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Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated
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17. listopadu 12, 771 46 Olomouc, Czech Republic

Adam Miranowicz
Faculty of Physics, Adam Mickiewicz University, PL-61-614 Poznan, Poland

(Received 10 March 2016; published 5 July 2016)

The behavior of general nonclassical two-mode Gaussian states at a beam splitter is investigated. Single-mode
nonclassicality as well as two-mode entanglement of both input and output states are analyzed suggesting their
suitable quantifiers. These quantifiers are derived from local and global invariants of linear unitary two-mode
transformations such that the sum of input (or output) local nonclassicality measures and entanglement measure
gives a global invariant. This invariant quantifies the global nonclassicality resource. Mutual transformations of
local nonclassicalities and entanglement induced by the beam splitter are analyzed considering incident noisy
twin beams, single-mode noisy squeezed vacuum states, and states encompassing both squeezed states and twin
beams. A rich tapestry of interesting nonclassical output states is predicted.
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I. INTRODUCTION

The nonclassical properties of light have been for a long
time the main topic of interest in quantum optics. The
question whether a given quantum state is nonclassical (i.e.,
cannot be treated by the classical statistical theory) has been
considered as one of the most important problems since the
early days of quantum physics [1–3] (for a review see, e.g.,
Refs. [4–6]). For optical fields, a commonly accepted criterion
for distinguishing nonclassical states from the classical ones is
expressed as follows [5,7–9]: a quantum state is nonclassical
if its Glauber-Sudarshan P function fails to have all the
properties of a probability density. We recall that the Glauber-
Sudarshan P function for an M-mode bosonic state ρ̂ can be
defined as [10,11]

ρ̂ =
∫

P (α,α∗)|α〉〈α|d2α, (1)

where |α〉 = ∏M
m=1 |αm〉 is given in terms of the mth-mode

coherent state |αm〉, which is the eigenstate of the mth-mode
annihilation operator âm, α denotes complex multivariable
(α1,α2, . . . ,αM ), and d2α = ∏

m d2αm. It is worth noting that
the negativity of the P function is necessary and sufficient for
nonclassicality, while the singularity or irregularity of the P

function is only a sufficient condition (i.e., it is a nonclassical
witness). Thus, if the P function is more singular or more
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irregular than Dirac’s δ function for a given state, then it is
also nonpositive (semidefinite) in the formalism of generalized
functions. A standard example of such irregular functions is
the P function for an n-photon Fock state (with n = 1,2, . . .),
which is given by the nth derivative of δ(α).

Based on this definition of nonclassicality, various oper-
ational criteria (also called witnesses) have been described
for testing the nonclassicality of single-mode [7,8,12] and
multimode [13–15] fields. Their derivations are based either
on the fields moments [13,15,16] or exploit the Bochner
theorem written for the characteristic function of the Glauber-
Sudarshan P function [17]. A direct reconstruction of the
quasidistributions of integrated intensities is a sufficient but
not necessary condition of the nonclassicality of the detected
fields by the definition [18–20]. We note that nonclassicality
criteria derived from the majorization theory have also been
found useful [21,22].

Entanglement between two optical fields is one of the
most frequently studied forms of nonclassical light. Such light
emerges in various two-mode or multimode nonlinear optical
processes, e.g., in spontaneous parametric down-conversion.
In this process, pairs of photons composed of the signal and
idler modes are created at the expense of the annihilated
pump photons. This pairwise character of emitted light lies
in the heart of entanglement here. The process of spontaneous
parametric down-conversion has its degenerate variant called
second-subharmonic generation, where both photons in a pair
are emitted into the same optical mode. This gives raise to
phase squeezing of the second-subharmonic field composed
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of, in general, many photon pairs. The squeezed light is
also considered nonclassical as it has its phase fluctuations
suppressed below the classical limit. The nonclassicality in
both cases has the same origin which is pairing of photons. On
the other side, the emitted photon pairs can be manipulated by
linear optics. In detail, two photons from one pair present in
the same mode of a squeezed state of light can be split (on a
beam splitter) and contribute to the entanglement of the output
fields. Also, two photons from a pair incident on different input
ports of a beam splitter can “stick together” (bunch) and leave
the beam splitter in the same output port (as testified in the
Hong-Ou-Mandel interferometer [23]). The interconnection
of these two types of fields by the means of linear optics has
already been shown by Braunstein [24] and later elaborated
by Adesso [25] for arbitrarily strong Gaussian states. This
behavior poses a natural question whether it is possible to
introduce a physical quantity that quantifies “a nonclassicality
resource” present during the creation of both types of fields
and later conserved during linear-optical transformations.

The answer to this question is intimately related to the
quantifiers of entanglement and local nonclassicality. Several
measures were proposed to quantify the entanglement in both
discrete and continuous domains [26–31]. The negativity (or
its logarithmic variant) is considered, probably, as the most
useful at present. On the other hand, the Lee nonclassicality
depth [21] is conventionally used to quantify the nonclassi-
cality of optical fields. Alternatively, the nonclassicality of an
optical field can be transcribed to entanglement using a beam
splitter and quantified via an entanglement measure [32,33].
For a comparative study of these two nonclassicality measures,
see, e.g., recent Refs. [34,35].

We note that, apart from the local nonclassicalities of
two parts of a bipartite state, also global nonclassicality can
naturally be defined. All these three quantities have been
analyzed in Ref. [36] for intense multimode twin beams with
the following result: whenever a twin beam is entangled, it
is globally nonclassical. On the other hand, its signal and
idler constituents are multithermal and so locally classical.
A general approach for describing the relation between the
entanglement and global nonclassicality of two-mode states
has been proposed in Ref. [37].

Returning back to our question, we look for an invariant
with respect to linear-unitary transformations (conserving
the overall number of photons) that comprises both the
entanglement and local nonclassicalities. This question has
recently been addressed in Ref. [38] considering beam-splitter
transformations and a quantity composed of the logarithmic
negativity and the logarithm of nonclassicality depth. How-
ever, the introduced quantity has been found useful only under
very specific conditions [39].

In this paper, we construct such an invariant for general two-
mode Gaussian states arising in nonlinear processes described
by the second-order susceptibility χ (2). The processes of spon-
taneous parametric down-conversion and second-subharmonic
generation represent their most important examples. As
schematically shown in Fig. 1, the found invariant is decom-
posable into three parts characterizing in turn entanglement
and two local nonclassicalities. The entanglement indicator
is shown to be a monotone of the logarithmic negativity
similarly to the newly defined nonclassicality measure that is

FIG. 1. Diagram showing the main goal of this paper: The local
(I (1)

ncl and I
(2)
ncl ) and global (Incl) nonclassicality invariants are analyzed

in relation with the entanglement, described by the invariant Ient, for
the light generated by the optical parametric process (described by
the second-order susceptibility χ (2)) and then combined at a beam
splitter BS with varying transmissivity T . Here, α is the amplitude of
a classical pump field, â1 and â2 are the annihilation operators of the
generated light, and M denotes a mirror.

a monotone of the Lee nonclassicality depth under any linear
unitary transformation.

