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The coherent process that a single photon simultaneously excites two qubits has recently been theoretically
predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One
Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016)]. We propose
a different approach to observe a similar dynamical process based on a superconducting quantum circuit,
where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous
excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency)
is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard
rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition
and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via
higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with
previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits
a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the
two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference
phenomena in our system.

DOI: 10.1103/PhysRevA.96.063820

I. INTRODUCTION

The light-matter interaction between a quantized electro-
magnetic field and two-level atoms has been the central topic
of quantum optics for half a century, and has developed
into the standard cavity quantum electrodynamics (QED)
theory. In a QED system, if the dipole-field or dipole-dipole
coupling strengths (λ) are weak compared with the cavity
or atomic transition frequencies (ωc and ωq , respectively),
we often routinely adopt the rotating-wave approximation
(RWA). Under the RWA, one can neglect the excitation-
number-nonconserving terms [1–4], which, compared with
the resonant terms, are usually only rapidly oscillating virtual
processes and negligibly contribute to the dynamical evolution
of such a system [5].

In fact, the RWA works well even in the strong-coupling
regime. Only in the ultrastrong- and deep-strong-coupling
regimes [where λ > 0.1 × min (ωc,ωq) and λ > min (ωc,ωq),
respectively] [6–14], the counter-rotating terms have apparent
effects in a QED system [15,16]. The excitation-number-
nonconserving terms in a QED system can lead to many
interesting quantum effects [8,17–23], such as three-photon
resonances [24], the modification of the standard input-output
relation [25,26], quantum phase transitions [27], frequency
conversion [28], or the deterioration of photon blockade effects
[29,30]. However, all of these phenomena are the combined
and mixed effects of both counter-rotating and resonant terms.
Here we address, in particular, the following questions: How
can we observe some pure effects of counter-rotating wave
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terms in a QED system, i.e., without being disturbed by
the resonant terms? Moreover, is it really always reasonable
to apply the RWA in dipole-field or dipole-dipole coupling
systems, which are far away from the ultrastrong-coupling
regime?

Other interesting quantum processes are multiexcitation
and emission in a QED system. The process in which a
two-level atom (molecule) absorbs two or more photons
simultaneously has been widely discussed in many quantum
platforms [14,22,23,31,32]. However, the inverse process (of a
single photon splitting to excite two and more atoms) is rarely
studied [33–35].

Recently, Garziano et al. [33] predicted that one photon
can simultaneously excite two or more qubits. In their theo-
retical proposal, two superconducting qubits are coupled to a
resonator with both longitudinal and transverse forms in the
ultrastrong-coupling regime. A similar process was predicted
via the photon-mediated Raman interactions between two
three-level atoms (qutrits) in the strong-coupling regime
[36]. Note that both dynamics (with qubits [33] and qutrits
[36]) were composed of three virtual processes, which do
not conserve the number of excitations. Also the effective
transition between atoms and a single photon is of a relatively
slow rate.

In this paper, we propose a superconducting system com-
posed of a transmission-line resonator longitudinally coupled
with two flux qubits. The two qubits couple to each other
via an antiferromagnetic dipole-dipole interaction. We show
that when the sum of two qubits’ transition frequencies is
approximately equal to the resonator frequency, the counter-
rotating terms in the dipole-dipole interaction cannot be
dropped even when the system has not entered into the
ultrastrong-coupling regime. The RWA is not valid here; on the
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contrary, the resonant terms can be approximately neglected in
our model. Due to the counter-rotating terms, a single photon
in the resonator can simultaneously excite two qubits. Finally,
we discuss the quantum interference effects between four
transition paths. Compared with the similar dynamics studied
in Refs. [33,36], the whole transition process proposed now
only involves a single intermediate step and the process rate
can be much faster. Additionally, our proposal does not require
one to induce both longitudinal and transverse couplings
[33], so the superconducting qubit can work at the optimal
point and, thus, the pure-dephasing rate of the qubits can be
effectively suppressed [22,23,37,38]. Moreover, we consider
qubits instead of the qutrits studied in Ref. [36]. By discussing
the parameters in our system, we find that the coherence rate
can easily exceed the decoherence rate, and it is possible
to observe these quantum effects with current experimental
setups.

