states. Moreover, we analyze how noise affects the estimation of entanglement via this witness.
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I. INTRODUCTION

Quantum entanglement [1,2], which is an intrinsically and
fundamentally nonclassical effect, has attracted an enormous
number of works related to quantum information processing
and quantum engineering in the last two decades (for reviews
see, e.g., Refs. [3–5]). Although our understanding of quantum
entanglement is much deeper now, there are still many open
fundamental problems as listed, e.g., in Ref. [6]. Some
of these problems address the question of how to experi-
mentally detect and estimate entanglement of a given state
[7].

One could think that the most natural and simplest way to
measure the entanglement of an unknown state of ρ is to apply
quantum state tomography (QST). This approach enables the
reconstruction of ρ by postprocessing experimental data, and,
then, the calculation of arbitrary entanglement measures for ρ.
Indeed, various effective QST methods have been developed
[8], including those for the reconstruction of the polarization
states of two photons (for a recent comparison see Ref. [9]).
Nevertheless, this complete reconstruction requires to also
measure a large number of parameters, which are irrelevant for
the determination of entanglement. This number scales with
the square of the dimension of a measured state ρ. Moreover,
QST based on linear inversion often leads to unphysical
reconstructed states. Then, nonlinear methods (based, e.g.,
on maximum-likelihood estimation) have to be applied to
overcome this problem.

Thus, usually, entanglement is detected and quantified
by measuring entanglement witnesses [10] (for a review
see Ref. [4]). This approach corresponds to testing the
violations of classical inequalities. The operational useful-
ness of entanglement witnesses has been demonstrated in
numerous experimental (see, e.g., earlier experiments reported
in Refs. [11–14]) and theoretical works. The latter include
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approaches based on: polynomial moments [15–17], collective
entanglement witnesses [16,18–20], experimental adaptive
witnesses [21,22], and others (see, e.g., Refs. [23–27].

Some of such studies of entanglement witnesses were
focused on the quantitative description of entanglement (see,
e.g., recent Refs. [28–37] and a review [7] for older references).
For example, a lower bound on a generic entanglement
measure can be derived from the mean value of entangle-
ment witnesses based on the Legendre transform [38–40].
The estimation of the concurrence and/or negativity from
entanglement witnesses was studied in, e.g., Refs. [30,41–47].
In particular, the violation of a Bell inequality, which is
also an entanglement witness, can be used to estimate the
concurrence [48], the negativity [49], or the relative entropy of
entanglement (REE) [50]. A related problem is the estimation
of one entanglement measure from another entanglement
measure, e.g., the concurrence from negativity [45,51,52] or
the REE [53], the negativity from the REE [54], or vice
versa.

These approaches based on entanglement witnesses are
useful and efficient, but still their usage is limited, because
some information about the state should be known prior to its
measurement.

In this paper we study a universal entanglement witness
(UWE), which can be used as a sufficient and necessary test of
the entanglement of a two-qubit system. The UWE is defined
as the determinant of a partially transformed density matrix
det ρ̂� [4]. This witness can be given as a function of the
moments �n = tr[(ρ̂�)n] [55], which are directly measurable,
as recently described in Ref. [56] for a linear-optical setup.
The proposed setup is based on the experimental methods
described and referenced in Refs. [57–59].

Here we address the problem of applying the UWE to
quantify two-qubit entanglement. Namely, the question is
whether the UWE (or more precisely, its negative expectation
value) can be considered a good entanglement measure. We
will show that this is not the case for arbitrary two-qubit
states. However, we will identify various classes of states
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TABLE I. A survey on the relation between the concurrence C, negativity N , and universal entanglement witness W for selected subclasses
of the X states, where �x = (a,b,c,d,e) and gn = 1 − nf . Note that C and W can be determined, in some cases, by measuring only �3 and
(or) �2. However, in general, these entanglement measures can be obtained by measuring all the four moments of ρ̂� . The presented states of
various ranks R include: (Case 1) pure states, (2) rank-2 Bell-diagonal states, (3) phase-damped Bell states, (4) amplitude-damped pure states,
(5) degenerate amplitude-damped states, (6) rank-3 Bell-diagonal states, (7) pure states with multimode noise, and (8) Werner states (rank-4
Bell-diagonal states). The moments �4 for all these eight subclasses of the X states are given explicitly in Appendix A.

