
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 95, 030102(R) (2017)

Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device
without quantum state tomography
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We propose and experimentally implement an efficient procedure based on entanglement swapping to determine
the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995)] and the fully entangled fraction of
Bennett et al. [Phys. Rev. A 54, 3824 (1996)] of an arbitrary two-qubit polarization-encoded state. The nonlocality
measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over
all measurement settings. By using simultaneously two copies of a given state, we measure directly only six
parameters. This is an experimental determination of these quantities without quantum state tomography or
continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the
measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction
and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular,
we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could
especially be useful for quantum communication protocols based on entanglement swapping.
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Experimental methods for detecting and quantifying quan-
tum entanglement [1,2] and Bell nonlocality (usually identified
with the violation of a Bell inequality) [3,4] are of paramount
importance for practical quantum information processing [5],
quantum cryptography (e.g., quantum key distribution) [6],
and quantum communication (e.g., quantum teleportation)
[7,8]. Since the seminal experiments of Aspect et al. [9–11]
in the early 1980’s, various methods of detecting entangle-
ment and nonlocality have been developed (for reviews, see
Refs. [12,13]). Note that only very recently loophole-free tests
of Bell nonlocality have been performed [14,15]. Nevertheless,
measuring a degree of these effects seems to be much more
difficult and important rather than only detecting them.

Thus, the question arises how to determine a measure
of entanglement or nonlocality [12]. These can include the
following for two qubits: (i) the negativity N [16,17], related
to the Peres-Horodecki inseparability criterion [18,19], which
is a measure of the entanglement cost under the operations
preserving the positivity of the partial transpose of a state
[20,21] and an estimator of the entanglement dimensionality,
i.e., the number of the entangled degrees of freedom of two
subsystems [22]; (ii) the concurrence C, corresponding to the
entanglement of formation [23]; or (iii) the Bell nonlocality
measure B of Refs. [24–27] corresponding the violation of the
Bell inequality derived by Clauser, Horne, Shimony, and Holt
(CHSH) [28], which is optimized over all measurements (i.e.,
detector settings) on the sides A (Alice) and B (Bob). We note
that these measures are equivalent as N = C = B for, e.g.,
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phase-damped pure states (i.e., special kinds of Bell diagonal
states) [26,29].

Here, we experimentally implement a direct and efficient
method to conclusively detect and measure Bell nonlocality for
a two-qubit mixed state without quantum state tomography
(QST) and monitoring all measurement bases. In particular,
for phase-damped two-qubit pure states, our method reduces
to determining the concurrence and negativity. The presented
approach is more efficient than QST, as we measure only partial
information about a given state to measure nonlocality. More-
over, our detection of nonlocality is conclusive, in contrast
to previous inconclusive detections of nonlocality witnesses
without QST. We also measure another entanglement witness
and estimator, i.e., the fully entangled fraction (FEF) f

of a two-qubit state ρ, which is defined as [30] f (ρ) =
max|e〉〈e|ρ|e〉, where the maximum is taken over all maximally
entangled states |e〉. The FEF is a useful concept in describ-
ing the fidelity of realistic quantum information protocols
including dense coding, teleportation, entanglement swapping,
quantum cryptography based on Bell’s inequality, and, in
general, multiqubit entanglement (see, e.g., Refs. [30–40]).

One could argue that the simplest experimental method
for quantifying entanglement or nonlocality is to perform a
complete QST to determine a given bipartite state ρ, and then to
calculate (from ρ) the correlation measures related to a specific
quantum information task. However, for the simplest case of
two qubits in a general mixed state ρ, at least 15 measurements
should be performed on identical copies of ρ to determine all
16 real parameters of ρ. Now the question arises whether a
measure of quantum correlations could be determined directly
or at least by a smaller number of measurements corresponding
to an incomplete QST.

