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The nonclassicality, entanglement, and dimensionality of a noisy twin beam are determined using a
characteristic function of the beam written in the Fock basis. One-to-one correspondence between the negativity
quantifying entanglement and the nonclassicality depth is revealed. Twin beams, which are either entangled
or nonclassical (independent of their entanglement), are observed only for the limited degrees of noise, which
degrades their quantumness. The dimensionality of the twin beam quantified by the participation ratio is compared
with the dimensionality of entanglement determined from the negativity. Partitioning of the degrees of freedom
of the twin beam into those related to entanglement and to noise is suggested. Both single-mode and multimode
twin beams are analyzed. Weak nonclassicality based on integrated-intensity quasidistributions of multimode
twin beams is studied. The relation of the model to the experimental twin beams is discussed.
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I. INTRODUCTION

The question whether a given state cannot be described
within a classical theory has been considered one of the most
serious since the early days of quantum physics [1–3] (for a
review see, e.g., Ref. [4]). Nonclassicality and entanglement,
which is one of the nonclassicality manifestations, are the
most important properties of optical fields studied in quantum
optics. Such fields have no classical analogs, and as such they
have been found interesting for many reasons. Nonclassical
properties of such fields have been found useful both for
elucidating the principles of quantum mechanics and in
various applications including, e.g., quantum information
processing [5], quantum metrology [6–8], and highly sensitive
measurements [9].

From both the theoretical and the experimental points of
view, the nonlinear process of parametric down-conversion, in
which photon pairs are generated, has played an important
role here from the beginning of investigation [4,10–12].
Its individual photon pairs have been exploited in many
fundamental experiments testing nonclassical behavior pre-
dicted by quantum physics [13,14]. It has also allowed the
generation of more intense fields having their electric-field
amplitude quadratures squeezed below the vacuum level
[15–17], exhibiting sub-shot-noise correlations [18,19] or
having sub-Poissonian photon-number statistics [20–22].

In quantum optics, the definition of nonclassicality is based
upon the Glauber-Sudarshan P representation [11,23,24]
of the statistical operator of a given field. The commonly
accepted formal criterion for distinguishing nonclassical states
from classical ones is expressed as follows [10,11,25,26]:
A quantum state is nonclassical if its Glauber-Sudarshan P

function fails to have the properties of a probability density.
Alternatively, several operational criteria for nonclassicality of
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either single-mode [25–27] or multimode [28–30] fields have
been revealed. Their derivations are based either on field’s
moments [28,30,31] or on direct reconstruction of quasidistri-
butions of integrated intensities [32–34]. Also, criteria derived
from the majorization theory have been found [35,36].

Entanglement (or inseparability) is a special nonclassi-
cal property that describes quantum correlations among (in
general) several subsystems that cannot be treated by the
means of classical statistical theory [37]. Various approaches
have been developed for discrete and continuous variables
to reveal entanglement. This property has been exploited
in suggesting an entanglement criterion and the related
entanglement measure (referred to as the negativity) based
upon the partial transposition of a statistical operator [38–41].
Another approach has been based on the violation of the
Bell inequalities written for different mean values including
the measurement on both parts of a bipartite system [42].
Also, a method using positive semidefinite matrices of fields’
moments of different orders [43,44] has been found to be
very powerful. We would like to stress at this point that
entanglement is a very crucial tool in today’s quantum
information processing.

In this contribution, we study nonclassicality by applying
the Lee nonclassical depth [45] as well as entanglement via
the negativity [40,41] for (in general) noisy twin beams of
different intensities. Such fields occur under real experimental
conditions in which a nonlinear crystal generates both photon
pairs and individual single photons (noise). Nevertheless, the
signal and idler fields together form a bipartite quantum
system. We note that entanglement and nonclassicality of twin
beams generated by down-conversion seeded by thermal light
have been analyzed in Refs. [46–48]. In this case, noise present
in the incident thermal fields participates in the nonlinear
process and generation of photon pairs. This weakens its
detrimental effect on entanglement and nonclassicality of twin
beams and allows us to have entangled twin beams with a
larger amount of noise.
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Here we also study the problem of entanglement dimension
via the negativity N for general twin beams and the Schmidt
number K for noiseless twin beams in a pure state. Namely,
we estimate how many degrees of freedom of two fields
comprising a twin beam are entangled based on the results
of Ref. [49] for axisymmetric states. On the other hand,
the participation ratio Rs [50] determined from the reduced
statistical operator ρ̂s of the signal (or idler) field gives the
number of degrees of freedom in this field serving to describe
both entanglement and noise. It varies from Rs = 1 (for a
pure state ρ̂s) to Rs = d = dim(ρ̂s) for the completely mixed
state ρ̂s = I/d. We note that the participation ratio Rs gives
an effective number of states in the mixture ρ̂s implied by the
property that it is a lower bound for the rank of ρ̂s. Moreover,
the logarithm of R is the von Neumann–Renyi entropy of
second order [50]. The inverse of the participation ratio is
referred to as the purity (or linear entropy). Various methods
for direct measuring the Schmidt number K (even without
recourse to quantum tomography) were proposed for noiseless
twin beams (see, e.g., Refs. [51–55]). The method of Ref. [53]
was recently realized experimentally [56]. We note that the
negativity can also be measured without applying quantum
tomography as described, e.g., for two polarization qubits
using linear optical setups [57,58].