Case ρ̂R = ρ̂(�x) R �2 �3 W C

1

{
a = b = f = 0

|d| = √
ce

1 1 1 − 3
4 N 2 −N4

16 2|d| = N

2

{
a = b = f < 1

2

c = d = e = g2
2

2a 1
2 (N 2 + 1) 1

4 −N2

16 |g4| = N

3

⎧⎪⎨
⎪⎩

a = b = f = 0

e = c = 1
2

|d| < 1
2

2b 1
2 (N 2 + 1) 1

4 −N2

16 2|d| = N

4

⎧⎪⎨
⎪⎩

a = b = 0

f = 1 − c − e

|d| = √
ce

2b g2 + 2f 2
1 − 3

(
1 + C2

2

)
g1

+ 3g2
1 + 3C2

4

−C4

16

2|d|
= √

N 2 + 2f N

5

⎧⎪⎨
⎪⎩

b = 0

a = f = 1−c−e

2

|d| = √
ce > f

3 g4 + 6f 2
g3

2 + 2f 3

− 3
4 g4(C + 2f )2

−C(C+4f )(C+2f )2

16 2|d| − 2f

6

⎧⎪⎨
⎪⎩

a = b = f < 1
4

e = c = g2
2

|d| <
√

ce

3
C

8 (3C + 2)

+2|d|2 + 3
8

Eq. (A2) −C(C2+2C+1−16|d|2)
64

|g4|

7

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = f < |d|
b = 0

c = c′ + f

2

e = e′ + f

2

|d| = √
c′e′ − f

2

4 g2
3 + g3f + 5

2 f 2 Eq. (A3) Eq. (A4) 2|d| − 2f

8

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = f < 1
6

b = 0

c = e = g2
2

|d| = g4
2

4 N + 1
3 (1 − N )2

1
36 (−4N 3 + 3N 2

+ 6N + 4)
1
16 ( 1−N

3 − 1)3N |g6| = N

for which the UWE is indeed a good entanglement measure.
Moreover, as one of the main results of this paper, we will
demonstrate that the negativity can be given as a function
of the experimentally accessible moments �n. We will also
discuss how the imperfect measurements of �n deteriorate the
estimation of the negativity.

This paper is organized as follows: In Sec. II the UWE is
defined via experimentally accessible moments �n of a given
partially transposed density matrix. We also show the relation
between the entanglement witness and Makhlin’s invariants.
In Sec. III we present one of the main results of our paper,
which is the explicit formula of the negativity as a function
of the experimentally accessible moments �n. In Sec. IV
we demonstrate when the UWE can be considered a useful
entanglement measure. In Sec. V we show the relation between

the entanglement witness and the concurrence for an important
class of two-qubit states, namely the X states. Our results are
summarized in Sec. VI, as well as Tables I and II.

II. UNIVERSAL ENTANGLEMENT WITNESS AND
MAKHLIN INVARIANTS

Arguably, the simplest two-qubit separability condition
(Peres-Horodecki separability criterion [10,60]) can be for-
mulated as follows [4]: A two-qubit state ρ̂ is entangled if
and only if det ρ̂� < 0, where ρ̂� is the partially transposed
(marked by �) matrix ρ̂. This theorem can be easily shown
by recalling that the partially transposed matrix of an arbitrary
entangled two-qubit state has full rank and has exactly one
negative eigenvalue. Thus, one can introduce the UWE Ŵ for a
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TABLE II. The relation between the states from Table I and the
X states defined in Eq. (24). The correspondence is valid up to local
unitary transformations on two qubits.

Case p1 p2 p3 p4 θ1 θ2 θ3 θ4

1 0 0 1 0 0 0 acos
√

c 0

2 2f 0 g2 0 π

4 0 π

4 0

3 0 0 1
2 + |d| 1

2 − |d| 0 0 π

4
π

4

4 2f 0 g2 0 π

2 0 acos
√

c

g2
0

5 f f g2 0 π

4
π

4 acos
√

c

g2
0

6 2f 0 g2( 1
2 + |d|) g2( 1

2 − |d|) π

4 0 π

4
π

4

7 f f g3 f π

4
π

4 acos
√

2c−f

2g3

π

4

8 f f g3 f π

4
π

4
π

4
π

4

two-qubit state ρ̂ defined as an operator for which the expected
value is equal to det ρ̂� . This witness can also be given in terms
of the experimentally accessible moments �n = tr[(ρ̂�)n] as
follows [55]:

W ≡ det ρ̂� = 〈Ŵ 〉 := tr(Ŵ ρ̂⊗4)

= 1
24

(
1 − 6�4 + 8�3 + 3�2

2 − 6�2
)
. (1)

For convenience we call the UWE not only the observable Ŵ

but also its expectation value W . (This convention is also used
in, e.g., Ref. [61] and references therein.) In order to directly
measure the UWE one could perform joint measurements on
the four copies ρ̂⊗4 of a two-qubit state ρ̂ [55]. A direct and
efficient method for the measurement of 〈Ŵ 〉 has been recently
proposed for polarization qubits in a linear optical setup [56].
The witness Ŵ , contrary to a typical entanglement witness, is
invariant under local unitary operations, which follows from
the invariance of the moments of the partially transposed
density matrix that forms the witness. This invariance is a
key requirement of a good entanglement measure (see Sec. IV
and, e.g., Ref. [62]).

It is worth stressing that the moments �n, in Eq. (1) for n =
2,3,4, are not independent. To show the connection between
these moments, let us analyze them in terms of the correlation
matrix β̂, with elements βij = tr[(σ̂i ⊗ σ̂j )ρ̂], and the Bloch
vectors s and p, with elements si = tr[(σ̂i ⊗ σ̂0)ρ̂] and pj =
tr[(σ̂0 ⊗ σ̂j )ρ̂]. The matrices σ̂i for i = 1, 2, 3 are the Pauli
matrices, and σ̂0 is the single-qubit identity matrix. As shown
in Ref. [56], we can write the first four moments as

�1 = 1,

4�2 = 1 + x1,
(2)

16�3 = 1 + 3x1 + 6x2,

64�4 = 1 + 6x1 + 24x2 + x2
1 + 2x3 + 4x4,

where

x1 = I2 + I4 + I7, x2 = I1 + I12,
(3)

x3 = I 2
2 − I3, x4 = I5 + I8 + I14 + I4I7

are the functions of 9 out of the 18 Makhlin invariants
[63], i.e., I1 = det β̂, I2 = tr(β̂T β̂), I3 = tr(β̂T β̂)2, I4 =
s2, I5 = [sβ̂]2, I7 = p2, I8 = [β̂p]2, I12 = sβ̂p, and I14 =
eijkelmnsiplβjmβkn, where eijk is the Levi-Civita symbol.
The invariants are also a subset of 21 fundamental and
independent two-qubit invariants described by King and Welsh
in Ref. [64]. This demonstrates explicitly that, in general, in
order to measure the UWE one needs to measure these nine
fundamental physical quantities (invariants). Any function of
invariants is also an invariant. We can, therefore, introduce the
following six independent invariants that need to be measured
to estimate the values of moments �n for n = 2,3,4. These
invariants are

y1 = I2, y2 = I4, y3 = I7, y4 = I1 + I12,

y5 = I5 + I8 + I14, y6 = I3. (4)

This means that in order to quantify entanglement via the
UWE, one needs to measure exactly six instead of nine inde-
pendent quantities. The number of necessary measurements is
by 10 smaller than the number of measurements needed for
a full quantum-state tomography. We can conjecture that this
is the minimum number of independent measurements needed
for estimating the entanglement of an arbitrary two-qubit state.

III. NEGATIVITY VIA MOMENTS OF ρ̂�

In order to quantify the Peres-Horodecki separability cri-
terion [10,60], Życzkowski et al. [65] introduced a parameter
later referred to as negativity. Subsequently, Vidal and Werner
[66] proved that the negativity is an entanglement monotone,
and so can be used as an entanglement measure. The negativity
has an operational meaning as the entanglement cost under
operations preserving the positivity of partial transpose (PPT)
[67,68]. It can also be used as an estimator of entangled
dimensions, i.e., to estimate the number of entangled degrees
of freedom of two subsystems [69]. The negativity of a
two-qubit state ρ̂ is usually defined as

N = 2 max{0, − min[eig(ρ̂�)]}, (5)

in terms of the minimum (negative) eigenvalue λ ≡ −μ =
min[eig(ρ̂�)] (μ > 0) of the partially transposed density
matrix ρ̂� . The task of finding λ is usually not easy because
the operation of partial transposition is not physical, so this
operator can only be implemented approximately.

