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Here we describe additional experimental details including the maximum likelihood method, which
ensures the positivity of the reconstructed correlation matrix R, the directly measured matrices
(including the separable state |V V 〉), and other methods related to the inseparable Werner states.
We also plotted the measured values of the relevant entanglement witnesses. Moreover, we analyzed
the efficiency for our method in comparison to quantum state tomography.

Hilbert-Schmidt representation and correlation
matrix T

In our experiment we study photonic qubits encoded
in polarization of single photons. The associated Pauli
matrices are defined as σ1 = |D〉〈D| − |A〉〈A|, σ2 =
|L〉〈L|−|R〉〈R|, σ3 = |H〉〈H|−|V 〉〈V |, where each capital
letter corresponds to a particular polarization direction
state (i.e., D for diagonal, A for antidiagonal, L for left-
circular, R for right-circular, H for horizontal, and V for
vertical polarizations).

A general two-qubit state can be expressed in the stan-
dard Hilbert-Schmidt form as

ρ =
1

4

(
I⊗ I+~x ·~σ⊗ I+ I⊗~y ·~σ+

3∑
i,j=1

Ti,j σi⊗σj
)
, (1)

where ~σ = [σ1, σ2, σ3]. The elements of the Bloch vec-
tors read as xi = Tr[ρ(σi ⊗ I)] and yi = Tr[ρ(I ⊗ σi)],
respectively. Finally, the correlation matrix T is defined
as Ti,j = Tr[ρ(σi ⊗ σj)] for i, j = 1, 2, 3.

Coincidence-count rates

Concerning the fourfold-coincidence-count rates in our
experiment: the two entangled pairs were generated
about 24 times per 10 min., while the two separable states
were generated about 92 times per 10 min. We note
that these numbers are the generation rates. Because of
random bunching on the beam splitter, the coincidence-
count rates out of the dip were half smaller. Also when
local projections were applied, the rates were adequately
decreased. As a result, we have obtained only about three
coincidences outside the dip for the two entangled pairs
per 10 min, i.e., 24/2, because of the use of the beam
splitter, and a fourth of this value, because of the local
polarization projections.

Experimentally measured matrices

The experimentally obtained matrices R(exp) ≡
R(exp) ± δR(exp) for the assorted states read as

R(exp)
sep =

.099± .108 .088± .109 .124± .109
· · · .034± .108 .113± .108
· · · · · · .980± .147

 , (2)
R(exp)

mix =

.017± .031 .006± .031 .007± .031
· · · .013± .033 .016± .033
· · · · · · .006± .029

 , (3)
R(exp)

ent =

.990± .115 .077± .087 .008± .087
· · · .985± .110 .013± .110
· · · · · · .959± .079

 , (4)
where x = −x and δR(exp)

i,j are their experimental errors.

Maximum likelihood method

To ensure the positivity of the reconstructed matrices,
we use the maximum likelihood method developed for
quantum state tomography (see, e.g., Ref. [1]). We find
the physical matrix R = [Ri,j ], which is the closest to the
experimental but unphysical matrix Rexp = [R

(exp)
i,j ], by

maximizing the logarithmic likelihood function

L = −
3∑

1≤i≤j

(
R

(exp)
i,j −Ri,j

δR
(exp)
i,j

)2

(5)

subject to 0 ≤ rj ≤ 1 for j = 1, 2, 3 and [r1, r2, r3] =
eig(R). This condition is equivalent to requiring the
probabilities of coincidence detections to be defined prop-
erly in any basis. Our maximum-likelihood estimates
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FIG. S1. Experimentally and theoretically obtained val-
ues of the Bell nonlocality measure M , entropic witness E,
and fully-entangled fraction F . The bright (dark) bars cor-
respond to theoretical (experimental) values. The associated
uncertainties are marked by red frames.

read as

Rsep ≈

.008 .008 .086
· · · .008 .091
· · · · · · .982

 , (6)

Rmix ≈

.018 .004 .004
· · · .015 .011
· · · · · · .010

 , (7)

Rent ≈

.963 .038 .010
· · · .961 .012
· · · · · · .959

 . (8)

The corresponding spectra calculated for the ex-
act maximum likelihood estimates are eig(Rmix) =
[0.019, 0.000, 0.024], eig(Rent) = [0.919, 1.000, 0.965] and
Rsep = [0.000, 0.998, 0.000].

The matrices R are shifted on average by a fraction of
0.19, 0.02, 0.07 of δR(exp) from R(exp) for the pure sepa-
rable, maximally mixed, and singlet states, respectively.
Thus, we can assume that R(exp) ≈ R. The largest er-
rors occur for the pure states. This is because the state is
aligned with only one of the eigenstates for the measure-
ment apparatus. In this case, we observe relatively low
coincidence rates for the other eigenstates of the appara-
tus. Each matrix element Ri,j depends on four projec-
tions onto eigenstates of σi⊗σj performed simultaneously
by Bob.

Measured entanglement witnesses

Our maximum likelihood estimates were used to calcu-
late the values of the entanglement witnesses as summa-
rized in Fig. S1 and the Table I in the main article. The
errors introduced by the setup were estimated by com-
paring the results of the measured etalon states (|V V 〉
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FIG. S2. Time t (in units of τ) between generating two two-
photon states versus the effective single-photon detection ef-
ficiency η. This time t is required for performing 103 suc-
cessful measurements for each element of the R matrix (in
our method) and the density matrix ρ (in quantum tomogra-
phy) with two photon pairs. The success rate of generating
two pairs of photons from a single pump pulse is assumed
to be p2 = 0.0001, 1 (i.e., p = 0.01, 1 for a single pair gen-
erated in either forward or backward direction). The solid
and long-dashed curves correspond to measuring R matrix for
p = 0.1 and p = 1, respectively. The short-dashed (dashed-
dotted) curves correspond to quantum tomography for p = 0.1
(p = 1). In our experiment, the repetition rate of the pump is
set to 1/τ = 80MHz (τ = 12.5 ns). This rate is limited by the
dead time of the detectors (typically about 50 ns). However,
in our experiment the possibility of a photon pair reaching a
detector during its dead time can be neglected due to losses
(filtering) in the setup. Measuring the R matrix, with 103

iterations per matrix element in a period of time of order of
1 s, would be possible in our detection setup with η > 0.1
and p ≈ 1. In the case of a highly-efficient or deterministic
two-photon source (p = 1), the R-matrix method can be faster
than quantum tomography if η >

√
3/2. For p = 1 both meth-

ods are equally fast at point X = (0.8660, 10667τ), where the
whole measurement of R could take less than 1ms. However,
in our proof-of-principle experiment, this time is much longer
due to technological losses introduced by the setup and filter-
ing the signal to ensure indistinguishability of the measured
photons. This situation corresponds to pη2 ≈ 6.4× 10−6 (see
solid curve at η = 0.0254).
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and I/4) with the theoretical predictions. A compari-
son of the total detection times versus efficiencies for our
method and quantum state tomography is presented in
Fig. S2.

The Werner states

The spectrum of RW matrix of the Werner states
can be expressed as eig(RW) ≈ p2eig(Rent) +
(1 − p)2eig(Rmix). This is approximation is valid if
eig(Rent) � eig(Rmix) ≈ 0 and the resulting Tr

√
RW

is linearly dependent on the mixing parameter p [for the
ideal Werner states F = (3p− 1)/2].
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