The paper is organized as follows. In Sec. II, the model of
parametric down-conversion providing an appropriate statis-
tical operator of a twin beam is presented. Entanglement of
the twin beam is addressed in Sec. III using the negativity.
The nonclassical depth is introduced in Sec. IV to quantify
nonclassicality. The relation between the negativity and the
nonclassical depth is also discussed in Sec. IV. The dimen-
sionality of a twin beam described by the participation ratio
together with the entanglement dimensionality described by
the negativity is analyzed in Sec. V. Properties of M-mode
twin beams are discussed in Sec. VI. Section VII is devoted
to experimental multimode twin beams containing also noise
embedded in independent spatiotemporal modes. Conclusions
are drawn in Sec. VIII.

II. QUANTUM MODEL OF A TWIN BEAM

To describe the generation of a single-mode twin beam by
parametric down-conversion, we adopt the approach based
on the Heisenberg equations derived from the appropriate
nonlinear Hamiltonian Ĥint [11],

Ĥint = −�gÂ1Â2 exp(iωt − iφ) + H.c., (1)

where Â1 (Â†
1) and Â2(Â†

2) represent the annihilation (creation)
operators of the signal and idler field, respectively, and g is a
real coupling constant that is linearly proportional both to the
quadratic susceptibility of a nonlinear medium and to the real
pump-field amplitude. The interaction time is denoted t , ω (φ)
is the pump-field frequency (phase), and ω1 and ω2 stand for
the signal- and idler-field frequencies, respectively. The law of
energy conservation provides the relation ω = ω1 + ω2. H.c.
is the Hermitian conjugated term. In a real nonlinear process,
also noise occurs. It can be described by the Langevin forces
L̂ belonging to a reservoir of chaotic oscillators with mean
number of noise photons 〈nd〉.

The Heisenberg-Langevin equations corresponding to the
Hamiltonian Ĥint are written as

dÂ1

dt
= −(iω1 + γ1)Â1 + igÂ

†
2 exp(−iωt + iφ) + L̂1,

(2)
dÂ2

dt
= −(iω2 + γ2)Â2 + igÂ

†
1 exp(−iωt + iφ) + L̂2,

where the constant γ1 (γ2) describes damping in the signal
(idler) field. The Langevin operators L̂i (for i = 1,2) have the
properties

〈L̂i〉 = 〈L̂†
i 〉 = 0, 〈L̂†

i L̂j 〉 = 2γj 〈nd〉δij ,
(3)

〈L̂iL̂
†
j 〉 = 2γj (〈nd〉 + 1)δij ,

where δij stands for the Kronecker symbol.
Using the interaction representation [Âj (t) =

aj (t) exp(−iωj t)] and neglecting damping together with
the Langevin forces, the solution of Eq. (2) attains the form

â1(t) = â1(0)u(t) + iâ
†
2(0)v(t) exp(iφ),

(4)
â2(t) = â2(0)u(t) + iâ

†
1(0)v(t) exp(iφ),

in which u(t) = cosh(gt) and v(t) = sinh(gt).
Statistical properties of the twin beam are then described

by the normal characteristic function CN defined as

CN (β1,β2) = Tr[ρ̂ exp(β1â
†
1 + β2â

†
2) exp(−β∗

1 â1 − β∗
2 â2)],

(5)
where Tr denotes the trace. Using the solution given in Eq. (4),
the normal characteristic function CN attains the Gaussian
form [59],

CN (β1,β2) = exp[−(|β1|2B1 + |β2|2B2) + D12β
∗
1 β∗

2

+D∗
12β1β2], (6)

in which β1 and β2 denote independent complex variables. For
the undamped and noiseless case, we have D12 = 〈�â1�â2〉.
Also, the mean number Bp of the generated photon pairs is
determined as Bp = 〈�â

†
1�â1〉 = 〈�â

†
2�â2〉. When damping

and noise are also considered [59], the parameters Ba (for
a = 1,2) contain additional noise contributions characterized
by the parameters Bs and Bi, i.e., B1 = Bp + Bs and B2 =
Bp + Bi. Whereas the parameter Bp gives the mean number of
photon pairs, the parameters Bs and Bi correspond to the mean
number of noise photons coming from the signal- and idler-
field reservoirs, respectively. On the other hand, the parameter
D12, describing mutual correlations between the signal and
the idler fields, is not influenced by the noise since |D12|2 =
Bp(Bp + 1).

The statistical operator ρ̂ of the twin beam then acquires
the following form [11]:

ρ̂ = 1

π2

∫
d2β1d

2β2CA(β1,β2) : exp

⎛
⎝ 2∑

j=1

âj β
∗
j − â

†
jβj

⎞
⎠ : .

(7)
In Eq. (7), CA(β1,β2) = CN (β1,β2) exp(−|β1|2 − |β2|2) de-
notes an antinormal characteristic function and the symbol ::
means normal ordering of field operators.
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Performing integration in Eq. (7) we express the statistical
operator ρ̂ in the form

ρ̂ = 1

K̃
: exp

[
− B̃2

K̃
â
†
1â1− B̃1

K̃
â
†
2â2+|D12|

K̃
(â1â2 + â

†
1â

†
2)

]
: ,

(8)

where K̃ = B̃1B̃2 − |D12|2. The parameters B̃a introduced in
Eq. (8) are related to antinormal ordering of field operators
and are given as B̃a = Ba + 1 with a = 1,2. Decomposing the
statistical operator ρ̂ in the Fock-state basis we finally arrive
at the formula

ρij,kl =
∞∑

n=0

n∑
p=0

p∑
r=0

r∑
t=0

(−1)n−r B̃
n−p

2 B̃
p−r

1 K̃−n−1

(n − p)!(p − r)!