QST seems to be the easiest method of measuring entan-
glement or nonlocality. However, various alternative meth-
ods, for determining entanglement measures and nonlinear
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BARTKIEWICZ, LEMR, ČERNOCH, AND MIRANOWICZ PHYSICAL REVIEW A 95, 030102(R) (2017)

entanglement witnesses, have been attracting increasing inter-
est [27,41–49]. Unfortunately, these methods (including those
for a direct measurement of the Wootters concurrence [23]) use
simultaneously at least two copies of a given state, which is not
necessary for QST. Thus, one can raise the following objection:
What is the advantage of using such direct methods? Indeed,
these methods usually require a simultaneous manipulation
with a few copies of a given state, while standard full
QST can be based entirely on local measurements of a
sequence of single qubits. There are reasons to look for
alternative methods to QST: (i) For us, the most interesting and
fundamental question is whether one can directly determine
a nonlocality measure and estimate entanglement measures
without knowing completely a given density matrix and
monitoring all measurement bases. We show that it is possible
both theoretically and experimentally. Clearly, QST collects
more information than necessary to estimate a given quantum
correlation quantity. Moreover, QST methods have some
serious drawbacks, e.g.: (ii) The postprocessing of measured
data in full QST of a state of N qubits scales exponentially with
N . For example, Ref. [50] reported that experiments with eight
qubits were performed within 8 h, while the postprocessing
of the measured data for full QST took almost a week.
(iii) Another fundamental problem is the nonphysicality of
reconstructed states via standard QST. For example, Ref. [51]
reported that a standard experimental QST of optical two-qubit
states results in reconstructing nonphysical density matrices
(i.e., with negative eigenvalues) about 75% of the time for low-
entropy, highly entangled states. Then, a maximum-likelihood
method or other techniques have to be applied to change such
a nonphysical matrix into a physical one [51,52].

Various theoretical proposals to efficiently detect and
quantify entanglement and nonlocality were described in, e.g.,
Refs. [27,41–47]. The first experimental direct measurement
of a nonlinear entanglement witness was reported in Ref. [48],
while the first experimental determination of an entanglement
measure (i.e., the concurrence, being equal to the negativity
and the CHSH measure) for a two-qubit pure state was
reported in Ref. [49]. An experimental method for measuring
a collective universal witness of any two-qubit mixed state
(encoded in photon polarization) was proposed in Ref. [47]. It
was later extended to probably the first method for measuring
the negativity of an arbitrary two-qubit state [53,54]. All these
theoretical and experimental studies show the fundamental
difficulties not only in quantifying, but even in conclusively
detecting, the entanglement or nonlocality of a two-qubit state
without QST.

The CHSH inequality has been mostly used for detecting
and quantifying [27] the Bell nonlocality of two qubits. This
can be done by determining an optimal set of measurements for
the correlated subsystems. If one deals with an unknown state,
this approach requires applying all possible two-measurement
settings for each qubit to find the optimal ones. However, as
shown in Ref. [27], a more direct experimental procedure,
which requires using only six detector settings, can be applied
to find the maximal violation of the CHSH inequality for an
arbitrary unknown two-qubit state. To avoid implementing
inefficient procedures to be optimized over all possible
measurement bases, this alternative approach of Ref. [27]
requires simultaneously using two copies of a given two-qubit

state. The estimation of the amount of entanglement from the
maximum violation of the CHSH inequality was studied in,
e.g., Ref. [27].

We report here an experimental implementation of our
six-step measurement procedure for determining the Bell
nonlocality and fully entangled fraction with two copies of
the investigated state and the singlet-state projection im-
plemented by Hong-Ou-Mandel (anti)coalescence (see, e.g.,
Refs. [27,48,55–59]). In our experiment, we use polarization-
encoded qubits. Our approach utilizes only a single two-photon
interference event, instead of two required for standard non-
linear approaches [48,60]. However, we are able to measure
the same nonlinear entropic entanglement witness, as in
Refs. [48,60], for subsystems of equal purity.