The obtained results are potentially interesting for ma-
nipulations with nonclassicality in quantum engineering that
have become substantial ingredients of a growing number of
applications of quantum technologies [28,40–43].

The paper is organized as follows. In Sec. II, a model com-
prising parametric down-conversion and second-subharmonic
generation is developed. A suitable nonclassicality invariant
is suggested using local and global invariants of two-mode
Gaussian fields. Its decomposition into an entanglement quan-
tifier and local nonclassicality quantifiers is also discussed.
Twin beams as they behave on a beam splitter are discussed
in Sec. III. In Sec. IV, a single-mode squeezed state on
a beam splitter is analyzed. Section V is devoted to the
behavior of two single-mode squeezed states interfering on
a beam splitter. States having both “twin-beam” and squeezed
components are investigated in Sec. VI. Conclusions are
drawn in Sec. VII. Quasidistributions related to the normal
and symmetric ordering of operators are discussed in the
Appendix.

II. GAUSSIAN STATES GENERATED IN χ (2)

INTERACTIONS AND THEIR INVARIANTS

We consider a nonlinear interaction Hamiltonian Ĥint

describing both parametric down-conversion and second-
subharmonic generation that provide photon pairs [9] (for the
scheme, see Fig. 2)

Ĥint = −�g∗
12â1â2 − �g∗

11â
2
1 − �g∗

22â
2
2 + H.c. (2)

In Eq. (2), the symbols â1 (â†
1) and â2 (â†

2) represent the
annihilation (creation) operators of the fields 1 and 2, g12

is a nonlinear coupling constant characterizing parametric
down-conversion, and gii stands for a nonlinear coupling
constant of the second-subharmonic generation in the ith mode
described by the second-order susceptibility χ (2) of a medium.
Symbol H.c. represents the Hermitian conjugated terms. Due
to the presence of noise in real nonlinear processes, we also
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FIG. 2. Diagram of the optical parametric process described by
Eq. (2): the classical pump field, with complex amplitude α, generates
the signal and idler modes described by the annihilation operators
âj and affected by the noise stochastic operators F̂j , j = 1,2. For
simplicity, the pump-field amplitude α is incorporated into the
coupling constants gij . The mean photon number in the signal (idler)
mode influenced by the noise is denoted by B1 (B2). In Sec. III,
B1 = Bp + Bs and B2 = Bp + Bi, where Bp = sinh2(g12t) is the mean
number of generated photon pairs and Bs = 〈F̂ †

1 F̂1〉 (Bi = 〈F̂ †
2 F̂2〉) is

the mean number of signal (idler) noise photons. In Secs. IV and V,
B1 = B̃s

p + Bs and B2 = B̃ i
p + Bi, where B̃s

p (B̃ i
p) is the mean number

of squeezed photons in the signal (idler) mode.

consider the Langevin forces L̂j arising in the interaction with
the reservoir chaotic oscillators characterized by means of
noise photon numbers 〈nd〉. This leads to damping processes
described by the damping constants γj .

The Heisenberg-Langevin operator equations correspond-
ing to the Hamiltonian Ĥint are derived in the following matrix
form:

dâ
dt

= Mâ + L̂ (3)

using the vectors â = (â1,â
†
1,â2,â

†
2)

T
and L̂ =

(L̂1,L̂
†
1,L̂2,L̂

†
2)

T
, and the matrix

M =

⎡
⎢⎢⎣

−γ1/2 2ig11 0 ig12

−2ig11 −γ1/2 −ig12 0
0 ig12 −γ2/2 2ig22

−ig12 0 −2ig22 −γ2/2

⎤
⎥⎥⎦. (4)

The Langevin operators L̂1 and L̂2 introduced in Eq. (3) obey
the following relations:

〈L̂i(t)〉 = 〈L̂†
i (t)〉 = 0,

〈L̂†
i (t)L̂j (t ′)〉 = δij 〈nd〉δ(t − t ′), (5)

〈L̂i(t)L̂
†
j (t ′)〉 = δij (〈nd〉 + 1)δ(t − t ′),

where δij stands for the Kronecker symbol and δ denotes the
Dirac delta function.

The solution of Eq. (3) for the operators â1 and â2 is
conveniently written in the following matrix form using
suitable evolution matrices U and V and a stochastic operator

vector F̂ (for details see, e.g., [44]):[
â1(t)

â2(t)

]
= U(t)

[
â1(0)

â2(0)

]
+ V(t)

[
â
†
1(0)

â
†
2(0)

]
+ F̂(t). (6)

Specific forms of the general evolution matrices U and V
are discussed in the sections below. The elements of the
stochastic operator vector F̂ ≡ (F̂1,F̂2) are derived as linear
combinations of the Langevin forces L̂j and L̂

†
j that reflect

the “deterministic” solution described by the matrices U and
V [44].

Statistical properties of the emitted fields, in a given state ρ̂,
are described by the Glauber-Sudarshan P function, given by
Eq. (1) or, equivalently, by the normal quantum characteristic
function CN defined as

CN (β1,β2) = 〈exp(β1â
†
1 + β2â

†
2) exp(−β∗

1 â1 − β∗
2 â2)〉, (7)

where the symbol 〈. . .〉 denotes quantum averaging including
both system and reservoir. Using the solution given in Eq. (6)
and the initial vacuum states in both fields, the normal
characteristic function CN attains the following form:

CN (β1,β2)

= exp

[
−B1|β1|2 − B2|β2|2 +

(
C1

2
β∗2

1

+ C2

2
β∗2

2 + D12β
∗
1 β∗

2 + D̄12β1β
∗
2 + c.c.

)]
, (8)

where the auxiliary functions are defined as follows:

Bj = 〈�â
†
j�âj 〉 =

∑
k=1,2

|Vjk|2 + 〈F̂ †
j F̂j 〉,

Cj = 〈(�âj )2〉 =
∑
k=1,2

UjkVjk + 〈
F̂ 2

j

〉
,

D12 = 〈�â1�â2〉 =
∑
k=1,2

U1kV2k + 〈F̂1F̂2〉,

D̄12 = −〈�â
†
1�â2〉 = −

∑
k=1,2

V ∗
1kV2k − 〈F̂ †

1 F̂2〉. (9)

The normal characteristic function given in Eq. (8) can
conveniently be rewritten into its matrix form CN (β) =
exp(β†ANβ/2) using the covariance matrix AN related to the
normal ordering [45] (for different possibilities in describing
the generated fields, see Table I):

AN =

⎡
⎢⎢⎢⎣

−B1 C1 D̄∗
12 D12

C∗
1 −B1 D∗

12 D̄12

D̄12 D12 −B2 C2

D∗
12 D̄∗

12 C∗
2 −B2

⎤
⎥⎥⎥⎦, (10)

and the column vector β = (β1,β
∗
1 ,β2,β

∗
2 )T .