Superconducting circuits with Josephson qubits are a
suitable platform to explore our proposal, as will be discussed
in detail in Sec. II. We note that the past few years have
witnessed the rapid development in quantum control and
quantum engineering based on superconducting quantum
circuits [16,39–47]. The current manufacturing, control, and
detection technologies for the superconducting devices are
mature [48–52]. Many quantum phenomena in atomic physics
and quantum optics, such as vacuum Rabi oscillations [16],
Autler-Townes splitting [53–55], and Fock states generation
[56–58], have been demonstrated based on superconducting
quantum circuits [16]. Moreover, since the dipole moments of
a superconducting qubit are extremely large compared with
the ones in natural atoms, the coupling strength in a circuit
QED system [46,59] can enter into the strong, ultrastrong
[7,8,11,12,14], and even deep-strong [13] regimes. All these
advantages make superconducting quantum circuits an ideal
platform for exploring various quantum effects beyond the
RWA.

II. MODEL

Our model can be implemented in a superconducting
quantum circuit layout with Josephson junctions. As shown in
Fig. 1, we consider two gap-tunable flux qubits [37,38,60–63]
placed in a transmission-line resonator (TLR), and coupled
together with an antiferromagnetic interaction [64–66]. The
Hamiltonian for the two qubits is expressed as (setting h̄ = 1)

H̄q = 1

2

2∑
j=1

(
�j σ̄

x
j + εj σ̄

z
j

) + J σ̄ z
1 σ̄ z

2 , (1)

where the energy basis εj = 2Ip,j (�z
j − �0/2) can be con-

trolled via the flux �z
j through the two symmetric gradiometric

loops [38,63], �j is the energy gap, �0 is the flux quantum, and
σ̄

j
z and σ̄

j
x are the Pauli operators for the j th qubit in the basis

of persistent current states: |↑j 〉 (counterclockwise) and |↓j 〉
(clockwise) with amplitude Ip,j [60,61]. The dipole-dipole
interaction strength J is given by J = MqIp,1Ip,2, where Mq

is the mutual inductance between two qubits [64–66]. For such
a layout arrangement, the mutual inductance Mq and coupling
strength J are determined by the geometry and spatial relation,
when the qubits are placed next to each other. Alternatively, as

FIG. 1. (a) Schematic circuit layout of our proposal. The central
conductor of the transmission-line resonator (TLR) is stretched in
the z direction, and the two flux qubits are placed at the antinode
positions of the TLR standing-wave current I (z). Here we assume
that each qubit is composed of two symmetric gradiometric loops
and a SQUID loop. (b) The quantized current I (z) through the TLR
central conductor can interact with the first and second qubit SQUID
loops via mutual inductances M1 and M2, respectively. Each qubit is
composed of four Josephson junctions (modeled by black crosses).
To bias the energy gap of each qubit, a static flux �x

j must be through
the j th SQUID loop. The two qubits couple together with their mutual
inductance Mq .

discussed in Refs. [67–70], one can achieve a tunable indirect
coupling by employing a coupler, which allows a flexible
coupling between two distant qubits. Here we just assume
the two flux qubits as an example, and they can be replaced by
some other type of superconducting artificial qubits (see, e.g.,
Figs. 1 and 2 in Ref. [16]).

The energy gap �j can be controlled conveniently by
adjusting the static flux �x

j through the superconducting
quantum interference device (SQUID) loop. Since the sizes
of two qubits (∼10 μm) are negligible compared with the
TLR wavelength (∼cm), we assume that the resonator current
is independent of the resonator position and the dipole
approximation is valid here. The qubits are placed at the
antinode position z0 of the TLR current [16,46,59]. Since
each qubit has two symmetric gradiometric loops, the flux
contribution from the current I (z) in the central conductor
of the TLR vanishes to the first order of the energy bias εj

[37,38,63]. However, the current I (z) in the central conductor
of the TLR can produce flux perturbations to the SQUID
loop of the j th qubit via the mutual inductance Mj [37,63].
Therefore, �j can be expressed as