The experimental complexity of our method of measuring
the optimal CHSH inequality violation and the FEF is
comparable to that of measuring the collectibility witness
of Refs. [61–63] and can be implemented with the same
experimental resources. Note that, contrary to the FEF and
Bell nonlocality measure, the usefulness of the collectibility
witness is limited mainly to pure or almost pure states only
[61–63]. We apply the same method to measure both FEF and
Bell nonlocality.

Entanglement swapping, which is a slightly generalized
version of quantum teleportation, enables, together with
single-qubit operations, universal quantum computation [64]
and long-distance quantum communications [65,66]. Thus,
this is not surprising that entanglement-swapping-type se-
tups have been applied in many fundamental experiments
(including the setup of Ref. [48] for measuring a nonlinear
witness of entanglement without QST). This shows the
universality of quantum information setups, which, after a
minor modification, can be used for completely different
purposes.

Theoretical framework. We study the entanglement and
Bell nonlocality (corresponding to the CHSH inequal-
ity violation) of the polarization states of two pho-
tons [67]. The CHSH inequality for a two-qubit state
ρ ≡ ρab can be written as [12,28] |Tr (ρ BCHSH)| � 2.

The maximum possible average value of the CHSH
operator [24] is maxBCHSH |Tr(ρBCHSH)| = 2

√
g(ρ), where

BCHSH = â · �σ ⊗ (b̂ + b̂′) · �σ + a′ · �σ ⊗ (b̂ − b̂′) · �σ depends
on real unit vectors â,b̂,â′,b̂′. The function g(ρ) = Tr R −
min[eig(R)] � 2 depends on the eigenvalues eig(R) of a real
symmetric matrix R ≡ T T T , which is described with only
six parameters, e.g., Ri,j with i � j , where the correlation
matrix T is defined as Ti,j = Tr[ρ(σi ⊗ σj )] for i,j = 1,2,3.
As shown in Ref. [27], these six elements of R can be
measured directly using two copies of ρ (i.e., ρ1 and ρ2).
This is a consequence of the following identity, Ri,j =
Tr[(ρa1b1 ⊗ ρa2b2 )Sa1a2 ⊗ (σi ⊗ σj )b1b2 ], where ρa1b1 ≡ ρ1 and
ρa2b2 ≡ ρ2 for the subsystems a and b, whereas the operator
Sa1a2 = (I − 4|�−〉〈�−|)a1a2 is given in terms of the singlet
state |�−〉 = (|HV 〉 − |V H 〉)/√2 and the two-qubit identity
operation I , where H (V ) stands for horizontal (vertical) po-
larization. The CHSH inequality |Tr(ρBCHSH)| � 2 is violated
if f (ρ) > 1/2. Here, we apply the Bell nonlocality measure
defined as [19] M = g − 1 = Tr R − min[eig(R)] − 1, which
is positive if and only if the CHSH inequality is violated
and reaches its maximum M = 1 for maximally entangled
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FIG. 1. Amount of entanglement measured with the negativity N vs (a) the Bell nonlocality M , (b) entropic witness E, and (c) fully
entangled fraction F for 105 two-qubit states randomly generated by a Monte Carlo simulation. Entangled states for which an entanglement
witness is successful in detecting inseparability are marked with light cyan dots. The entangled states that are ignored by the respective witness
are marked with dark cyan dots. The Werner (W), Horodecki (H), and pure (P) states correspond to the upper solid, dashed, and lower solid
curves, respectively. In particular, F allows detecting the entanglement of the Werner states W for the whole range of their mixing parameter
p > 1/3. A given witness detects all the entangled states of the negativity above its respective threshold, i.e., NM = 0.5607, NE = 0.4120, and
NF = 0.2071.