The covariance matrix AN related to the normal ordering
determines the global nonclassicality of a two-mode Gaussian
state via the Lee nonclassicality depth τ . The nonclassicality
depth τ is defined with the help of the maximal positive
eigenvalue λ+(AN ) of the matrix AN as follows:

τ = max[0,λ+(AN )]. (11)
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TABLE I. Schematic diagram for the relations between (a) two quasiprobability distributions (quasidistributions), i.e., the Glauber-
Sudarshan P and Wigner W functions for a given two-mode state ρ̂, (b) characteristic functions CN and CS , and (c) covariance matrices
AN and AS assuming here that ρ̂ is a Gaussian state for normal and symmetric orderings, respectively. Their interrelations (as marked by
left-right arrows) are given in the Appendix. The single arrow indicates that the calculation of the P function from the Wigner function is more
complicated (it can be done via the relation between CS and CN ) than the trivial calculation of the Wigner function from the P function (as
marked by double arrow).

Characteristic Covariance matrix
Ordering Quasidistribution function of a Gaussian state

Normal P (α1,α2) ≡ W (s=1)(α1,α2) ⇐⇒ CN (β1,β2) ←→ AN
⇓↑ ⇓⇑ ⇓⇑

Symmetric W (α1,α2) ≡ W (s=0)(α1,α2) ⇐⇒ CS (β1,β2) ←→ AS

We note that the nonclassicality depth τ , according to its
definition [21], gives the amount of noise photons present
equally in both modes and needed to conceal the nonclassical
character of the state.

The covariance matrix AN of the two-mode field can be
written in the following block form:

AN =
[

B1 D12

D21 B2

]
,

Bj =
[
−Bj Cj

C∗
j −Bj

]
, j = 1,2

D12 =
[
D̄∗

12 D12

D∗
12 D̄12

]
,

D21 =
[
D̄12 D12

D∗
12 D̄∗

12

]
. (12)

This form points out at the existence of three local invariants
Ij , j = 1,2,3, that do not change under any local linear unitary
transformation applied in mode 1 or 2. The local invariants Ij

are expressed as

I1 = det(B1), I2 = det(B2), I3 = det(D12). (13)

Moreover, there exist two global invariants I and � preserved
under arbitrary linear unitary transformations and applied to
both modes:

I = det(AN ), � = I1 + I2 + 2I3. (14)

Whereas the global invariant I encompasses the whole
complex structure of the matrix AN and, as such, is not
useful in our considerations, the global invariant � reflects
the block structure of the matrix AN and lies in the center of
our attention.

Moreover, the global invariant � includes the additive local
invariants I1 and I2 that indicate the nonclassical behavior of
the reduced states of modes 1 and 2, respectively. Indeed,
the determinants defining these invariants occur in the Fourier
transform of the normal characteristic functions of the reduced
states directly related to their local Glauber-Sudarshan P

functions. If a determinant fails to be positive, then the
corresponding Glauber-Sudarshan P function does not exist
as a non-negative function. Thus, the value of determinant
Ij can be used to quantify the local nonclassicality of the
reduced state in mode j as it is a monotone of the local

Lee nonclassicality depth τj . The local Lee nonclassicality
depth τj is defined along the formula (11) that provides the
relation

τj = max(0,|Cj | − Bj ), j = 1,2. (15)

Using Eq. (15), we arrive at the monotonic relation between
the local nonclassicality depth τj and local nonclassicality
invariant (NI) Ij if we assume τj to be continuous:

Ij = −τj (τj + 2Bj ). (16)

We can redefine the local symplectic invariant in Eq. (16)
as I

(j )
ncl = −Ij in order to deal with positive values when

quantifying the local nonclassicality. We note that not only the
positive values of this local NI I

(1)
ncl are useful for quantifying

the local nonclassicality, also the negative values of this
invariant are important as they quantify the “robustness” of
the classicality of a local state.

Returning back to the last term I3 in the global invariant
�, this term describes solely the mutual quantum correlations
between the fields 1 and 2. As such, it has to play a crucial
role in the description of the entanglement between two fields.
To reveal and quantify this entanglement and the role of local
invariant I3 here, we apply for a while the phase space (x,p)
approach for describing the fields in the symmetric ordering
of field operators corresponding to the Wigner formalism (see
Table I and then the Appendix). The reason is technical and is
given by the fact that we know how to derive the covariance
matrix of a Gaussian state obtained by the partial transposition
of the original state. According to Simon [46], the partial
transposition means to replace p by −p. The covariance
matrix of the partially transposed state then provides us the
logarithmic negativity EN that is a commonly used measure
for the entanglement. Moreover, it provides as an entanglement
measure useful in our considerations.

In detail, the covariance matrix AS expressed in the sym-
metric ordering is obtained in its block structure as follows:

AS =
[

BS1 DS

DT
S BS2

]
,

BSj =
[
Bj + Re(Cj ) + 1/2 Im(Cj )

Im(Cj ) Bj − Re(Cj ) + 1/2

]
,

j = 1,2,

DS =
[

Re(D12 − D̄12) Im(D12 + D̄12)

Im(D12 − D̄12) −Re(D12 + D̄12)

]
. (17)
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FIG. 3. Logarithmic negativity EN as a function of entanglement
indicator Ient, given by Eq. (19), and global nonclassicality invariant
IS , given by Eq. (18).

The covariance matrix AS , similarly as its normally ordered
counterpart, has three local invariants ISj ,j = 1,2,3, and two
global ones denoted as IS and �S :

IS1 = det(BS1), IS2 = det(BS2), IS3 = det(DS ),

IS = det(AS ), �S = IS1 + IS2 + 2IS3. (18)

Moreover, the comparison of the formulas for the invariants
I3 and IS3 shows that I3 = IS3.

Following Refs. [31,46,47], the entanglement criterion
can be expressed through the positivity of the entanglement
indicator (EI) Ient defined in terms of the invariants in Eq. (18)
as follows:

Ient = 1
4 (IS1 + IS2 − 2IS3) − IS − 1

16 . (19)

As we show below the EI Ient is a monotonous function of
logarithmic negativity EN , which can be derived from the
symplectic eigenvalue d̃− of the partially transposed (PT)
matrix APT

S along the formula [48] (see Fig. 3)

EN = max[0, − ln(2d̃−)]. (20)

According to Eq. (20), a state is entangled if d̃− < 1
2 . In turn,

the symplectic eigenvalue d̃− is found as

d̃− = 1√
2

√
�̃S −

√
�̃2

S − 4IS , (21)

where �̃S = IS1 + IS2 − 2IS3. Combining Eqs. (19) and (21),
we arrive at the relation between the symplectic eigenvalue d̃−
and entanglement indicator Ient:

d̃− = 1√
2

√
I ′ −

√
I ′2 − 4IS , (22)

where I ′ = 4IS + 4Ient + 1
4 .