�j = �j

(
�x

j0

) + RjMjI (z0), (2)

where Rj = ∂�j (�x
j )/∂�x

j is the sensitivity of the energy gap
�j on the static-flux frustration at the position �x

j0 [37,63].
The quantized current of the TLR can be directly obtained from
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the quantization of the voltage and expressed as [16,59,71,72]

I (z0) =
√

ω

2L0L
(a + a†), (3)

where L0 is the inductance per unit length of the TLR, a (a†)
denotes the annihilation (creation) operator of a microwave
photon in the TLR, ω is the resonant mode frequency
considered here, and L is the total length of the resonator
[59,71]. The coupling strength between the j th qubit and a
single microwave photon in the resonator has the form

gj = RjMj

√
ω

2L0L
, (4)

and the total Hamiltonian for the whole system can be written
as

H̄T = ωa†a + 1

2

2∑
j=1

(
�j σ̄

x
j + εj σ̄

z
j

)

+
2∑

j=1

gj σ̄
x
j (a + a†) + J σ̄ z

1 σ̄ z
2 . (5)

In an experiment, if we apply static fluxes �x
1 and �x

2 through
the SQUID loop of two qubits with the opposite (same)
direction, the flux sensitivities of the energy gaps R1 and R2 are
of the opposite (same) sign. Moreover, by setting the j th qubit
working at different energy-gap points �j , the amplitude of
R1 and R2 can be easily modified [37,63]. It can be found that
R1 and R2 directly determine the strengths and relative sign
between g1 and g2. The coupling strengths between the qubits
and resonator can be conveniently adjusted in this circuit QED
system according to Eq. (4). In Sec. IV, we demonstrate how
to obtain different interference effects by modifying R1 and
R2.

To minimize the pure dephasing effect of two qubits induced
by the flux noise, we often operate the qubits at their optimal
points with εj = 2Ip,j (�z

j − �0/2) = 0, by applying a static
flux �z

j = �0/2 [38,63] through two gradiometric loops. In

the new basis of the eigenstates |ej 〉 = (|↑j 〉 + |↓j 〉)
√

2 and

|gj 〉 = (|↑j 〉 − |↓j 〉)
√

2, we can rewrite the Hamiltonian in
Eq. (5) as

HT = ωa†a + 1

2

2∑
j=1

�jσ
z
j +

2∑
j=1

gjσ
z
j (a + a†) + Jσx

1 σx
2 ,

(6)

where σ z
j = |ej 〉〈ej | − |gj 〉〈gj | and σx

j = σ+
j + σ−

j =
|ej 〉〈gj | + |gj 〉〈ej |. It can be found that the qubit-resonator
coupling is of a longitudinal form, rather than that in the Rabi
model for standard QED systems.

In this paper, we assume that two qubits are nearly resonant,
i.e., �1 � �2, but all our discussions here can be applied to the
case when the two qubits are far off resonance. The last term
in Eq. (6) describes the dipole-dipole interaction between two
artificial atoms, which can be separated into two parts, i.e., the
excitation-number-conserving terms,

HR = J (σ−
1 σ+

2 + H.c.), (7)

and the counter-rotating terms,

HCR = J (σ+
1 σ+

2 + H.c.). (8)

It is known that HCR describes an excitation-number-
nonconserving process that two excitations are created (an-
nihilated) at the same time. This virtual process happens with
an extremely low probability at a rapid oscillating rate [5].
In a conventional analysis of such dipole-dipole coupling
dynamics, the evolution of the two resonant qubits is dom-
inated by the excitation-number-conserving term HR before
the coupling strength J enters into the ultrastrong-coupling
regime. The counter-rotating term HCR is only significant when
the coupling reaches the ultrastrong- or deep-strong-coupling
regimes. However, in this work, we find the interesting
phenomenon that HCR, rather than HR, dominates the evolution
process even without considering the ultrastrong-coupling
regime, i.e., max {J,gi} < 0.1 × min {ω,�j }.

III. HOW TO OBSERVE PURE EFFECTS OF
COUNTER-ROTATING TERMS

We are interested in the regime when ω ≈ �1 + �2, and
assume that the resonator and second-qubit frequencies are
ω = 2�2 = 8 GHz. Under current experimental conditions,
the coupling strength between a TLR and a qubit can easily
reach the strong-coupling regime (see Ref. [16] for a recent
review) and we assume that g1 = g2 = 0.2 GHz. According
to Ref. [73], a direct inductive coupling strength between the
two flux qubits can be several-hundred MHz. In the following
discussions, we set J = 0.1 GHz.