states. Note that M is trivially related to B = √
max(M,0)

studied in Refs. [26,27,29]. Moreover, we apply another
entanglement witness, i.e., the (modified) FEF F (ρ) [30]
defined as F = 2f − 1 = 1

2 (Tr
√

R − 1), which is a rescaled
version of the standard FEF f (ρ) [34,68,69]. Note that
F < 0 for all separable states and is equal to the negativity
for the Werner and pure states. These FEFs correspond
to the fidelity of various entanglement-assisted processes
maximized over all possible local unitary operations. The FEF

F detects more entangled states than both M and the nonlinear
entropic witness E = 2(Tr ρ2

ab − minn=a,b Tr ρ2
n) = 1

2 (Tr R −
1 + |Tr(ρ2

a − ρ2
b )|), which was measured in Ref. [48]. Note

that E = 1
2 (Tr R − 1) for Tr ρ2

a = Tr ρ2
b . The spectrum of R,

used in the definition of F , is measured unavoidably while
measuring M = g(ρ) − 1, which quantifies the optimal CHSH
violation. Thus, the optimal CHSH inequality is fundamentally
more powerful in detecting quantum entanglement than its
original form in an unoptimized measurement basis.
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FIG. 2. Experimental scheme for determining the Bell nonlocality measure and fully entangled fraction of polarization-encoded two-qubit
states with linear optics via the elements of the R matrix. This setup consists of narrow-band filters (F), half-wave plates (HWPs), quarter-wave
plates (QWPs), beam dividers (BDs), detectors (D), a fiber beam splitter (FBS), polarization controllers (PCs), lenses (L), BBO crystals,
mirrors, and motorized-translation stages (M). Note that this is an entanglement-swapping device, where the swapping is implemented by
the FBS. The setup is powered by a laser system described in the text. The polarization-dispersion line (PDL) compensates the polarization
dispersion introduced by the BBO crystals in the four-photon-source module (4PS). In this module, two copies of a two-qubit state ρ1 and
ρ2 are prepared in the modes (a1,b1) and (a2,b2), respectively. We name the last two modules as belonging to Alice and Bob, respectively. In
Alice’s module, qubit a1 is overlapped on an 50:50 beam splitter with qubit a2 to implement the measurement of Sa1a2 = (I − 4|�−〉〈�−|)a1a2 .
In Bob’s module, qubits b1 and b2 are projected onto the eigenstates of (σi ⊗ σj )b1b2 for i � j and i,j = 1,2,3 by the respective polarizer
(POL) and detected at the respective detector. The fourfold coincidence counts are then processed to estimate the values of Ri,j .
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The performance of a given entanglement witness can
conveniently be studied with one-parameter (0 � p � 1)
classes of states, including the Werner states W(p) = (1 −
p)I/4 + p|�−〉〈�−| [29,70], the Horodecki states H(p) =
p|HH 〉〈HH | + (1 − p)|�−〉〈�−| [19], and pure states P =
(
√

p|HH 〉 + √
1 − p|V V 〉)(H.c.). A comparison of the Bell

nonlocality measure and entanglement witnesses for randomly
generated states is presented in Fig. 1. These results show how
well the negativity can be estimated by these entanglement
witnesses.

Experiment. In our experiment we used a four-photon
source shown in Fig. 2. This multiphoton source is pumped
by a Coherent Mira femtosecond laser at a repetition rate
of 80 MHz. The wavelength of the pulses is then converted
in the process of second-harmonic generation (SHG) to
413 nm. On average, the mean power of the upconverted
pumping beam is circa 300 mW. Next, the beam travels
through a polarization-dispersion line (PDL) that compensates
the polarization dispersion caused by the β-BaB2O4 crystals
(BBO) used to create pairs of photons. The PDL was build by
placing a half-wave plate (HWP) between two beam displacers
(BDs). This construction allows us to tune the relative optical
path of photons of selected polarization by tilting the BDs. The
pumping beam then powers a BBO crystal cascade [71], which
generates (in the process of type-I spontaneous parametric
downconversion) pairs of horizontally and vertically polarized
photons. The polarization and phase of a single photon pair
can be adjusted by setting the correct polarization of the
pumping beam. The beam passes through a quarter-wave plate
(QWP) before and after being reflected by a mirror. This QWP
compensates the polarization dispersion in the BBO crystals,
which are now pumped in the opposite direction and create a
second pair of photons.