× |D12|r
(r − t)! t!

〈ij |â†n−p+t

1 â
†p−r+t

2 â
n−p+r−t

1 â
p−t

2 |kl〉.
(9)

Direct inspection of Eq. (9) for the matrix elements of the
statistical operator ρ̂ written in Eq. (9) reveals that all nonzero
elements can be parameterized by only three indices,

ρi,j,i+d,j+d = 1

K̃

√
(i + d)!

i!

(j + d)!

j !

max(i,j )∑
m=0

Ci
mCj

m

× m!

(m + d)!
X

j−m

1 Xi−m
2

( |D12|
K̃

)d+2m

, (10)

assuming d � 0. Moreover, ρij,i+d,j+d = ρi+d,j+d,i,j , Xa =
1 − B̃a/K̃ with a = 1,2, and Ci

m and C
j
m denote the binomial

coefficients.

III. NEGATIVITY OF THE TWIN BEAM

The negativity N of a mixed bipartite system defined on the
basis of the Peres-Horodecki criterion for a partially transposed
statistical operator [38,39,41] is useful for quantifying the
entanglement of the twin beam. It can be expressed as

N (ρ̂) = ||ρ̂
||1 − 1

2
(11)

using the trace norm ||ρ
||1 of the partially transposed statisti-
cal operator ρ
 . The negativity essentially measures the degree
at which ρ
 fails to be positive. As such it can be regarded
as a quantitative version of the Peres-Horodecki criterion for
separability [38,39]. According to Eq. (11), the negativity
N is given as the absolute value of the sum of the negative
eigenvalues of ρ
 . It vanishes for separable states. It is worth
noting that the negativity N is an entanglement monotone and
so it can be used to quantify the degree of entanglement in
bipartite systems. Moreover, the negativity does not reveal
bound entanglement (i.e., nondistillable entanglement) in
systems more complicated than two qubits or qubit-qutrit [37].

To determine the negativity N we consider the eigenvalue
problem for the partially transposed statistical operator ρ̂
 .
The statistical operator ρ̂
 expressed in the Fock-state basis
attains a characteristic block structure. The smallest block has
dimension 2 and each successive block has dimension larger
by 1. For a given M one has a block of dimension M + 1. Such

a block represents a matrix of M + 1 isolated states; the sum
of indices of their statistical operators equals 2M ,

ρ̂

M =

⎛
⎜⎝

ρ0 M,0 M ρ0 M−1,1 M . . . ρ0 0,M M

ρ1 M,0 M−1 ρ1 M−1,1 M−1 . . . . . .

. . . . . . . . . . . .

ρM M,0 0 . . . . . . ρM 0,M 0

⎞
⎟⎠ . (12)

It can be shown that eigenvalues of a block of dimension
M + 1 can be expressed as νM

+ ,νM−1
+ ν−, . . . ,ν+νM−1

− ,νM
−

using the eigenvalues ν+ and ν− of a block with
dimension 2:

ν± = 1 − 1

2K̃
(B̃1 + B̃2 ∓

√
(B̃2 − B̃1)2 + 4|D12|2). (13)

The negative eigenvalues can only be those containing odd
powers of ν−. They form a geometric progression whose
elements can be summed to arrive at the formula for the
negativity N :

N = 1

2

3(B̃1 + B̃2) +
√

(B̃1 − B̃2)2 + 4|D12|2 − 4K̃ − 2

4K̃ − 2(B̃1 + B̃2) + 1
.

(14)
Expressing parameters B̃1, B̃2, and |D12|2 in Eq. (14) in terms
of parameters Bp, Bs, and Bi, we arrive at the formula

N = {2Bp − (Bs + Bi)(4Bp + 1) − 4BsBi

+
√

(Bs − Bi)2 + 4Bp(Bp + 1)}
× {4(Bs + Bi)(2Bp + 1) + 8BsBi + 2}−1. (15)

Equation (15) simplifies considerably for noiseless twin
beams:

N = Bp + √
Bp(Bp + 1). (16)

According to Eq. (16), all noiseless twin beams are
entangled. The more intense the noiseless twin beams are, the
more entangled the signal and idler fields are (see Fig. 1). The

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.41.4

Bp

N

FIG. 1. (Color online) Negativity N as a function of the mean
photon-pair number Bp for noiseless twin beams (i.e., Bs = Bi = 0)
according to Eq. (16).
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FIG. 2. (Color online) Negativity N , given in Eq. (15), as a
function of the mean noise photon numbers Bs and Bi in the signal and
idler modes, respectively, assuming the mean photon-pair number Bp

equal to 0.5 [bottom, light-grey (yellow) area], 1 [grey (green) area],
2 [dark-grey (blue) area], and 4 [top, black area]. The larger Bp, the
larger the negativity N .

presence of noise in a twin beam can even completely destroy
entanglement, as the analysis of Eq. (15) shows. Indeed, the
condition N > 0 for entanglement can be rewritten using
Eq. (15) as follows:

Bp[1 − (Bs + Bi)] > BsBi. (17)

Condition (17) cannot be fulfilled for any value of Bp provided
that Bs + Bi � 1. Thus, the twin beam can be entangled only
when

Bs + Bi < 1 and Bp >
BsBi

1 − (Bs + Bi)
. (18)

The behavior of the negativity N of noisy twin beams
dependent on the noise parameters Bs and Bi is illustrated
in Fig. 2 for several values of the mean photon-pair number
Bp. It holds in general that the greater the value of the mean
photon-pair number Bp, the greater the value of the negativity
N . This can be explained as follows. The more intense twin
beams, with their thermal statistics, are effectively spread over
a larger number of the Fock states. This naturally results in the
larger effectively populated Hilbert spaces used to describe
the entanglement. The greater value of the negativity N

means a greater effective number of the paired modes building
the entanglement, i.e., a greater value of the entanglement
dimensionality, as defined in Sec. V. Also, the greater the
value of the mean photon-pair number Bp, the larger the
amount of overall noise Bs + Bi acceptable in an entangled
twin beam (see Fig. 3). The curves plotted in Fig. 3 indicate
that entanglement is more resistent to noise when the noise
is distributed in the signal and idler fields asymmetrically.
We note that separable states (i.e., with N = 0) contain, in
general, paired, signal, and idler noisy contributions. However,
the noisy contributions are sufficiently strong to suppress the
“entangling power” of the photon-pair contribution and so the

FIG. 3. (Color online) Curves giving the boundaries between
entangled and separable twin beams and determined according to
Eq. (18) plotted in the plane spanned by the mean noise photon
numbers Bs and Bi assuming the mean photon-pair number Bp equal
to 0.01 [dotted (red) curve], 0.1 [dash-dotted (yellow) curve], 0.5
[dashed (green) curve], 2 [long-dashed (blue) curve], and 100 (solid
black curve). Entangled states are localized in the lower-left corner
of the plane. The larger Bp, the larger the area containing entangled
states.

state effectively behaves as a classical statistical mixture of the
signal and idler fields.

The decomposition of the partially transposed statistical
operator ρ̂
 into blocks in its matrix representation and the
fact that a block (subspace) with dimension M + 1 describes
only states with up to M photons in the signal (and also idler)
field can be used to define the distribution dN of the negativity
N fulfilling the normalization condition

∞∑
M=1

dN (M) = N. (19)

For a given M , the element dN (M) of this distribution is given
as the sum of the absolute values of the negative eigenvalues
belonging to the block of dimension M + 1. The distribution
dN of the negativity provides insight into the internal structure
of entanglement. It tells us how entanglement is distributed in
the Liouville space of statistical operators. Typical distribu-
tions dN of the negativity for noiseless as well as noisy twin
beams are plotted in Fig. 4. A teeth-like structure occurs for
smaller numbers M in noiseless twin beams. Noise tends to
suppress this structure, as is evident from the comparison of
the distributions dN plotted in Figs. 4(a) and 4(b). We note that
the densities of the negativity have already been introduced for
bipartite entangled states composed of a qubit and continuum
of states [60,61] as well as two continua of states.

IV. NONCLASSICAL DEPTH OF THE TWIN BEAM

To quantify nonclassicality of the twin beam we apply
the nonclassical depth τ [45] derived from the threshold
value sth of the ordering parameter at which the joint
signal-idler quasidistribution of integrated intensities becomes
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FIG. 4. (Color online) Distribution dN of negativity N given in
Eq. (19) assuming Bp = 2 and (a) Bs = Bi = 0 and (b) Bs = Bi =
0.1. Note that −dN (M) corresponds to the sum of all the negative
eigenvalues for the (M + 1)–dimensional block of the partially
transposed statistical operator ρ̂
 . Thus, dN (M) shows the internal
structure of entanglement in the Liouville space.

non-negative [34,59]. We adopt the definition τ = (1 − sth)/2.
We note that the joint signal-idler quasidistribution of inte-
grated intensities attains negative values for 1 � s > sth for
which τ > 0. The threshold value sth can easily be obtained
from the condition 〈[�(Ws − Wi)]2〉 = 0, which determines
the point of the transition between quantum and classical
single-mode twin beams [34]. This results in the following
formula for the nonclassical depth τ :

τ = 1
2 [

√
(Bs − Bi)2 + 4Bp(Bp + 1) − 2Bp − Bs − Bi)].

(20)
Assuming noiseless twin beams, Eq. (20) simplifies to

τ = √
Bp(Bp + 1) − Bp. (21)

According to Eq. (21), all noiseless twin beams are non-
classical. The greater the mean photon-pair number Bp, the

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Bp

τ

FIG. 5. (Color online) Nonclassical depth τ given in Eq. (21) as
it depends on the mean photon-pair number Bp for noiseless twin
beams, i.e., Bs = Bi = 0.

greater the value of the nonclassical depth τ (see Fig. 5).
This depth τ reaches its greatest value, 1/2, in the limit of an
infinitely intense twin beam (Bp → ∞). We note that τ = 1/2
corresponds to symmetrical ordering of the field operators.