There is another approach based on measuring moments
�n = tr(ρ̂�)n of the partially transposed matrix ρ̂� of a
two-qubit state ρ̂. It has recently been shown in Ref. [56] that
all four first moments �n can be measured directly using at
most four copies of the investigated two-qubit state. This was
shown on the example of the measurement of a two-photon
polarization state by using a linear-optical setup. We note
that this approach of Ref. [56] can be generalized to other
implementations of qubits and various setups.

The first two moments �n are equivalent to the trace and
purity of ρ̂, i.e., �1 = 1 and �2 = p, respectively. An efficient
method for measuring the purity of an arbitrary polarization
state of two photons has been proposed recently in Ref. [59].
The higher-order moments �3 and �4 can be measured as
described in Ref. [56]. Let us also mention that, as long as there
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is some entanglement, ρ̂� has four nonzero eigenvalues, among
which only one is negative and equals to λ. This property holds
for an arbitrary two-qubit state [70].

Let us derive an expression for the negativity in terms of
the experimentally accessible moments �n for n = 1,2,3. The
principal invariants of the partially transposed density matrix
read

J1 = �1 = trρ̂� = λ1 + λ2 + λ3 − μ = 1, (6)

J2 = 1
2

(
�2

1 − �2
) = 1

2 [(trρ̂�)2 − tr(ρ̂�)2]
(7)

= λ1λ2 + λ2λ3 + λ3λ1 − μ(1 + μ),

J3 = det ρ̂� = −λ1λ2λ3μ, (8)

where λn for n = 1, 2, 3 are the positive eigenvalues of ρ�

and μ is the module of the negative eigenvalue. After simple
algebraic manipulations we derive

3∑
n=1

[
−λnμ

3 + 1
2�2λnμ + (

λ2
n − λn

)
μ2

− 1

2

(
2λ3

n − 2λ2
n + λn

)
μ − det ρ̂�

]
= 0. (9)

This sum can be directly calculated using the definition of
moments �n. As a result we obtain the following expression:

−3μ4 − 3μ3 + 3
2 (μ2 + μ)�2 − �3μ − 3

2μ2

− 3 det ρ̂� − 1
2μ = 0. (10)

Equation (10) has an important consequence, i.e., we can cal-
culate the negativity N after measuring �n for n = 1, 2, 3, 4.
As discussed in Ref. [56], measuring these four experimentally
accessible moments can be done more efficiently than perform-
ing full quantum state tomography. Equation (10) is a fourth
degree polynomial in N = 2μ, which after simplification reads

48 det ρ̂� + 3N4 + 6N3 − 6N2(�2 − 1)

−4N (3�2 − 2�3 − 1) = 0. (11)

In our opinion this is one of the main results of this work. We
can be sure that it has solutions if det ρ̂� < 0 (i.e., when the
state ρ̂ is entangled). The solutions can be found analytically
by applying the well-known Ferrari and Cardano formulas.
Equation (11) has four solutions, however there is only one real
solution where N > 0. Therefore, the value of the negativity
is uniquely defined by Eq. (11). We do not give these solutions
explicitly, as they are lengthy and can be easily obtained by
using a computer algebra system.

Unfortunately, the value of the negativity calculated from
Eq. (11) is very sensitive to the uncertainty of measuring �n.
This can be observed in Fig. 1, where the relation between
the theoretical and the experimentally measured values of the
negativity is depicted for several values of the maximal relative
uncertainties in estimating �n. Figure 1(b) suggests that if the
relative error is close to 1%, the noise level starts to be too high
for estimating the negativity with a reasonable precision in its
entire range. For uncertainty levels �10%, the measurement
method is not reliable for any value of N . Note that, in all

FIG. 1. The relation between the theoretical precise values Ntheory

and “experimental” noisy values Nexperiment of the negativity for 104

density matrices randomly generated in a Monte Carlo simulation. For
each density matrix, all these moments �n were calculated and then
a random noise δ�n ∈ [0,��n] was added. The maximal noise ��n

was set to (a) 10−3�n and (b) 10−2�n. This figure demonstrates that
the value of the experimentally estimated negativity is very sensitive
to noise, especially if this value is approaching 0.

cases, the level of the uncertainty in estimating the negativity
is the largest for the values of N ≈ 0.