A. Anticrossing point in energy spectra

In Fig. 2(a), by changing the first atomic-transition fre-
quency �1, we plot the energy spectrum of the third and
fourth eigenenergies by numerically solving the eigenproblem
HT |ψn〉 = En|ψn〉, with n = 3,4. It can be seen that the two
energy levels exhibit anticrossing with a splitting around
�1 = 4 GHz (red solid curves), which indicates that there
might be two states coupled resonantly. Specifically, if the
counter-rotating terms HCR in Eq. (6) are neglected, the
anticrossing point disappears (see the dashed black curves).
However, without the two-qubit resonant coupling terms HR,
the energy spectrum (blue dot curves) for the third and fourth
eigenstates coincides with the full Hamiltonian case, which
indicates that the resonant coupling is due to the counter-
rotating terms HCR and has no relation to HR. We note that the
predicted level anticrossing is analogous to that observed in
the experiment of Niemczyk et al. [8] and other experiments in
the ultrastrong-coupling (USC) regime using superconducting
quantum circuits (for a very recent review, see [16] and
references therein). Analogous to our model, the emergence
of this level anticrossing needs qubit-oscillator longitudinal
couplings. However, as discussed in Refs. [8,22,23], the origin
of this phenomenon is due to multiexcitation processes and
has a close relation to both the counter-rotating terms and
Jaynes-Cummings (JC) terms in the transverse coupling. In
our proposal, only the counter-rotating terms contribute to the
energy-level anticrossing, even far below the USC regime.

In Fig. 2(b), we plot the probabilities P1 = |〈0,e,e|ψ4〉|2,
P2 = |〈1,g,g|ψ4〉|2, Ps+ = |〈S+|ψ3〉|2 and Ps− = |〈S−|ψ4〉|2
(where |S±〉 = (|0,e,e〉 ± |1,g,g〉)/√2), changing with �1. It
can be seen that |ψ3〉 	 |1,g,g〉 (|ψ4〉 	 |0,e,e〉) when �1 ∼
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FIG. 2. (a) Eigenenergies E3 and E4 as functions of the first-qubit
transition frequency �1. Numerical results are calculated with the
original Hamiltonian HT in Eq. (6) (red solid curve), HT without the
counter-rotating terms HCR (black dashed curve), and HT without
the resonant terms HR (blue dots). It can be clearly seen that the
energy spectrum for E3 and E4 exhibits an anticrossing point around
�1 = 4 GHz. The results without HR, rather than without the counter-
rotating terms HCR, match well with those of the original Hamiltonian
HT . (b) The probabilities P1 (black dashed curve), P2 (red dot curve),
and Ps± (blue solid curve) which are defined in Sec. III A, as functions
of the first-qubit transition frequency �1. The parameters used here
are ω = 2�2 = 8 GHz, g1 = g2 = 0.2 GHz, and J = 0.1 GHz.

3.9 GHz (�1 ∼ 4.1 GHz). Around the anticrossing point,
|S+〉 	 |ψ3〉 and |S−〉 	 |ψ4〉. One may wonder why we are not
showing in Fig. 2 the corresponding plots for the probabilities
P ′

1 = |〈1,g,g|ψ3〉|2, P ′
2 = |〈0,e,e|ψ3〉|2, P ′

1 ≈ P1, P ′
2 ≈ P2,

such that we would not see any differences between the
corresponding curves on the scale of Fig. 2. Therefore, we
can conclude that the anticrossing point is due to the resonant
coupling between the states |0,e,e〉 and |1,g,g〉. The coherent
transfer between these two states corresponds to the same
interesting process discussed in Ref. [33]: that a single photon
in a cavity can excite two atoms simultaneously. One may
wonder how this process can happen in our system with only
longitudinal coupling. To show this, hereafter, we analytically
derive its effective Hamiltonian.