The created pairs of photons are reflected by axillary mirrors
to Alice and Bob who process the relevant photons (a1,a2)
and (b1,b2) from each pair, respectively. The polarizations of
photons b1 and b2 are first rotated by QWPs and HWPs and then
projected by polarizers (POLs) to match an eigenstate of (σm ⊗
σn)b1b2 . Next, the photons are coupled to single-mode fibers
and detected. Photons a1 and a2 are coupled to fibers directly,
and then overlapped on a balanced fiber beam splitter (FBS)
before being detected. Before entering the fibers photons a1

and a2 (b1 and b2) are filtered with 5 nm (10 nm) interference
filters. Note that entanglement swapping in our setup can be
implemented by the FBS.

The interference strength on the FBS is tuned by a
proper choice of fiber delay and by setting the right position
of the motorized-translation stage (M) associated with the
corresponding mirror in a four-photon source (4PS). For its
two extreme settings, the FBS performs the projective mea-
surements I/2 or |�−〉〈�−|. However, the optical couplers
collect photon pairs generated at random distances from each
other in the BBO crystal due to its group-velocity dispersion.
Thus, a fraction of photons r will not overlap on the FBS,
but can be detected in the same time window of the detectors
as the perfectly overlapping photons, i.e., Alice performs the
[ r

2I + (1 − r)|�−〉〈�−|]
a1a2

measurement. For each source
configuration, we measure this fraction of noninteracting
photons while calibrating the setup and setting the appropriate
delays. Depending on the weight r , Alice performs a projection

FIG. 3. Experimental detection of entanglement witnesses for
the Werner states W(p): (a) Bell nonlocality M , fully entangled
fraction F , and entropic witness E vs mixing parameter p. Our
theoretical results for the perfect Werner states are marked with solid
curves. The systematic deviation from the ideal case (solid curves)
is caused by the fact that our experimentally created singlet state
was not ideally pure and its purity reached circa 93%. Moreover,
our experimentally created mixed state was not totally mixed. The
ideal Werner states are separable for p < 1/3. For these states the
entanglement can be detected with F , E, and M for pF > 1/3,
pE > 1/

√
3, and pM > 1/

√
2, respectively. In (b) we show the

geometric representation of the witnesses. For each witness the
separable states are enclosed by a respective gray boundary.
The coordinate system is given as [r1,r2,r3] = eig(R). The Werner
states for 0 � p � 1 are located on the diagonals connecting points
[0,0,0] and [1,1,1]. The entanglement is detected for non-negative
values of a witness, i.e., for points outside of the gray areas. For F

(the most universal of the three witnesses) this area is the smallest.

on a particular Werner state. Thus, the uncertainty of the
obtained results is limited only by the number of registered
coincidences and the precision of determining the weight r .
In this setup, we typically register one fourfold coincidence
event in 5 min. We collected hundreds of such coincidences
per measurement setting. In our experiment we experimentally
studied two kinds of two-qubit states, namely, the pure sepa-
rable states P(0) = |V V 〉〈V V |, and the Werner states, which
can be entangled even if M < 0 (see Fig. 3). In particular,
we measured the maximally entangled states W(1) and the
completely mixed state W(0). These states were prepared
using the method described in Ref. [63]. The Werner states
are particularly important for quantum technologies because
entanglement purification schemes transform other states into
the Werner states (see Ref. [72] and references therein). Our
measurement results for the Werner states are summarized
in Fig. 3 and Table I. In all these cases, we reconstructed
matrices R and applied the maximum-likelihood method to
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TABLE I. Experimentally and theoretically obtained values of the Bell nonlocality M , entropic witness E, and fully entangled fraction F .