Assuming the global invariant IS is fixed, the relation (22)
shows that the larger is the entanglement indicator Ient, the

smaller is the symplectic eigenvalue d̃− and, according to
formula (20), also the larger is the logarithmic negativity EN .
As a consequence, the entanglement indicator Ient represents
an alternative to the logarithmic negativity EN in quantifying
entanglement. We illustrate the monotonous dependence of the
logarithmic negativity EN on the entanglement indicator Ient

in Fig. 2. We note that a simple analytical formula between
the logarithmic negativity EN and entanglement indicator Ient

is derived for pure states (IS = 1
16 ) assuming Ient > 0:

EN = ln(2
√

Ient +
√

1 + 4Ient). (23)

As we look for a relation among the local invariants I
(1)
ncl

and I
(2)
ncl and the entanglement indicator Ient (see Fig. 1), we

eliminate the invariants I3 = IS3 from Eqs. (13) and (19) by
their comparing. This leaves us with the relation

I
(1)
ncl + I

(2)
ncl + 2Ient = 1

2�S − � − 2IS − 1
8 . (24)

As only the global invariants occur at the right-hand side of
Eq. (24), the relation I

(1)
ncl + I

(2)
ncl + 2Ient is invariant under any

global linear unitary transformation.
Equation (24) can be transformed into the central result of

our paper, if we define a new quantity Incl, which is a global
nonclassicality invariant:

Incl = I
(1)
ncl + I

(2)
ncl + 2Ient. (25)

In the derivation of this equation, it is useful to recall the
property that the local determinants for the normally ordered
CF, I3, and the symmetrically ordered CF, IS3, are equal I3 =
IS3, and given by Eqs. (14) and (18). Thus, we have

Incl = I
(1)
ncl + I

(2)
ncl + 2Ient

= −I1 − I2 + 1
2 (IS1 + IS2 − 2IS3) − 2IS − 1

8

= −I1 − I2 − 2IS3 + 1
2 (IS1 + IS2 + 2IS3) − 2IS − 1

8

= −� + 1
2�S − 2IS − 1

8 . (26)

Equation (25) means that the local nonclassicality invariants
I

(1)
ncl and I

(2)
ncl together with the entanglement indicator Ient form

the global NI Incl. Any linear unitary transformation in general
modifies both the local NIs I

(1)
ncl and I

(2)
ncl and the entanglement

invariant Ient only in such a way that it preserves the value of
the global NI Incl. Whenever Incl is positive, the analyzed state
is nonclassical due to the local nonclassicality of the reduced
states or its entanglement. The negative values of the global
NI Incl do not necessarily mean that a given state is classical,
as we will see below.

In the next sections, we analyze the nonclassicality and
entanglement of several kinds of important quantum states
from the point of view of their transformation by a beam
splitter. The division of the global NI into the EI and the
local NIs is in the center of our attention. In general, six
regions differing in the occurrence of entanglement and local
nonclassicalities can be defined (see Table II). All these regions
are found in the examples analyzed in the next sections, as
indicated in Table II.

We note that an invariant based on the second-order
intensity moments and, as such, describing intensity autocorre-
lations and cross-correlations has been suggested in Ref. [49]
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TABLE II. Regions of different entanglement and local nonclassicalities observed in the figures of Secs. III–VI.

Nonclassicality Nonclassicality
Case/region Entanglement of one mode of another mode Figures

I Yes Yes Yes 6, 10
II Yes Yes No 6(b)
III Yes No No 6, 10
IV No Yes Yes 6, 10
V No Yes No 6(b)
VI No No No 6, 10

for two-mode fields with specific mode correlations and uni-
tary transformations. Later, this invariant was experimentally
analyzed in Ref. [50]. Here, we describe the propagation of
fields through the beam splitter (see Fig. 1) described by the
real transmissivity T and the phase φ through the unitary
transformation characterized by the matrix U:

U =

⎛
⎜⎜⎝

√
T 0 −√

Reiφ 0
0

√
T 0 −√

Re−iφ√
Re−iφ 0

√
T 0

0
√

Reiφ 0
√

T

⎞
⎟⎟⎠; (27)

R = 1 − T is the reflectivity of the beam splitter. The
covariance matrix Aout at the output of the beam splitter is
obtained as Aout = U†AU.

III. TWIN BEAM

These beams are generated by parametric down-conversion
from the vacuum into which photon pairs are ideally emitted.
For this reason, only the terms B1,B2, and D12 in the normal
characteristic function CN are nonzero. The evolution matrices
U and V in Eq. (6) have the following nonzero elements:

U11(t) = U22(t) = cosh(gt),

V12(t) = V21(t) = i exp(iθ ) sinh(gt). (28)

The coefficients B1 and B2 can be expressed as B1 = Bp + Bs

and B2 = Bp + Bi, where Bp = sinh2(g12t) gives the mean
number of generated photon pairs and Bs = 〈F̂ †

1 F̂1〉 (Bi =
〈F̂ †

2 F̂2〉) denotes the mean number of signal (idler) noise
photons coming from the reservoir (see Fig. 2). On the other
hand, the parameter D12 characterizing mutual correlations
depends only on the mean number Bp of photon pairs as
D12 = i

√
Bp(Bp + 1) (θ = 0 is assumed without the loss of

generality).
The general formulas for the local NIs I

(j )
ncl , entanglement

invariant Ient, and the global NI Incl attain the following forms
for twin beams:

I
(1)
ncl = 4T R

(
B2

p + Bp
)− [Bp + T Bs + RBi]

2,

I
(2)
ncl = 4T R

(
B2

p + Bp
)− [Bp + T Bi + RBs]

2,

Ient = −[(Bs + Bi)
2 − (T − R)2]

(
B2

p + Bp
)

(29)

− 2BpBsBi(Bs + Bi) − (
B2

s + Bs
)(

B2
i + Bi

)
− T R(Bs + Bi)

2,

Incl = 2Bp − (Bs + Bi)
2
[
2
(
B2

p + Bp
)+ 1

]
− 2Bp(1 + 2BsBi)(Bs + Bi)

− 2BsBi(Bs + Bi + BsBi). (30)

We first discuss the behavior of noiseless twin beams for
which Bs = Bi = 0. In this case, the global NI Incl equals 2Bp

and

I
(j )
ncl = 4T R

(
B2

p + Bp
)− B2

p , j = 1,2

Ient = (T − R)2
(
B2

p + Bp
)
. (31)

As suggested by the formula in Eq. (31), the local NIs
I

(j )
ncl can be decomposed into two terms. The negative term

reflects classical thermal statistics of photon pairs in a twin
beam with its photon bunching effect and as such suppresses
the nonclassical behavior of the twin beam. On the other
hand, the positive term refers to squeezing appearing at the
individual output ports of the beam splitter. The squeezing
effect originates in pairing of photons in individual output
ports caused by “sticking of two photons from a pair together”
(photon bunching) at the beam splitter [5]. Photon pairs
with both photons in one output port contribute to the local
nonclassicality of the field in this port. On the other hand,
when two photons from one photon pair occur in different
output ports, they contribute to the entanglement. “A given
individual photon pair” is, thus, responsible either for the
local nonclassicality in one of the output ports or for their
entanglement. Never for both. Propagation through the beam
splitter can, thus, be viewed as the process of breaking photon
pairs (antibunching) arriving at the same input port and gluing
(bunching) of photons from a given pair coming from different
input ports. Whereas the first process disturbs local squeezing
and supports entanglement, the second process strengthens
squeezing at the expense of entanglement. The global NI Incl

is equal twice the number Bp of photon pairs and, as such,
indicates an appropriate choice of this nonclassicality resource
quantifier.