B. Effective Hamiltonian for the tripartite interaction

We first perform the polariton transformation of the Hamil-
tonian Htot in Eq. (6) given by

Hs1 = eSHT e−S, (9)

with S = ∑2
j=1 βjσ

z
j (a† − a), where βj = gj/ω is the Lamb-

Dicke parameter for the j th qubit-resonator longitudinal

coupling. Thus, we obtain

Hs1 = ωa†a + 1

2

2∑
j=1

�jσ
z
j − χσz

1 σ z
2

+ J

2∏
j=1

[σ+
j e2βj (a†−a) + H.c.], (10)

where χ = 4g1g2/ω is the σ z
1 σ z

2 coupling strength between
two qubits. Given that βj � 1 (β1 = β2 = 0.025), the last term
in Eq. (10) can be expanded to first order in βj . Therefore, Hs1

can be approximately written as

Hs2 	 ωa†a + 1

2

2∑
j=1

�jσ
z
j − χσz

1 σ z
2

+ J [(σ+
1 + σ−

1 ) + 2β1(σ+
1 − σ−

1 )(a† − a)]

× [(σ+
2 + σ−

2 ) + 2β2(σ+
2 − σ−

2 )(a† − a)]. (11)

The last term describes various types of multiexcitation
interactions among the qubits and the field, such as σ+

1 σ+
2 a

and σ+
1 σ+

2 a2. To observe the effects of the counter-rotating
terms in the dipole-dipole coupling, here we assume that
the dipole-dipole coupling J � min{�j,�j ± ω} (j = 1,2)
and ω = �1 + �2. Employing the commutation relations
[σ z

1 σ z
2 ,σ±

1 σ±
2 ] = 0 and applying the unitary transformation

U = exp

⎡
⎣−i

⎛
⎝ωa†a + 1

2

2∑
j=1

�jσ
z
j − χσz

1 σ z
2

⎞
⎠t

⎤
⎦ (12)

to the Hamiltonian in Eq. (11) for the time t , we obtain the
resonant Hamiltonian by neglecting the rapidly oscillating
terms

Heff = Gs(aσ+
1 σ+

2 + a†σ−
1 σ−

2 ), (13)

with the effective coupling strength

Gs = 2J (β1 + β2) = 2J (g1 + g2)

ω
. (14)

We can clearly find that Eq. (13) describes the energy of a pho-
ton in a resonator splitting into two parts and simultaneously
exciting two qubits. In the original Hamiltonian in Eq. (6), the
longitudinal coupling between the j th qubit and the resonator,
i.e., σ z

j a† (σ z
j a), corresponds to the creation (annihilation) of a

virtual photon in the resonator at a rapid rate ω. The counter-
rotating term in the qubit coupling, i.e., σ+

1 σ+
2 (σ−

1 σ−
2 ),

describes the process of simultaneously exciting (deexciting)
two qubits. This term does not conserve the excitation number
and is also a virtual process oscillating at a high frequency
(�1 + �2). However, as shown in Fig. 3, these excitation-
number-nonconserving processes can be combined together to
form four resonant transition processes. The coherent-transfer
rate between the states |n + 1,g,g〉 and |n,e,e〉 is

√
n + 1Gs ,

with |n,g,g〉 and |n + 1,e,e〉 being two intermediate states,
respectively. In contrast to conventional QED problems, where
we neglect the counter-rotating terms, here HCR plays a key
role in exciting the two qubits simultaneously, while the
resonant terms HR have no effect. Therefore, the RWA is not
valid here, even if the couplings are not in the ultrastrong-
coupling regime.
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FIG. 3. Sketch of the high-order transitions between the states
|1,g,g〉 and |0,e,e〉. The four transition paths, allowed by the
longitudinal couplings (blue arrows) σ z

j a and the counter-rotating
terms σ+

1 σ+
2 (red arrows), are mediated by the two states |0,g,g〉 and

|1,e,e〉. It is seen that the only difference between the two paths (with
the same intermediate state) corresponds to different longitudinal
couplings, which results in annihilating a virtual photon via the first
(at the rate β1J ) or second (at the rate β2J ) qubits.