On the other hand, and according to Eq. (20), noise only
degrades nonclassical behavior of a twin beam, as documented
in Fig. 6. If the noise is equally distributed in the signal and
idler fields (Bs = Bi), the nonclassical depth τ determined
along Eq. (20) gives the mean number Bs + Bi of noise photons

FIG. 6. (Color online) Nonclassical depth τ given in Eq. (20) as
a function of the mean noise photon numbers Bs and Bi for the mean
photon-pair number Bp equal to 0.1 [bottom, light-grey (yellow) area],
0.5 [grey (green) area], 4 [top, dark-grey (blue) area]. The greater the
value of Bp, the greater the value of τ .
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FIG. 7. (Color online) Negativity N as a function of the nonclas-
sical depth τ , according to Eq. (22).

needed for suppressing the nonclassicality of the twin beam.
So, the larger the value of the nonclassical depth τ is, the more
nonclassical the field is. On the other hand, formal application
of Eq. (20) to classical noisy twin beams results in negative
values of the nonclassical depth τ . Their absolute value |τ | can
be considered a measure of classicality of noisy twin beams
in the sense that it quantifies the mean number of photon pairs
needed to transform a classical twin beam into the classical-
quantum boundary τ = 0.

Condition τ = 0 for the transition from quantum to classical
twin beams applied to Eq. (20) results in the same relation
among parameters Bp, Bs, and Bi as derived in Eq. (17) for the
boundary between entangled and separable twin beams. Thus,
entangled twin beams are nonclassical, whereas separable twin
beams are classical. This means that nonclassical twin beams
may contain on average only less than one noise photon (Bs +
Bi < 1). We note that inequality (17) represents the Simon
criterion for nonclassicality of Gaussian states as shown in
Ref. [62].

Comparison of Eqs. (16) and (21) made for noiseless twin
beams reveals a simple relation between the negativity N and
the nonclassical depth τ :

N = τ

1 − 2τ
. (22)

Direct calculation based on Eqs. (15) and (20) then confirms
that relation (22) holds even for a general noisy twin beam.
We thus have a one-to-one correspondence between the value
of the negativity N and the value of the nonclassical depth
τ . Moreover, according to Eq. (22) the negativity N is an
increasing function of the nonclassical depth τ , and vice versa
(see Fig. 7). There exists a deep physical reason for this
correspondence. The nonlinear process emits photons in pairs
into the signal and idler fields, which creates entanglement
between these fields. It is this entanglement that gives rise
to nonclassical properties of twin beams, as the classical
statistical optics is unable to describe pairing of photons
appropriately.

V. DIMENSIONALITY OF THE TWIN BEAM

Three different numbers are needed to determine the di-
mensionality of a general noisy twin beam. The dimensionality
Kent of entanglement gives the number of degrees of freedom
constituting the entangled (paired) part of the twin beam. We
also need additional degrees of freedom to characterize the
noisy parts of the twin beam. As the amount of noise is,
in general, different in the signal and idler fields, we have
independent participation ratios Rs and Ri for both fields.
The entanglement dimensionality Kent for bipartite states with
axisymmetric statistical operators can be given in terms of the
negativity N by a simple formula [49]:

Kent(ρ̂) = 2N (ρ̂) + 1 = ||ρ̂
||1. (23)

Strictly speaking, it is the least integer �Kent that gives a
lower bound to the number of entangled dimensions between
entangled subsystems (paired modes) of ρ̂ [49]. According
to Eq. (23), the entanglement dimensionality Kent equals 1
for separable states (N = 0). It linearly increases with the
negativity N . As the noise described by the mean noise photon
numbers Bs and Bi decreases the values of the negativity N , it
also decreases the values of the entanglement dimensionality
Kent. We note that, for pure states, the Schmidt number is also
a good quantifier of the entanglement dimension Kent [63–65].
The Schmidt decomposition of pure states accompanied by
convex optimization can even be applied for quantifying the
entanglement dimension of mixed entangled states [37].

On the other hand, the noise present in the signal and idler
fields requires additional degrees of freedom for its description.
These degrees of freedom are, together with those reserved
for describing entanglement, determined by the participation
ratios Rs and Ri derived from the signal- and idler-field reduced
statistical operators ρ̂s and ρ̂i, respectively [64,66]:

Ra = 1

Tra
[
ρ̂2

a

] , a = s,i. (24)

Equation (10), giving the matrix elements of the statistical
operator ρ̂, guarantees a diagonal form of the reduced
statistical operators ρ̂s and ρ̂i of the signal and idler fields,
respectively. In this case, Eq. (24) can be rewritten in the form

Rs = 1∑
j ρ2

s,jj

. (25)

Using Eq. (10) the matrix elements ρs,jj can be written as

ρs,jj = 1

B̃s

[(
1 − B̃i

K̃

)
+ |D12|2

K̃B̃s

]j

. (26)

Substituting Eq. (26) into Eq. (25) we obtain a simple formula
for the participation ratio Rs:

Rs = 2(Bp + Bs) + 1. (27)

The same considerations made for the signal field apply also
to the idler field.