IV. UNIVERSAL ENTANGLEMENT WITNESS AS AN
ENTANGLEMENT MEASURE

As shown in Fig. 2, measuring Ŵ is less prone to noise than
estimating the negativity.

It is convenient to use the rescaled value of 〈Ŵ 〉 defined as

w := max[0, − 16〈Ŵ 〉]. (12)

Now we explicitly describe that the UWE w satisfies the
following standard criteria for a good entanglement measure
(as listed in, e.g., Ref. [4]).

C1. The inequalities hold 0 � w(ρ̂) � 1, where w(ρ̂) = 0
for any unentangled state and w(ρ̂) = 1 for the Bell states.

C2. Any local unitary transformations of the form UA ⊗
UB do not change w(ρ̂) for any state ρ̂.

C3. An additional property: The witness w(|ψ〉) is simply
related to the entropy of entanglement for any pure state |ψ〉,
i.e., by a relation corresponding to the Wootters formula for
the entanglement of formation [71],

EF (w) = h

(
1

2

[
1 +

√
1 − √

w
])

, (13)
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FIG. 2. Same as in Fig. 1 but for the relation between the
theoretical (wtheory) and experimental (wexperiment) values of the UWE
w, given in Eq. (12). This figure demonstrates how the value of the
experimentally estimated witness is sensitive to noise.

where h(y) = −y log2 y − (1 − y) log2(1 − y) is binary en-
tropy. This property follows from the observation that

w(|ψ〉) = N4(|ψ〉) = C4(|ψ〉), (14)

where w(|ψ〉), N(|ψ〉), and the concurrence C(|ψ〉) are de-
fined by Eqs. (5), (12), and (22), respectively, where ρ is
replaced by |ψ〉〈ψ |. This corresponds to case 1 in Table I.

Unfortunately, in general, the following two important
properties do not hold for the witness w(ρ̂).

C4. A good entanglement measure E(ρ̂) should not in-
crease for any state ρ̂ and any local operations with classical
communication (LOCC). This property can be violated for
w(ρ̂) as shown in Appendix B.

C5. A good entanglement measure E(ρ̂) should be convex
under discarding information, i.e.,

∑
i piE(ρ̂i) � E(

∑
i pi ρ̂i).

In other words, one cannot increase E(ρ̂) by mixing states ρ̂i .
An example of the violation of this property for w(ρ̂) is given
in Appendix C.

Property C2 follows from the fact that the UWE can be
expressed as a function of local polynomial invariants [63].
For pure states, the UWE is equivalent to the so-called G

concurrence [55,72], which is a monotone under LOCC (C.3).
Thus, even if the properties C4 and C5 are not satisfied in
general, the witness w for two-qubit states is a useful parameter
for quantifying entanglement.

Moreover, the UWE w provides tight upper and lower
bounds for the negativity N (ρ̂) of an arbitrary two-qubit state
ρ̂ [55]:

f (w) � N � 4
√

w, (15)

where f (w) is the inverse of the polynomial w(N ) = N (N +
2)3/27 on the interval N ∈ [0,1]. Explicitly, the lower bound
is given by [56]

f (w) = 1
2

(
−3 + √

z +
√

3 − z + 2√
z

)
, (16)

where z = 1 − y + x, y = 36w/x, and

x = 3
3

√
2
√

w2(16w + 1) − 2w. (17)

We show in Table I that the states saturating the upper and
lower bounds are pure (case 1) and Werner’s states (case 8)
[73], respectively.