By assuming the same parameters as in Fig. 2 and �1 =
4 GHz, the effective coupling strength can be as strong as
Gs = 10 MHz. Compared with the results in Refs. [33,36],
there is only a single (rather than two) intermediate virtual
state |0,g,g〉 during the process where a single photon excites
two atoms. Consequently, the corresponding coupling rates are
faster by about one order of magnitude.

C. Adiabatic Landau-Zener transition

In the vicinity of the anticrossing point, we first examine
the adiabatic Landau-Zener transition effect [74–76] without
considering the dissipative channels. Assume that the atomic
transition frequency �1 is linearly dependent in time, i.e.,

�1(t) = �1(0) + vt, (15)

where �1(t) sweeps through the anticrossing point at a velocity
v. In an experiment, it is convenient to tune �1(t) linearly
by changing the flux �x,1 through the SQUID loop. We
assume that the system is initially in its fourth eigenstate
|ψ4〉 	 |1,g,g〉. When changing �1(t) linearly, the system
might jump to the lower eigenstate |ψ3〉 due to the diabatic
transition. In other words, this means that the system evolves
far away from a quasisteady state and transitions between
different eigenstates can occur. The final transition probability
to the state |ψ3〉 	 |1,g,g〉 (� > 4 GHz) can be approximately
expressed by the Landau-Zener formula [24,74,75], i.e.,

Pψ3 = exp

[
−2π

G2
s

dE�/dt

]
, (16)

where E� = E4(t) − E3(t) is the eigenenergy difference
between the fourth and third eigenstates, and dE�/dt is
the sweeping rate. Here we simply have dE�/dt 	 v. If
the energy-sweeping speed v is extremely slow and satis-
fies the relation 2πG2

s � v, the anticrossing point traverses
adiabatically [24,75]. In this case, the system approximately
evolves along the fourth-energy curve, and the system rarely
jumps to the third eigenstate after the sweeping, i.e., Pψ3 � 1.

In Fig. 4, by setting �0(t) = 3.84 GHz and v = 6 ×
10−5 (GHz)2, we numerically simulate the evolution domi-
nated by the Schrödinger equation and plot the probabilities of
the states |1,g,g〉 and |0,e,e〉 changing with time, respectively.

FIG. 4. The time-dependent Landau-Zener transition process is
achieved by slowly changing the first-qubit frequency �1 with a
sweeping rate v = 6 × 10−5 (GHz)2. The initial state is |1,g,g〉 (red
curve). Due to the resonant coupling effects, the probability of the
initial state is gradually decreased, and the system is adiabatically
transferred into the state |0,e,e〉 (black curve) with the final proba-
bility P1,e,e 	 0.99. The other parameters used here are the same as
those in Fig. 2(a).

It can be clearly seen that the probability P0,e,e gradually
increases from 0 to ∼0.99. The transition time is of the
order of several microseconds. For the final states, there
is still a low probability P1,g,g because of the extremely
weak diabatic-transition effect [75]. During this process, the
excitation energy of a single photon is split into two parts
to effectively excite the two flux qubits. The dynamics of
this Landau-Zener transition provides strong evidence of the
resonant coupling between the states |1,g,g〉 and |0,e,e〉.

IV. QUANTUM RABI OSCILLATIONS AND
INTERFERENCE EFFECTS BETWEEN FOUR

TRANSITION PATHS

To examine the deterministic transition between the states
|1,g,g〉 and |0,e,e〉, the rate of the adiabatic Landau-Zener
transition process is extremely slow. Therefore, we can simply
observe the Rabi oscillation between these two states.

We assume that the resonator and two qubits are coupled
to the vacuum environment and the initial states of the system
are their ground states |0,g,g〉. The coherent electromagnetic
field is applied via a one-dimensional (1D) transmission
line, which couples to one side of the resonator via a
capacitance [77].