To find the relation between the entanglement dimension-
ality Kent and the participation ratios Rs and Ri we consider
for a while the noiseless twin beams in pure states. In this
case, the elements ρ̂s,jj of the reduced statistical operator ρ̂s,
written in Eq. (26), immediately give the squared Schmidt
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coefficients [54]. Combining Eqs. (16), (23), and (27) we arrive
at the formula

Kent = Rs +
√

R2
s − 1. (28)

Equation (28) shows that, excluding weak noiseless twin
beams, Kent ≈ 2Rs. This means that the definitions of the
entanglement dimensionality and participation ratio set dif-
ferent boundaries for the Schmidt coefficients cj included in
the approximative description of a noiseless twin beam with
the wave function

|ψ〉 =
jmax∑
j=0

cj |j 〉s|j 〉i. (29)

Using Eq. (10), the coefficients cj in Eq. (29) are obtained in
the form

cj =
√

Bp
j

(Bp + 1)j+1
, (30)

which is in agreement with the thermal photon-number
statistics of the signal (or idler) field. We note that the
ratio cKent−1/cRs−1 of boundary coefficients is given
by the expression [Bp/(1 + Bp)]Bp+1. When Bp → ∞,
cKent−1/cRs−1 → 1/e.

To compare the values of entanglement dimensionality and
the participation ratio for general twin beams we have to
eliminate the effect of different boundaries set by different
definitions, as revealed by considering the pure states. Using
the formulas derived for noiseless twin beams, we introduce
the modified entanglement dimensionality K̃ent as follows:

K̃ent = 2Bp + 1

2Bp + 1 + 2
√

B2
p + Bp

Kent. (31)

Definition (31) of the modified entanglement dimensionality
K̃ent guarantees that the values of modified entanglement
dimensionality K̃ent and participation ratios Rs and Ri of
noiseless twin beams are equal.

The values of the modified dimensionality K̃ent of entangle-
ment and the signal-field participation ratio Rs are compared
in Fig. 8 for the mean photon-pair number Bp = 1. Whereas
the values of the modified entanglement dimensionality K̃ent

decrease with increasing values of the mean noise photon
numbers Bs and Bi, the values of the signal-field participation
ratio Rs increase with increasing values of the mean signal-
field noise photon number Bs. We note that the values of the
signal-field participation ratio Rs are greater than those of the
modified entanglement dimensionality K̃ent even for Bs = 0,
as the presence of noise in the idler field (Bi > 0) degrades
entanglement.

The relative contribution of the degrees of freedom used
for describing entanglement in a twin beam is an important
characteristic. This contribution can be quantified via the
coefficient rent defined as follows:

rent = 2K̃ent

Rs + Ri
. (32)

As shown in Fig. 9, the greater the values of the mean noise
photon numbers Bs and Bi, the smaller the values of the

0
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~
ent s

FIG. 8. (Color online) Modified entanglement dimensionality
K̃ent given in Eq. (31) [lower, dark-grey (blue) area] and signal-field
participation ratio Rs given in Eq. (27) [upper, grey (red) area] as they
depend on the mean noise photon numbers Bs and Bi assuming the
mean photon-pair number Bp = 1.

coefficient rent. The comparison of surfaces of the coefficient
rent drawn for the mean photon-pair numbers Bp = 1 and
Bp = 10 in Fig. 9 reveals seemingly paradoxical behavior.
The values of the coefficient rent decrease with increasing
values of the mean photon-pair number Bp. This behavior,
however, naturally originates in fragility of entanglement with
respect to the noise. More intense twin beams (with greater
values of Bp) are less resistant to a given amount of noise
compared to low-intensity twin beams. This is explained by
the larger dimensions of the effectively populated Hilbert
spaces of more intense twin beams and, thus, the more
complex structures of their entanglement. As a consequence,

FIG. 9. (Color online) Coefficient rent given in Eq. (32) versus
the mean noise photon numbers Bs and Bi for the mean photon-pair
number Bp equal to 1 [upper, dark-grey (blue) area] and 10 [lower,
grey (red) area].
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FIG. 10. (Color online) von Neumann entropy Ss as a function of
the participation ratio Rs according to Eq. (35).

relatively higher numbers of degrees of freedom serving to
describe entanglement in more intense noiseless twin beams
are “released” by the noise and enlarge the noise parts of twin
beams.

Alternatively to the participation ratio R, we may apply
the von Neumann entropy S of a reduced statistical operator.
Taking into account the diagonal form of the signal-field
reduced statistical operator ρ̂s with the elements written in
Eq. (26), the signal-field entropy Ss is in general determined
along the formula

Ss = −Tr(ρ̂s ln ρ̂s) = −
∑

j

ρs,jj ln(ρs,jj ). (33)

Considering the specific form of matrix elements ρs,jj given
in Eq. (26), the formula for entropy Ss attains the form

Ss = (1 + Bp + Bs) ln(1 + Bp + Bs)

− (Bp + Bs) ln(Bp + Bs); (34)

ln stands for natural logarithm. Combining Eqs. (25) and (34),
the entropy Ss is revealed as an increasing function of the
participation ratio Rs:

Ss = 1
2 [(Rs + 1) ln(Rs + 1) − (Rs − 1) ln(Rs − 1)] − 1.

(35)
Analogous formulas for the idler-field entropy Si can easily
be derived. The general dependence of entropy Ss on the
participation ratio Rs is plotted in Fig. 10. We would like
to note that the entropy S serves as a good measure of the
entanglement for pure states.