Detailed analysis of the formulas in Eq. (31) shows that the
local marginal states are nonclassical only if the transmissivity
T lies in certain interval around 1

2 :

T ∈
(

1

2
− 1

2
√

Bp + 1
,
1

2
+ 1

2
√

Bp + 1

)
. (32)

It holds that the larger is the mean photon-pair number Bp,
the narrower is the interval. The optimal transmissivity T

maximizing the local NIs I
(j )
ncl equals 1

2 . In this case, the
entanglement of the incident twin beam is completely and
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(a)

(b)

FIG. 4. (a) Local nonclassicality invariant I
(1)
ncl and (b) continuous

Lee nonclassicality depth τ1 (including negative values) at the output
port 1 of the beam splitter as a function of the mean photon-pair
number Bp and the beam-splitter transmissivity T for pure twin beam
states. In panels (a) and (b), the blue dark gray plain surface at I (1)

ncl = 0
and τ1 = 0 shows the boundary between the classical and nonclassical
domains.

equally transferred into the local nonclassicalities of the two
output modes. On the other hand, the twin beam loses its
entanglement only when T = 1

2 . In this case, all the incident
photon pairs stick together (bunch) at the beam splitter
suppressing completely their entanglement. Hand in hand, the
local NIs I

(1)
ncl = I

(2)
ncl attain their maximal values. This can be

interpreted such that the initial entanglement is transferred
into the squeezing of the marginal output fields [51]. These
effects are shown in Figs. 4(a) and 5(a) for the dependencies
of the local NI I

(1)
ncl and EI Ient on the transmissivity T

(a)

(b)

FIG. 5. (a) Entanglement invariant EI and (b) logarithmic neg-
ativity EN after the beam splitter transformation considered as
functions of the mean photon-pair number Bp and the beam-splitter
transmissivity T for pure twin beams states.

and mean photon-pair number Bp. The commonly used Lee
nonclassicality depth τ1 and the logarithmic negativity EN are
shown for comparison in Figs. 4(b) and 5(b). We note that
whereas the values of the Lee nonclassicality depth τ1 cannot
exceed 1

2 , the values of the local NI I
(1)
ncl can be arbitrarily large

depending on the intensity of the twin beam.
Now, we consider general noisy twin beams. It has been

shown in Ref. [36] that whenever the overall noise Bs + Bi

exceeds one, the twin beam is unentangled and, thus, it cannot
generate any nonclassical feature. Even if Bs + Bi < 1, the
mean photon-pair number Bp has to be sufficiently large, as
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(a)

FIG. 6. Diagram (a) shows the nonclassicality and entanglement
invariants for the twin beams states occurring at the output ports of a
beam splitter depending on the mean noise photon number Bn, mean
photon-pair number Bp, and transmissivity T according to Eq. (29)
for Bn ≡ Bs = Bi. The surfaces are plotted at I

(1)
ncl (Bn,Bp,T ) = 0

(orange light gray surface), I
(2)
ncl (Bn,Bp,T ) = 0 (orange light gray),

and EI (Bn,Bp,T ) = 0 (blue dark surface) indicating six different
regions specified in the text and Table II. Diagrams (b) and (c) show
the perpendicular cross sections of diagram (a) taken at chosen values
of Bn = 0.1 and Bp = 0.1, respectively.

given by

Bp >
BsBi

1 − (Bs + Bi)
. (33)

Then, the incident noisy twin beam is entangled and is capable
to provide its entanglement and local nonclassicality after
the beam splitter. However, the general analysis of Eqs. (29)
and (30) leads to the conclusion that the noise only degrades the
nonclassical behavior independently whether it is manifested
by local nonclassicality or entanglement. The stronger the
noise, the weaker the nonclassical features.

To provide a deeper insight into the role of noise, we analyze
two special cases: in the first one, the noise is equally divided
into both modes of the incident twin beam, while noise occurs
only in one mode of the incident twin beam in the second case.

When noise occurs in both modes of the incident twin
beam (Bn ≡ Bs = Bi), the globally nonclassical output states
can be divided into three groups. They are displayed in the
“phase diagram” in Fig. 6. In this diagram, the surfaces
I

(1)
ncl (Bn,Bp,T ) = 0 and Ient(Bn,Bp,T ) = 0 are shown. They

identify four different regions belonging to different groups of
states (see Table II for details). The states exhibiting both

(a)

FIG. 7. Diagram (a) shows the nonclassicality and entanglement
invariants for the twin beams states occurring at the output ports of a
beam splitter depending on the mean noise photon number Bn, mean
photon-pair number Bp, and transmissivity T according to Eq. (29)
for Bs = 0 and Bn = Bi. The surfaces are plotted at I

(1)
ncl (Bn,Bp,T ) =

0 (orange light gray surface), I
(2)
ncl (Bn,Bp,T ) = 0 (green dark gray

surfaces), and EI (Bn,Bp,T ) = 0 (blue dark surface) indicating six
different regions specified in the text and Table II. Diagrams (b) and
(c) show the perpendicular cross sections of diagram (a) taken at fixed
values of Bn = 0.1 and Bp = 0.1, respectively. These cross sections
are analogous to those in Figs. 6(b) and 6(c).

entanglement and local nonclassicality occur in region I.
In region III, the states are entangled but locally classical.
The locally nonclassical and unentangled states are found in
region IV. In region VI, the unentangled and locally classical
states exist.

The presence of noise in only one mode of the incident twin
beam (Bs = 0,Bi ≡ Bn �= 0) leads to asymmetry between the
output modes. This is shown in Fig. 7, where the surfaces
I

(1)
ncl (Bn,Bp,T ) = 0 and I

(2)
ncl (Bn,Bp,T ) = 0 behave differently.

The symmetry, with respect to the plane for T = 1
2 , which

is clearly visible in Fig. 6, does not exist in Fig. 7. As
a consequence, two additional groups of states are found
in the diagram. In region V, there are unentangled states
with only one marginal field exhibiting local nonclassicality.
The entangled states with only one locally nonclassical field
are found in region II. In detail, mode 1 (2) is locally
nonclassical for T < 1

2 (T > 1
2 ). We note that the EI Ient

is not sensitive to the noise asymmetry, as shown by the
surface Ient(Bn,Bp,T ) = 0 in Fig. 7. It is worth noting that
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positive values of the GNI Incl are exhibited when either
entanglement or local nonclassicality or even both are found.
The negative values of the global NI Incl do not necessarily
mean classicality. The state with the negative GNI Incl can still
be globally nonclassical due to either its entanglement or local
nonclassicality, but not both. The diagram in Fig. 6(a) can serve
as an example. The surface Incl(Bn,Bp,T ) = 0 lies naturally in-
between the surfaces I

(1)
ncl (Bn,Bp,T ) = 0, and Ient(Bn,Bp,T ) =

0 and its position identifies the globally nonclassical states with
Incl < 0.