The boundary states can be found in the set of the so-called
X states. These states can be simply manipulated [50] and
are universal in the sense that an arbitrary two-qubit state
can be converted, by a unitary transformation, into its X-state
counterpart [74]. Moreover, the X states appear as solutions in
many simple physical models in, e.g., the XYZ Heisenberg
model [75,76] or decaying entangled qubits coupled to a
common reservoir exhibiting the effects of sudden death [77]
and rebirth [78] of entanglement. The name of these states
becomes clear when its density matrix ρ̂ is given explicitly in
the standard computational basis, i.e.,

ρ̂ =

⎛
⎜⎝

a 0 0 b

0 c d 0
0 d∗ e 0
b∗ 0 0 f

⎞
⎟⎠ . (18)

The partial transpose with respect to the second subsystem of
two-qubit density matrix ρ̂ reads

ρ̂� =

⎛
⎜⎝

a 0 0 d

0 c b 0
0 b∗ e 0
d∗ 0 0 f

⎞
⎟⎠ . (19)

Now, it follows from the Laplace expansion that the UWE for
the X states can be given as a product of determinants,

W = det

(
a d

d∗ f

)
det

(
c b

b∗ e

)

= det

(
a |d|
|d| f

)
det

(
c |b|
|b| e

)
. (20)

This is a four-dimensional volume (a product of two areas).
We can expand it further to obtain

W = [(|d| −
√

af )(|d| +
√

af )][(|b| − √
ce)(|b| + √

ce)].
(21)

This corresponds to the volume of a four-dimensional box.
Note that the length of its longest negative edge (the longest
edge of negative orientation) corresponds to the negativity.
However, the expression for the negativity is not simple
because it requires finding the smallest eigenvalue of ρ̂� , i.e.,
factorizing det ρ̂� in another way.

V. UNIVERSAL ENTANGLEMENT WITNESS
AND CONCURRENCE

Remarkably, the largest negative factor in the expression for
the UWE, given by Eq. (21), for the X states, corresponds to
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another popular entanglement measure. Namely, the Wootters
concurrence [71]:

C(ρ̂) = max

⎛
⎝0,2λmax −

∑
j

λj

⎞
⎠ , (22)

where λ2
j = eig[ρ̂(σ̂2 ⊗ σ̂2)ρ̂∗(ρ̂2 ⊗ σ̂2)]j and λmax =

maxj λj . The witness W can be interpreted as a geometric
mean of all the lengths in Eq. (21). Thus, the UWE is not a
good measure of entanglement, because it underestimates the
available entanglement. However, the UWE can be used as a
measure of entanglement if all the edges have the same length
and the volume is negative. Additional information about the
relation between the UWE and concurrence for two-qubit
states can be found in Ref. [79].

Let us note that there are some constrains on the matrix
elements of the X states, e.g., the trace of the partially
transposed matrix equals 1. From this observation follows that
a + c + e + f = 1. Other constrains are imposed by the fact
that ρ̂ is positive semidefinite, i.e., |d| � √

ce and |b| �
√

af .
By recalling some properties of density matrices, we can
deduce that the UWE is a monotonic function of a proper
entanglement measure, i.e., the concurrence. The concurrence
is given by the following simple expression for X states [80]:

C = 2 max(0,|d| −
√

af ,|b| − √
ce). (23)

One can see that the UWE is related to both the negativity
and concurrence for the whole class of the X states. For some
subclasses of the X states, the negativity and concurrence are
equivalent. This happens for pure states, rank-2 Bell-diagonal
states, phase-damped states, Bell states with isotropic noise,
(i.e., the Werner [73] and Werner-like [81] states) (see cases
1, 2, 3, and 8 in Table I, respectively). For the amplitude-
damped states (case 4 in Table I) with the damping parameter
p = 1 − f , the relation is also simple as C =

√
N2 + 2f N

[50], although it also involves the damping parameter p.
In Table I we present a survey of the selected subclasses

of the X states of various ranks for which the UWE (or
a function of only �2 and �3) can be considered as an
entanglement measure. In each case the UWE is proportional
to a fourth-degree (or lower-degree) polynomial of N or C.
For the states given in cases 1, . . . ,4, and 8, the witness W

is a good measure of entanglement because it is a function
of N with constant coefficients. The other states depend on
an additional variable. These states include the degenerate
amplitude-damped states (case 5), rank-3 Bell-diagonal states
(case 6), and pure states with isotropic noise (case 7). For these
states, by measuring Ŵ does not provide enough information
to determine the entanglement measures. However, for cases
1, 2, 3, and 8 listed in Table I, it is possible to determine C and
N by measuring solely �2 and �3. The states of the largest
and smallest ranks are the boundary states for N versus C. The
results are also visualized in Fig. 3.