VI. TWIN BEAM COMPOSED OF M MODES

In real experiments, twin beams are rarely composed of only
one paired spatiotemporal mode [30,34]. We note that a twin
beam composed of one paired mode represents an ideal field
from the experimental point of view [67]. For this reason, we
consider a multimode twin beam containing M independent
identical single-mode twin beams. Its statistical operator ρ̂M

is given as ρ̂M = ⊗Mρ̂ using the statistical operator ρ̂ written
in Eq. (8). There are four parameters characterizing the twin
beam: number M of modes, mean photon-pair number Bp,
mean signal-field noise photon number Bs, and mean idler-field
noise photon number Bi. We note that such an M-mode twin
beam represents a good approximation of a real twin beam
when all spatiotemporal modes participating in the nonlinear
interaction are detected.

The considered physical quantities behave differently with
respect to the number M of modes. It has been shown in
Refs. [34] and [59] that the nonclassical depth τ does not
depend on the number M of modes. On the other hand, the
multimode negativity NM,NM = (1 + 2N )M and the partici-
pation ratios RM,a,RM,a = RM

a for a = s,i, are multiplicative.
We note that the form of the multimode negativity originates in
the multiplicative property of the trace norm and its relation to
the negativity expressed in Eq. (11) [41]. In fact, the multimode
negativity NM coincides with the entanglement dimensionality
Kent defined in Eq. (23) for a single-mode twin beam. The
multimode entropies SM,a,a = s,i, are then additive. To reveal
similar relations among the studied quantities as has been
done for single-mode twin beams, we have to define suitable
quantities derived from those considered above. Defining the
logarithmic negativity N

log
M ≡ ln(NM ) and the logarithmic

participation ratios R
log
M,a ≡ ln(RM,a), a = s,i, we replace the

multiplicative quantities with the additive ones. Introducing
the logarithmic negativity N , logarithmic participation ratios
Rlog

a , and entropies Sa related per one mode,

N = N
log
M

M
= ln(1 + 2N ),

Ra = R
log
M,a

M
= ln(Ra), (36)

Sa = SM,a

M
= Sa,

with a = s,i, we reveal the suitable quantities. The quantities
defined in Eq. (36) together with the nonclassical depth τ

behave qualitatively in the same way as those defined for
single-mode twin beams discussed above. Especially, the
logarithmic negativity N per mode is an increasing function
of the nonclassical depth τ . Also, the entropy Sa per mode
is an increasing function of the logarithmic participation ratio
Ra per mode, a = s,i.

VII. EXPERIMENTAL MULTIMODE TWIN BEAMS

Real experimental multimode twin beams have a more
complex structure than that discussed in Sec. VI [30,32,34].
The reason is that the spatiotemporal modes of twin beams
are shared by the signal and idler fields and so they can be
broken before or during the detection owing to spectral and/or
spatial filtering. As a consequence, real multimode twin beams
are composed of three components [8,34]. A paired component
describes photons embedded in spatiotemporal modes detected
by both signal- and idler-field detectors. A noise signal (idler)
component then describes photons occurring in signal (idler)
spatiotemporal modes that originate in filtering of the idler
(signal) field. If we assume for simplicity that the paired
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component is ideal, i.e., without noise, we need six parameters
to describe a real twin beam. Each component is characterized
by the number M of modes and mean photon-pair (or
noise photon) number B. The statistical operator ρ̂E of the
experimental twin beam can be expressed as

ρ̂E =
⊗
Mp

ρ̂p

⊗
Ms

ρ̂n,s

⊗
Mi

ρ̂n,i (37)

using single-mode statistical operators ρ̂p, ρ̂n,s , and ρ̂n,i of
the photon-pair, noise signal, and noise idler components.
In Eq. (37), Mp, Ms, and Mi give the numbers of equally
populated modes with the mean numbers Bp, Bs, and Bi of
photon pairs (photons) per mode, respectively.

Entanglement in the experimental twin beam is created only
by its paired component, and as such it can be quantified by
the logarithmic negativity N

log
Mp

introduced in Sec. VI. The
noise components do not contribute to entanglement on one
side, and they do not degrade entanglement on the other side.
This is qualitatively different from the case of multimode twin
beams discussed in Sec. VI and containing noise in paired
spatiotemporal modes.

Nonclassicality can be quantified by a multimode gener-
alization of nonclassical depth τE introduced in Ref. [45]
for a single-mode field. In a multimode twin beam, we may
first determine the standard nonclassical depths τn for each
single-mode field, included either in the paired part of the
twin beam or in the noisy signal and idler parts of the twin
beam. Then we can take either maxn(τn) or

∑
n τn to quantify

the multimode nonclassical depth τE . In the first case, the
nonclassical depth τE of the experimental multimode twin
beam is just given by the nonclassical depth τ of a paired
mode. The second case is physically more interesting, as the
value of τE is linearly proportional to the minimum amount
of additional noise needed to conceal nonclassicality of the
multimode state. In this case, we have, for the experimental
multimode twin beams,

τE = Mpτ. (38)

Using the logarithmic negativity N
log
Mp

defined in Sec. VI and
the nonclassical depth τE , one-to-one correspondence between
the entanglement and the nonclassicality is obtained also for
M-mode twin beams.