IV. SQUEEZED VACUUM STATE WITH NOISE

Here, we consider a squeezed vacuum state [5] mixed with
the noise incident on one input port of the beam splitter,
whereas the second input port is left in the vacuum state.
In this case, the nonzero elements of evolution matrices U and
V in Eq. (6) are given as (θ = 0 is assumed)

U11(t) = cosh(gt), U22(t) = 1,

V11(t) = i exp(iθ ) sinh(gt). (34)

The nonzero parameters of the normal characteristic function
CN in Eq. (10) are B1 and C1 as given by B1 = B̃

sq
p + Bs

and C1 = i

√
B̃

sq
p (B̃sq

p + 1). The symbol B̃
sq
p denotes the mean

number of squeezed photons and the symbol Bs stands for the
mean number of the signal noise photons (see also Fig. 2). The
local NIs I

(j )
ncl and EI Ient are easily expressed in terms of the

global NI Incl as follows:

I
(1)
ncl = T 2Incl, I

(2)
ncl = R2Incl, Ient = T RIncl,

Incl = B̃sq
p (1 − 2Bs) − B2

s . (35)

As the local NIs I
(1)
ncl and I

(2)
ncl , as well as the EI Ient

are linearly proportional to the global NI Incl, the global
nonclassicality of the output states immediately guarantees
both local nonclassicalities and entanglement. This occurs
only for the positive values of the global NI Incl. According to
Eq. (35), Incl > 0 provided that the mean noise photon number
Bs in the signal mode is sufficiently small:

Bs <

√
B̃

sq
p
(
B̃

sq
p + 1

)− B̃sq
p . (36)

Following Eq. (35), the mean noise photon number Bs in the
signal mode has to be smaller than 1. Also, the more intense
is the squeezed state, the smaller is the number Bs of accepted
noise photons. We note that the condition, given in Eq. (35), can
immediately be revealed when the global Lee nonclassicality
depth τ is analyzed. As an illustration, the dependencies of
the local NIs I

(1)
ncl and I

(2)
ncl and the EI Ient on the beam-splitter

transmissivity T are plotted in Fig. 8 for the incident noiseless
squeezed states. The greatest values of EI Ient are reached for
the balanced beam splitter (T = 1

2 ). However, some incident
photon pairs are not broken (i.e., split) by the beam splitter and
give rise to nonzero local nonclassicalities I

(1)
ncl and I

(2)
ncl even

in this case.
The strength of squeezing in a given mode is commonly

characterized by a principal squeeze variance λ [52], which is

(a)

(b)

FIG. 8. Invariant nonclassicality parameters: (a) the local non-
classicality invariants I

(1)
ncl (orange light gray surface) and I

(2)
ncl (blue

dark gray surface), and (b) the entanglement invariant Ient versus
the mean number B̃s

p of squeezed photons and the beam-splitter
transmissivity T according to Eq. (35) assuming Bs = 0.

here given by

λj = 1/2 + Bj − |Cj |. (37)

When a given output mode j = 1,2 is locally nonclassical, it
is also squeezed, which corresponds to λj < 1

2 . According to

the relation between the local NI I
(j )
ncl and the principal squeeze

variance λj derived by combining Eqs. (16) and (37),

I
(j )
ncl = (1/2 − λj )(2Bj + 1/2 − λj ), (38)

the smaller is the value of the principal squeeze variance λj

below 1
2 , the greater is the value of the local NI I

(j )
ncl .
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V. TWO SQUEEZED VACUA

Two independent squeezed states are generated by the
Hamiltonian given in Eq. (2) provided that the process of
parametric down-conversion does not occur in the nonlinear
medium (g12 = 0). The solution of the evolution governed by
the Hamiltonian (2) gives us the following nonzero elements
of the evolution matrices U and V:

U11 = cosh(2g11t), V11 = i exp(iκ1) sinh(2g11t),
(39)

U22 = cosh(2g22t), V22 = i exp(iκ2) sinh(2g11t),

where κ1 and κ2 are arbitrary phases. The nonzero coefficients
of the incident covariance matrix AN are given as B1,2 =
B̃s,i

p + Bs,i and C1,2 = exp(iθ1,2)
√

B̃
s,i
p (B̃s,i

p + 1), θj = κj +
π/2 for j = 1,2, where B̃s

p (B̃ i
p) stands for the mean number

of squeezed photons in the signal (idler) mode, whereas the
corresponding mean signal (idler) noise photon number is
denoted as Bs (Bi).

After the beam splitter, the local NIs I
(j )
ncl , EI Ient, and global

NI Incl acquire the form

I
(1)
ncl = T 2B̃s

p

(
B̃s

p + 1
)+ R2B̃ i

p

(
B̃ i

p + 1
)+ T RD̄′

12

× cos(θ1 − θ2) − [
T B̃s

p + RB̃ i
p + T Bs + RBi

]2
,

Incl = B1 + B2 − 2BsBi
[
2B1

(
1 + B̃ i

p

)+ 2B̃ i
p(1 + B1)

+Bi(1 + 2B1) + Bs(1 + 2B2)
]

− 2(BsB1 + BiB2) − (Bs + Bi)
2,

Ient = T R
[−D̄′

12 cos(θ1 − θ2) + (
B̃s

p + B̃ i
p + 2B̃s

pB̃
i
p

)
− (Bs + Bi)

2 − 2
(
B̃s

p − B̃ i
p

)
(Bs − Bi)

]
+BsBi

[
2B̃s

p(1 + Bi) + 2B̃2
p (1 + Bs)

+ 4B̃s
pB̃

i
p + (1 + Bs)(1 + Bi)

]
, (40)

where D̄′
12=2

√
B̃s

p(B̃s
p + 1)B̃ i

p(B̃ i
p + 1), B1=B̃s

p + Bs, B2 =
B i

p + Bi, and, for simplicity, we assumed φ = 0 in Eq. (27).