Note that we focus only on the states that depend on at most
three independent variables. This is because, by allowing more
freedom, we would have to measure all the first four moments
of ρ̂� to estimate the entanglement. This would give us no
benefit with respect to the approach presented in the previous
section. The states presented in Table I may appear rather

FIG. 3. Relation between the negativity N and the universal
entanglement witness w for various states as defined in Table I. (a)
The relations Nn(w) for states, given in the nth case in Table I. (b), (c),
and (d) The shaded areas depict the relation Nn(w) for two-parameter
states given in the cases for n = 4, 5, 6, respectively. The covered
area lies between the dashed curve corresponding to the lower bound
f (w), defined in Eq. (16), and the solid curve corresponding to the
upper bound 4

√
w. In all these panels, the shaded areas do not cover the

whole space between the boundaries. The whole area is covered only
in case 7 which, for brevity, is not presented here. Strictly speaking,
the whole area is not covered in panel (c).

specific. Note that X states must be described, in general, by
nine parameters (see, e.g., Ref. [82]). However, these states
represent an infinite set of states that can be generated by
local unitary transformations that do not change the entangle-
ment. In other words, by applying local unitary operations,
we can always obtain the following rank-specific real X
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states [82]:

ρ̂1 ≡ φ+(θ1),

ρ̂2a ≡ p1φ
+(θ1) + p3ψ

+(θ3),

ρ̂2b ≡ p1φ
+(θ1) + p2φ

−(θ2), (24)

ρ̂3 ≡ p1φ
+(θ1) + p2φ

−(θ2) + p3ψ
+(θ3),

ρ̂4 ≡ p1φ
+(θ1) + p2φ

−(θ2) + p3φ
+(θ3)

+p4ψ
−(θ4),

which are incoherent mixtures of pure states

φ±(θ ) =

⎛
⎜⎜⎝

cos2 θ 0 0 ± 1
2 sin (2θ )

0 0 0 0
0 0 0 0

± 1
2 sin (2θ ) 0 0 sin2 θ

⎞
⎟⎟⎠ (25)

and

ψ±(θ ) =

⎛
⎜⎜⎝

0 0 0 0
0 cos2 θ ± 1

2 sin (2θ ) 0
0 ± 1

2 sin (2θ ) sin2 θ 0
0 0 0 0

⎞
⎟⎟⎠ , (26)

with weights pi > 0 (
∑

i pi = 1). Note that the states, given
in Eqs. (25) and (26), reduce to the Bell states for θ = π/4.
One should be careful not to accidently reduce the rank of a
given state by choosing some specific values of θ . The relation
between the X states from Table I and the states defined in
Eq. (24) is presented in Table II.

VI. CONCLUSIONS

We have described a direct operational method for de-
termining the negativity of an arbitrary two-qubit state. We
have derived the method by analyzing the relation between
the purity, negativity, and a universal entanglement witness
for two-qubit entanglement. In particular, we have expressed
the negativity as a function of six invariants which are linear
combinations of nine from the complete set 21 fundamental
and independent two-qubit invariants listed, e.g., in Ref. [64].

We have demonstrated how to measure the negativity of
a two-photon polarization state by measuring three experi-
mentally accessible moments �n of the partially transposed
density matrix of a two-photon state. We pointed out that this
approach can be more practical than directly estimating the
negativity, which is sensitive even to a low-level noise.

We also discussed the possibility of using the universal
entanglement witness or lower moments of ρ̂� as a proper en-
tanglement measure for some classes of states. In particular, we
demonstrated their relation to the negativity and concurrence
for the X states.

It is worth noting that the UWE is not necessarily the
least-error sensitive entanglement measure, which can be
constructed from the moments of the partially transposed
density matrix of a given state. It is possible that a better
two-qubit entanglement measure exists that can be measured
as a function of �n for n = 2,3,4.

We hope that these results can pave the way for direct
and efficient methods for measuring two-qubit quantum
entanglement.
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APPENDIX A: MOMENTS �3 AND �4 FOR SOME
STATES IN TABLE I

Here we show explicitly det ρ̂� and the moments �3 and �4

of the partially transposed density matrix ρ̂� for the selected
subclasses of the X states given in Table I. These moments
are given as a function of either the concurrence C or the
negativity N .