Density matrix M (experiment) E(experiment) F (experiment) M (theory) E(theory) F (theory)

|�−〉〈�−| +0.965 ± 0.043 +0.942 ± 0.022 +0.970 ± 0.031 +1 +1 +1
|V V 〉〈V V | −0.002 ± 0.043 −0.001 ± 0.022 −0.001 ± 0.08 0 0 0
I/4 −0.957 ± 0.043 −0.478 ± 0.022 −0.353 ± 0.141 −1 − 1

2 − 1
2

estimate their spectra. For the remaining experimental results
and technical details, see the Supplemental Material [67].

Conclusions. We reported an experimental method for
determining the Bell nonlocality measure [24] and fully
entangled fraction [30] without quantum state tomography
or scanning of all measurement bases. By applying the
maximum-likelihood method, we demonstrated that direct
measurements of nonlinear entanglement witnesses [47,48]
could be made robust to experimental errors by exploiting the
correlations between them. Our procedure is applicable if the
mean experimental matrix R(exp) can be well approximated
with its maximum-likelihood estimate R [67]. This method
could further be applied to improve the error robustness of
entanglement measures [53].

We measured the Bell nonlocality by means of two-photon
pairs prepared in the same state and six independent measure-
ments in our entanglement-swapping device. In the orthodox
CHSH approach, Alice and Bob perform two measurements
on two copies of a given two-qubit state (four measurements
in total). However, to determine the Bell nonlocality for
an unknown state, they need to perform full quantum state
tomography or to optimize their measurement bases, which
requires performing four measurements in each optimization
step, resulting in many more measurements than in our
experiment.

Moreover, we demonstrated that the fully entangled
fraction F is a better estimator of entanglement than the
Bell nonlocality M and nonlinear entropic witness E,
which was first measured in Ref. [48] via the double

Hong-Ou-Mandel interference. To show this, we measured
the Werner states, which are recognized to be entangled by
a particular entanglement witness if they have a large enough
value of the mixing parameter p (see Fig. 3). For F , this critical
value is pF > 1

3 , which corresponds to the range for which the
Werner states are entangled. For E and M , the entanglement
of the Werner states occurs if pE > 1/

√
3 and pM > 1/

√
2,

respectively.
Our method solves the problem of detecting and quan-

tifying entanglement beyond a simple Bell test in a typical
entanglement-swapping method [73], which can be applied
to, e.g., quantum repeaters [74] and quantum relays [75] in
device-independent quantum communications [76], as well as
to entanglement-assisted quantum error correction [77] and
entanglement purification [72].

We hope that our results could stimulate further research
on measuring such nonlinear properties of quantum systems
as entanglement and nonlocality without performing full
quantum state tomography.
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A.Č. acknowledges financial support by the Czech Science
Foundation under Project No. P205/12/0382. The authors
also acknowledge Project No. LO1305 of the Ministry of
Education, Youth, and Sports of the Czech Republic financing
the infrastructure of their workplace. A.M. acknowledges the
support of a grant from the John Templeton Foundation.

[1] E. Schrödinger, Discussion of probability relations between
separated systems, Math. Proc. Cambridge Philos. Soc. 31, 555
(1935).

[2] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered com-
plete? Phys. Rev. 47, 777 (1935).

[3] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1,
195 (1964).

[4] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics,
2nd ed. (Cambridge University Press, Cambridge, U.K. 2004).

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
U.K., 2010).

[6] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem,
Phys. Rev. Lett. 67, 661 (1991).

[7] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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Imoto, and F. Nori, Optimal two-qubit tomography based on
local and global measurements: Maximal robustness against
errors as described by condition numbers, Phys. Rev. A 90,
062123 (2014).
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