We can inject a single photon into the resonator by applying
a Gaussian pulse, i.e., to prepare the initial state as |1,g,g〉,
and the corresponding drive has the form

Hdrv(t) = A
exp [−(t − t0)2/(2τ 2)]√

2πτ
(aeiωt + a†e−iωt ), (17)

where A, t0, and τ are the amplitude, central-peak position,
and width of a Gaussian pulse. However, for a resonator
without nonlinearity, the higher-energy states (for example,
|2,g,g〉) can also be effectively populated. We can employ an
ancillary superconducting qubit to induce some nonlinearities
of the resonator with a Kerr-type Hamiltonian HKerr = χ3a

†2a2
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[33,78]. Here, χ3 is the effective Kerr-interaction strength
proportional to third-order susceptibility. As a result, the
Hamiltonian for the whole system can be written as

Ht = HT + HKerr + Hdrv(t). (18)

A. Modified input-output relation

In standard QED systems, the output and correlation signal
are obtained via photodetection methods. As discussed in
Refs. [22,25,26,79], when the coupling is in the strong- or
ultrastrong-coupling regimes, the eigenstates of the system
are the highly dressed states which are different from the
bare eigenstates of the resonator and qubits, and the standard
input-output relation fails to describe the output field. For
example, the output-field photon flux is no longer proportional
to the conventional first-order correlation functions of the
cavity operators [25]. By contrast to this, the output field from
the cavity is linked to the electric-field operator X = a + a†

(rather than the annihilation operator a) [25,80,81].
To discuss problems more explicitly and consider more

general cases, we employ the modified formula of the input-
output relation and correlation functions in the following
discussions. Defining the positive- and negative-frequency
[79] components of the operator X as

X+ =
∑
j,k>j

Xjk|ψj 〉〈ψk|, X− = (X+)†, (19)

where Xjk = 〈ψj |(a + a†)|ψk〉, the modified input-output
relation under the Markov approximation can be reexpressed
as

Aout = Ain − √
κX+, (20)

where Ain is the input vacuum noise [25,80,81], κ is the photon
escape rate from the resonator [77], and Aout is the output field
operator of the form [79]

Aout(t) = 1

2
√

πωυ

∫ ∞

0
dω′a′(ω′,t1)e−iω′(t−t1) + H.c., (21)

where υ is the phase velocity of the mode ω, and a′ is the
annihilation operator of the continuous mode with frequency
ω′ outside the resonator. The output photon flux can be
expressed as � = κ〈X−X+〉.

B. Rabi oscillations based on numerically simulating
the master equation

Under the Born-Markov approximation and assuming
that the resonator and the qubits are coupled to the zero-
temperature vacuum reservoir, the evolution for the system
can be described by the master equation of the Lindblad form
[24,26],

dρ(t)

dt
= −i[Ht,ρ(t)] + κD[X+]ρ(t) +

∑
j=1,2

�jD[C+
j ]ρ(t),

(22)

where D[O]ρ(t) = [2Oρ(t)O† − O†Oρ(t) − ρ(t)O†O]/2 is
the Lindblad superoperator, and �j is the decay rate of the
j th qubit. Our proposal requires only longitudinal couplings
between the qubits and resonator, rather than both longitudinal

FIG. 5. The intraresonator photon number 〈X−X+〉 (red curve)
and zero-delay two-qubit correlation function G(2)

q (0) (black curve)
vs time based on numerically solving the master equation (22) with
the decay rates �1 = �2 = 0.2 MHz and κ = 0.4 MHz. The Kerr
nonlinearity is assumed to be χ3 = 120 MHz. The initial state is
|0,g,g〉. The Gaussian pulse parameters are t0 = 0, τ = 0.02 μs, and
A/(

√
2πτ ) = 50 MHz. Other parameters are the same as those in

Fig. 2(a) with �1 = 4 GHz.

and transverse couplings used in Ref. [33]. Thus, the flux qubits
could now work at their optimal points, and the pure-dephasing
rates induced by flux noise can be minimized, as discussed
in Refs. [37,38,63]. The coherence time of a flux qubit can
be of several μs. Here we assume that �1 = �2 = 0.2 MHz.
In an experiment, a superconducting resonator with quality
factor over 104 can be easily fabricated [82]. We consider
the decay rate of the resonator to be κ = 0.4 MHz (Q =
2 × 104). Therefore, under current experimental approaches,
the coherent-transition rate Gs can easily overwhelm all the
decoherence channels in our proposal.