The moments �
(n)
4 for the nth case (subclass) of the X states

analyzed in Table I are the following:

�
(1)
4 =

(
1 − N2

2

)2

,

�
(2)
4 = �

(3)
4 = 1

8 (N4 + 1),

�
(4)
4 = C4

4
− g2C

2 + g4
1 + f 4,

�
(5)
4 = [g2

2 − 1
2 (C + 2f )2]2 + 3(Cf + 2f 2)2 + 2f 4,

�
(6)
4 = 2−7[9C4 + 4C3 + 6(24d2 + 1)C2

+ 4(48d2 + 1)C + 28d4 + 96d2 + 9],

�
(7)
4 = − 3

4C2g4 − 3
2f 3 − 3fg4C + 63

4 f 2 − 15
2 f + 1,

�
(8)
4 = 1

108 (7N4 + 2N3 + 6N2 + 8N + 4). (A1)

where gn = 1 − nf , while d and f are the elements of ρ̂, given
in Eq. (18). The moment �3 for the X state in case 6 reads

�3 = 1
32 [3C(1 − C2 + C + 16|d|2) + 48|d|2 + 5]. (A2)

The moment �3 and det ρ̂� for the X states in case 7 read

�3 = 1
4C4 + 2f C3 + 3

4

(
5f 2 − 6f − 4

3

)
C2 + 289

8 f 4

+ f (f 2 − 18f + 4)C − 89
2 f 3 + 67

2 f 2 + g10, (A3)

det ρ̂� = − 1
16C4 − 1

2f C3 − 1
16f (15f + 2)C2

− 1
4f 2(2 − f )C. (A4)

APPENDIX B: VIOLATION OF THE LOCC CONDITION

Here we show that the LOCC criterion C4, characterizing
a good entanglement measure, can be violated for the UWE.
Thus we analyze the following two-qubit Bell-diagonal state:

ρ̂ = pψ−

(
π

4

)
+ (1 − p)φ+

(
π

4

)
, (B1)
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for which w(ρ̂) can increase under some local operations, as
shown explicitly below.

As an example of an LOCC operation, we apply the
“twirling” operation [83], where a random SU(2) rotation is
performed on each qubit. This twirling changes ρ̂ into the
Werner state

ρ̂ ′ = pψ−

(
π

4

)
+ 1

3
(1 − p)

[
φ+

(
π

4

)
+ φ−

(
π

4

)
+ ψ+

(
π

4

)]

= qψ−

(
π

4

)
+ 1

4
(1 − q)I, (B2)

which is a mixture of the singlet state ψ−(π
4 ), with the weight

q = (4p − 1)/3, and the maximally mixed state as given by
the four-dimensional identity operator I . Consequently, for
p = (3

√
17 − 7)/8, we observe the largest violation of the

LOCC condition for this particular state ρ̂. This is because
w(ρ̂) = 0.11719 and w(ρ̂ ′) = 0.16294, hence w(ρ̂) < w(ρ̂ ′).

It is worth noting that if these twirling operations are applied
to the concurrence, negativity, or the REE, then property C4 is
always satisfied. Anyway, the twirling operations can be used
to show that the Werner states determine the lower bounds of
the concurrence for a given value of the negativity [51], the

REE vs negativity [53,84], or the REE vs the Bell nonlocality
[50].

APPENDIX C: VIOLATION OF THE
CONVEXITY CONDITION

Here we show that the convexity criterion C5, which is
another important condition for a good entanglement measure,
can also be violated for the UWE and some states.

Thus, let us consider a mixture ρ̂ = (ρ̂1 + ρ̂2)/2 of the
following two-qubit density matrices:

ρ̂1 = 1

2

[
φ+(0) + ψ+

(
π

8

)]
, (C1)

ρ̂2 = 1

2

[
φ+(0) + ψ−

(
5π

8

)]
. (C2)

For these states, the convexity condition should imply that

w(ρ̂) � 1
2w(ρ̂1) + 1

2w(ρ̂2). (C3)

However, the relevant values of the UWE read w(ρ̂1) = 2−6,
w(ρ̂2) = 2−6, and w(ρ̂) = 2−5. It is seen that w(ρ̂1) + w(ρ̂2) =
w(ρ̂). Thus, the convexity condition (C3) is clearly violated
because w(ρ̂) � 1

2w(ρ̂) for w(ρ̂) = 1
32 .
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