The formula for I
(2)
ncl is obtained from that for I

(1)
ncl in Eq. (40)

with the substitution s ↔ i.
The global NI Incl does not depend on the relative phase

�θ = θ1 − θ2 of two incident squeezed states, while the local
NIs I

(j )
ncl and EI Ient change with the relative phase �θ . The case

of two equally intense incident noiseless squeezed states, as
graphically analyzed in Fig. 9, shows that the phase difference
�θ plays a crucial role in distributing the nonclassicality
between the output entanglement and local nonclassicalities. If
the phases θ1 and θ2 are equal, the incident photon pairs stick
(bunch) ideally together due to the interference at the beam
splitter and the incident locally nonclassical squeezed states
are moved into the output ports. No photon pair is broken and
so no entanglement is observed. On the other hand, if �θ = π ,
then some incident photon pairs are broken and, thus, the
output squeezing (as well as local nonclassicalities) is weaker.
The broken photon pairs give rise to the entanglement. The
value of EI Ient is maximal for the transmissivity T = 1

2 . In
this case, all the photon pairs are broken, their signal and idler
photons occur in different output ports, and, as a consequence,

(a)

(b)

FIG. 9. (a) Local nonclassicality invariants I
(1)
ncl = I

(2)
ncl and (b)

entanglement invariant Ient versus the phase difference �θ and beam-
splitter transmissivity T for two noiseless squeezed states according to
Eq. (40); B̃s

p = B̃ i
p = 1. In panel (a), the blue surface at I (1)

ncl = I
(2)
ncl = 0

shows the boundary between classical and nonclassical states.

the ideal conditions for entanglement generation are met. Hand
in hand, the vanishing local NIs I

(j )
ncl are found (see Fig. 9).

It is remarkable that the global NI Incl for the equally
intense noiseless squeezed states is given formally by the same
formula as that valid for the noiseless twin beams considering
the mean photon-pair number Bp instead of B̃s

p = B̃ i
p ≡ B̃p.

However, the incident twin beam serves as a source of locally
nonclassical (squeezed) states, whereas the incident squeezed
states provide entangled states at the output of the beam splitter.
The comparison of graphs in Figs. 4(a) and 5(a) with those
in Figs. 10(a) and 10(b) reveals that the incident noiseless
squeezed states generate entangled states for an arbitrary value
of the transmissivity T , but the incident noiseless twin beams
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(a)

(b)

FIG. 10. (a) Local nonclassicality invariant I
(1)
ncl and (b) entangle-

ment invariant Ient versus the beam-splitter transmissivity T and mean
number B̃p of squeezed photons for two noiseless squeezed states
according to Eq. (40); B̃p ≡ B̃s

p = B̃ i
p; �θ = π . In panel (a) the blue

surface at I
(1)
ncl = I

(2)
ncl = 0 shows the boundary between classical and

nonclassical states.

are capable of the generation of the output squeezed states
only in a certain interval of the transmissivity T depending on
the intensity.

Similarly as for the twin beams, the noise diminishes
the global NI Incl [see the formula for Incl in Eq. (40)].
Considering the incident states with B̃s

p = B̃ i
p and Bs = Bi, the

presence of noise leads to the occurrence of the three different
types of globally nonclassical states already discussed in the
connection with the noisy twin beams with symmetric noise.
Regions corresponding to different types of the output states

(a)

FIG. 11. Diagram (a) shows the nonclassicality and entanglement
invariants for the two squeezed vacua occurring at the output
ports of the beam splitter versus the mean noise photon number
Bn, mean number B̃p of squeezed photons, and transmissivity T

assuming Bn ≡ Bs = Bi and B̃p ≡ B̃s
p = B̃ i

p and �θ = π . Surfaces at

I
(j )
ncl (Bn,B̃p,T ) = 0 (j = 1,2) (orange light gray) and Ient(Bn,B̃p,T ) =

0 (blue dark gray) are shown surrounding different regions specified
in Table II. Diagrams (b) and (c) show the perpendicular cross sections
of diagram (a) taken at given values of Bn = 0.1 and B̃p = 0.1,
respectively. These cross sections can be compared with those in
panels (b) and (c) in Figs. 6 and 7.

are shown in the diagram in Fig. 11(a) that can be compared
with that of Fig. 6(a).

VI. TWIN BEAM MIXED WITH SQUEEZED STATES

Finally, we analyze an interplay of noiseless twin beams
and equally populated noiseless squeezed states (�θ = 0)
in forming the output state at the beam splitter with phase
φ. Such state is generated by the Hamiltonian (2) assuming
g11 = g22 = g and described by the following elements of the
evolution matrices U and V:

U11 = U22 = cosh(g12t) cosh(2gt),

V11 = V22 = i cosh(g12t) sinh(2gt),

U12 = U21 = sinh(g12t) sinh(2gt),

V12 = V21 = i sinh(g12t) cosh(2gt). (41)

Introducing the mean photon-pair number Bp as Bp =
sinh2(g12t) and mean number B̃p of squeezed photons per
mode, B̃p = sinh2(2gt), the coefficients of the covariance
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matrix AN are found in the form

B1 = B2 = Bp + B̃p + 2BpB̃p,

C1 = C2 = i

√
B̃p(B̃p + 1)(2Bp + 1),

D12 = i
√

Bp(Bp + 1)(2B̃p + 1),

D̄12 = −2
√

Bp(Bp + 1)B̃p(B̃p + 1). (42)

The local NIs I
(j )
ncl , EI Ient, and global NI Incl are then derived

as follows:

I
(1,2)
ncl = [1 − 4T R sin2(φ)]B̃p(B̃p + 1) + 4T RBp(Bp + 1)

−(B̃p − Bp)2 ± K,

K = 4
√

T R cos(φ)
√

Bp(Bp + 1)B̃p(B̃p + 1),

Ient = (T − R)2Bp(Bp + 1) + 4T R sin2(φ)B̃p(B̃p + 1),

Incl = 2(Bp + B̃p + 2BpB̃p). (43)

The formula for the global NI Incl, given in Eq. (43), shows that
both parametric down-conversion and second-subharmonic
generation contribute to the global NI making Incl always
positive. Moreover, both processes enhance each other in
producing larger values of the global NI. The greater is the
mean photon-pair number Bp and also the greater is the mean
number B̃p of squeezed photons, the greater is the global NI Incl

(see Fig. 12). Additionally, both LNI I
(j )
ncl and EI Ient become

dependent on the phase φ of the beam splitter.
Provided that the phases of the incident squeezed states

equal (φ = nπ, n ∈ Z), photons in pairs stick together (bunch)
completely when propagating through the beam splitter and
so they cannot contribute to the entanglement in the output
state. In this case, the entanglement originates only in photon
pairs of the incident twin beam. When T = 1

2 , all photons

FIG. 12. Global nonclassicality invariant Incl as a function of the
mean photon-pair number Bp and mean number B̃p of squeezed
photons considering the noiseless twin beams and squeezed states.