On the other hand, the concept of weak nonclassical-
ity [25,68,69] is also useful for the experimental multimode
twin beams considered to be composed of one effective
paired (macro)mode. The joint quasidistribution PW of the
integrated intensities Ws and Wi of the signal and idler
fields, respectively, describes the properties of this effective
paired mode [11]. As no information about the phase is
encoded in this simplified effective description, we may only
determine the nonclassical intensity depth τW quantifying
nonclassicality, which demonstrates itself by negative values
of the marginal quasidistribution of integrated intensities.
We have to emphasize that the nonclassical intensity depth
τW is only a nonclassicality witness or parameter, which
reveals nonclassicality solely in photon-number statistics.
Contrary to this, the nonclassical depth τ is a genuine and
commonly used nonclassicality measure. We note that the
standard nonclassicality quantified by τ reveals both strongly

and weakly nonclassical states [68,69]. From this point of view
τ is a strong tool or criterion. On the other hand, τW detects
only strongly nonclassical states; i.e., it is a weak tool.

The nonclassical intensity depth τW has been determined
for the experimental multimode twin beams in Ref. [34],

τW =
√

β2 − γ − β, (39)

where

β = MsBs + MiBi + 2MpBp

Ms + Mi + 2Mp
,

(40)

γ = MsB
2
s + MiB

2
i − 2MpBp

Ms + Mi + 2Mp
.

The analysis of Eq. (39) shows that the experimental multi-
mode twin beam is strongly nonclassical (τW > 0) provided
that

MsB
2
s + MiB

2
i < 2MpBp. (41)

Inequality (41) means that the multimode strong nonclassical-
ity of the twin beam is lost if the noise is sufficiently strong. For
example, if Mp = Ms = Mi, strongly nonclassical multimode
twin beams are observed for B2

s + B2
i < 2Bp (see Fig. 11).

This behavior is similar to that discussed in Sec. IV, though the
boundary given by τW = 0 is quantitatively different (compare
Figs. 6 and 11). We also have here that the greater the value of
the mean photon-pair number Bp, the greater the value of the
nonclassical intensity depth τW . Also, the greater the values
of the mean noise photon numbers Bs and Bi, the smaller the
value of the nonclassical intensity depth τW .

Similarly as in Sec. VI, the logarithmic participation ratio
Rlog can be defined for each component of the twin beam
to quantify its dimensionality. The logarithmic participation
ratio Rlog of the whole twin beam is then naturally given
as the sum of the logarithmic participation ratio R

log
Mp,p of

FIG. 11. (Color online) Nonclassical intensity depth τW as a
function of the mean noise photon numbers Bs and Bi for the mean
photon-pair number Bp equal to: 2 [bottom, light-grey (yellow) area],
4 [grey (green) area], and 8 [top, dark-grey (blue) area], assuming
Mp = Ms = Mi = 1. The greater the value of Bp the greater the value
of τW .
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the paired component and the logarithmic participation ratio
R

log
Ms,s + R

log
Mi,i of the noise signal and idler components. We

note that Eq. (25) is appropriate for determining the partic-
ipation ratio of both the single-mode noise signal (or idler)
field and the single-mode paired field. Alternatively we may
consider entropies of the components instead of participation
ratios. Entropies of the single-mode noise fields are given by
Eq. (33). Equation (33) is applicable also for determination
of the entropy of entanglement of a single-mode paired field
in a pure state for which ρ̂s,jj ← c2

j . As a consequence,
the entropies SMa,a for a = p,s,i, of each component are
increasing functions of the corresponding participation ratios
RMa,a . In single-mode cases, these functions are determined by
Eq. (35), plotted in Fig. 10. Similarly to the overall logarithmic
participation ratio Rlog, the overall entropy S can be naturally
split into its entangled part SMp,p and noisy part SMs,s + SMi,i,
originating in the noise signal and idler components.

Finally, we briefly address the issue of the experimental
determination of the quantities discussed above. As these
quantities characterize the “internal” structure of a twin beam,
only their indirect determination is possible. It is based
upon the measurement of the joint signal-idler photocount
histogram using photon-number-resolving detectors. Knowing
these detector parameters [33], reconstruction of the joint
signal-idler photon-number distribution [8,34] provides the
applied mean photon(-pair) numbers B and numbers M of
modes. The above-derived formulas then give the discussed
quantities.

VIII. CONCLUSIONS

The entanglement and nonclassicality of a single-mode
noisy twin beam have been quantified using the negativity

and the nonclassical depth, respectively. Universal mapping
between the nonclassical depth and the negativity has been
revealed for noisy twin beams. The mapping reflects the
fact that nonclassicality of a twin beam is caused by the
entanglement of its two parts originating in pairing of photons.
Limitations to the amount of noise have been found to preserve
entanglement together with nonclassicality. The degrees of
freedom of a twin beam quantified by the signal- and idler-field
participation numbers have been divided into those needed
to describe entanglement and the remaining ones forming the
noisy signal and idler parts of the twin beam. The entanglement
dimensionality derived from the negativity has been applied
here. Entropy as an increasing function of the participation
number has been discussed. Properties of multimode twin
beams have been analyzed using appropriate quantities related
per one mode. Also, experimental multimode twin beams
containing additional noise in independent spatiotemporal
modes have been investigated from the point of view of their
entanglement and multimode nonclassicality including weak
nonclassicality and dimensionality.
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Fundamentals of Physics (Kluwer, Dordrecht, 1994).
[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[6] A. Migdall, Phys. Today 52, 41 (1999).
[7] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222

(2011).
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A 71, 033815 (2005).
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A 90, 033428 (2014).
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