FIG. 13. Local nonclassicality invariants I
(1)
ncl (blue dark upper

surface) and I
(2)
ncl (orange light colored lower surface) versus the beam-

splitter transmissivity T and mean photon-pair number Bp assuming
Bp = B̃p appropriate for the noiseless twin beams and squeezed states
according to Eq. (43) assuming φ = 0.

in pairs from the twin beam are glued and so the output
state is separable. Contrary to this, the local NIs I

(j )
ncl depend

on both mean photon-pair number Bp and mean number B̃p

of squeezed photons. The fields characterizing photon pairs
in individual output ports and originating in the incident
squeezed states and the incident twin beam interfere, causing
the asymmetry between the output ports. Depending on the
parity of n one obtains the maximal local NI I

(1)
ncl (I (2)

ncl ) if
n = 2k(n = 2k + 1), k ∈ Z. This asymmetry is the largest for
T = 1

2 . In this case, the bunched photon pairs are completely
missing in one output port due to completely destructive
interference. On the other hand, constructive interference
provides the greatest number of the bunched photon pairs in
the other output port, guaranteeing the largest attainable value
of its local NI I

(j )
ncl . This behavior is quantified in the graph in

Fig. 13.
If φ = π

2 + nπ , the local NIs are equal (I (1)
ncl = I

(2)
ncl ) and

the state at the beam-splitter output ports acquires a symmetry.
Under these phase relations, also the incident squeezed photon
pairs contribute, together with the twin-beam photon pairs, to
the entanglement. It is worth noting that for Bp = B̃p all the
state quantifiers are the same: I (1)

ncl = I
(2)
ncl = Ient = Bp(Bp + 1).

VII. CONCLUSIONS

Local and global invariants of the general two-mode
Gaussian states have been used to construct a specific local
nonclassicality quantifier and entanglement quantifier. These
quantifiers applied, respectively, to the single-mode marginal
states and the whole two-mode state add together to give a
quantity that is invariant under global linear unitary trans-
formations. This invariant then quantifies the nonclassicality
resources of Gaussian states. Remarkably, this invariant is
linearly proportional to the number of photon pairs in the
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noiseless Gaussian states. The general results have been used
to study the beam-splitter transformations of fields composed
of photon pairs and additional noisy photons. Twin beams,
squeezed states, as well as their combinations have been
considered as important examples. The behavior of photon
pairs at the beam splitter causing their breaking or gluing
(i.e., antibunching or bunching) has been used to explain the
flow of nonclassical resources between local nonclassicalities
(implying squeezing) and entanglement. A complete transfer
of the entanglement of incident twin beams into the squeezing
of the output modes has been observed. Also, the complete
transfer of the incident squeezing into the entanglement of the
output fields can be reached. The role of noise in the transfer
of the nonclassicality invariant via the beam splitter has been
elucidated on several examples.
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APPENDIX: QUASIPROBABILITY DISTRIBUTIONS AND
CHARACTERISTIC FUNCTIONS

For the completeness and clarity of our presentation, here
we give a few well-known formulas relating the quantities
given in Table II, as derived by Cahill and Glauber [53].
This approach is a generalization of the standard Wigner and
Glauber formalisms.

The Cahill-Glauber s-parametrized (or s-ordered)
quasiprobability distribution (QPD, quasidistribution),
W (s)(α) for an N -mode bosonic state ρ̂ can be defined for a
real parameter s ∈ [−1,1] as

W (s)(α) = Tr[ρ̂T̂ (s)(α)], (A1)

which is the mean value of the operator T̂ (α) defined as the
Fourier transform

T̂ (s)(α) =
∫

D̂(s)(β) exp

(∑
n

αnβ
∗
n − c.c.

)
d2β ′ (A2)

of the s-parametrized multimode displacement operator given
by

D̂(s)(β) =
∏
n

D̂(s)(βn)

=
∏
n

exp
(
βnâ

†
n − β∗

n ân + s

2
|βn|2

)
. (A3)

Here, ân (â†
n) is the bosonic annihilation (creation) operator for

the nth mode (n = 1,2, . . . ,N ). The complex multivariable
α ≡ {αn} = (α1,α2, . . . ,αN ) is applied here as in Eq. (1),
and, analogously β ≡ {βn} = (β1,β2, . . . ,βN ). The symbol
c.c. denotes the complex conjugate term, and the integra-
tion is performed over d2β ′ ≡ d2{βn/π} = π−N

∏
n d2βn =

π−N
∏

n d(Reβn)d(Imβn).

In the special cases for s = 1,0, − 1, the QPD W (s)(α)
reduces to the popular Glauber-Sudarshan P , Wigner W , and
Husimi Q functions corresponding to the normal, symmetric,
and antinormal orderings, respectively. Our analysis in the
paper is focused on the normally and symmetrically ordered
functions. We recall that the standard definition of nonclassi-
cality is based on the nonpositivity of the P function.

The statistical operator ρ̂ corresponding to a given QPD
can be calculated as follows:

ρ̂ =
∫

W (s)(α) T̂ (−s)(α) d2α′, (A4)

which, in the special case for s = 1, reduces to Eq. (1)
describing the P representation of a given state ρ̂.

The N -mode s-parameterized characteristic function
C(s)(β) for a given state ρ̂ can be defined as

C(s)(β) = Tr[ρ̂D̂(s)(β)], (A5)

which is the mean value of the multimode displacement oper-
ator D̂(s)(β). We recall that our description of nonclassicality
and entanglement is based on two special cases of these
characteristic functions. Specifically, the normal characteristic
function CN , defined in Eq. (7), is the special case of
Eq. (A5) for s = 1 assuming two-mode (N = 2) field. While
the symmetric characteristic function CS is given by Eq. (A5)
for s = 0 and N = 2.

For Gaussian states, which are solely analyzed in this paper,
the characteristic function C(s)(β) can uniquely be defined via
the covariance matrices, which are given by Eq. (10) for normal
ordering (s = 1) and by Eq. (17) for symmetric ordering (s =
0) for a two-mode case.

By comparing the definitions in Eqs. (A1) and (A5),
it is easy to conclude that the s-parameterized QPD and
characteristic function for any s ∈ [−1,1] are related via the
Fourier transform, i.e.,

W (s)(α) =
∫

C(s)(β)
∏
n

exp(αnβ
∗
n − α∗

nβn)d2β ′, (A6)

C(s)(β) =
∫

W (s)(α)
∏
n

exp(α∗
nβn − αnβ

∗
n )d2α′, (A7)

where the integration over d2α′ is defined analogously to
d2β ′, as in Eq. (A2). The normalization conditions are as
follows: ∫

W (s)(α)d2α′ = C(s)(β = 0) = 1. (A8)

The relation between the QPDs W (s1)(α) and W (s2)(α),
assuming s2 < s1, is simply given by

W (s2)(α) =
(

2

s1 − s2

)M ∫
W (s1)(β)

× exp

(
− 2

s1 − s2

∑
n

|αn − βn|2
)

d2β ′. (A9)

This means that the QPD W (s2)(α) with any parameter
s2 ∈ [−1,1] can easily be obtained by mixing the P func-
tion (corresponding to s1 = 1) with the proper amount of
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Gaussian noise. The relation between the characteristic func-
tions corresponding to different parameters s1 and s2 reads
as

C(s2)(β) = C(s1)(β) exp

(
s2 − s1

2

∑
n

|βn|2
)

. (A10)

It is valid for any s1,s2 ∈ [−1,1], contrary to the analogous
relation in Eq. (A9) for the QPDs. We applied Eq. (A10)
to calculate the symmetrically ordered characteristic function
CS ≡ C(0) from the normally ordered characteristic function
CN ≡ C(1), given by Eq. (7), for two-mode states.
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