The emission field for the j th qubit is proportional to the
zero-time delay correlation function 〈C−C+〉 [22], where

C+
j =

∑
i,k>i

Cj,ik|ψi〉〈ψk|, C−
j = (C+

j )†, (23)

with the coefficients Cj,ik = 〈ψi |(σ j
+ + σ

j
−)|ψk〉. It can be

clearly found that the emission operator is also divided
into positive- and negative-frequency parts. The zero-delay
two-qubit correlation function

G(2)
q (0) = 〈C−

1 C−
2 C+

2 C+
1 〉

is proportional to the probability that two qubits are both in
their exited states [33].

In Fig. 5, we numerically calculate the photon number
〈X−X+〉 inside the resonator and the two-qubit correlation
function G(2)

q (0) changing with time. It can be seen that due
to the Kerr-type nonlinearity, a Gaussian pulse can create a
single photon in the resonator and the photon flux can increase
rapidly. When t � τ , the pump effect of the Gaussian pulse
almost vanishes and excitation energies can be coherently
transferred between the resonator and two qubits via the
Rabi-oscillation process. Around t 	 0.18 μs, the two-qubit
correlation function G(2)

q (0) reaches its highest value ∼0.96,
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indicating that the two qubits are strongly correlated and both
approximately in their exited states. Meanwhile, the photon
number 〈X−X+〉 reaches it lowest value and the injected single
photon is effectively converted into the excitations of two
qubits. The reversible evolution between G(2)

q (0) and 〈X−X+〉
is due to the vacuum Rabi oscillations between the states
|1,g,g〉 and |0,e,e〉. Of course, the amplitude of the oscillations
gradually decreases due to the energy-decay channels.

C. Quantum interference between four transition paths

Finally, we discuss another interesting phenomenon. As
shown in Fig. 3, we can find that for the two paths with
the same intermediate state, the only difference between
these paths corresponds to different longitudinal couplings,
which lead to creating a virtual photon either via the first
qubit (σ z

1 a†) or the second qubit (σ z
2 a†). The rates of the

two paths are G1 = Jβ1 and G2 = Jβ2, respectively. The
coherent transitions between the initial and final states can
be viewed as the interference effect between these paths,
i.e., Gs = 2(G1 + G2). As discussed in Sec. II, the sign and
amplitude of gj can be easily tuned by changing the flux bias
direction and the working position of the energy gap. If g2 has
opposite sign (i,e., with a π -phase difference) but the same
amplitude as g1, the paths become destructive and the coherent
transition between the states |1,g,g〉 and |0,e,e〉 vanishes. In
Fig. 6(a), we plot the anticrossing gap E� = E4 − E3 between
the third and fourth eigenenergies changing with the relative
strength g2/g1. It can be clearly seen that E� has a dip (almost
zero) at g2/g1 = −1, indicating that the anticrossing point
almost disappears. Note that E� cannot be exactly equal to zero
due to higher-order processes. At this point, the states |1,g,g〉
and |0,e,e〉 decouple from each other. When g2/g1 > 0, the
anticrossing gap E� increases with g2 and the transition paths
become constructive.

To observe more clearly the quantum destructive effects
between these paths, we plot the time-dependent evolution
of the photon number 〈X−X+〉 and the two-qubit correlation
function G(2)

q (0). Here we employ the parameters at the dip in
Fig. 6(a), i.e., g1 = −g2 = 0.20 GHz. As shown in Fig. 6(b),
the energy can no longer be transferred between the resonator
and two qubits, which is different from the Rabi oscillation
in Fig. 5. Consequently, a single photon, which is excited
by a Gaussian pulse, decays to the vacuum environment (red
curve) and the two-qubit correlation function G(2)

q (0) is always
zero (black curves). In such conditions, the coherent transfer
between the states |1,g,g〉 and |0,e,e〉 vanishes due to the
destructive effect, and the counter-rotating-term effect (that a
single photon excites two qubits simultaneously) cannot be
observed. Therefore, in an experiment, we can simply change
the relative sign and amplitude of the flux sensitivity Rj to
observe either destructive or constructive interference effects
caused by the counter-rotating terms.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated pure effects of the
counter-rotating terms in the dipole-dipole coupling between
two superconducting qubits. The theoretical analysis shows
that when these two qubits are longitudinally coupled with
the same resonator, the energy of a single photon can

FIG. 6. (a) The energy gap (difference) between the third
and fourth eigenenergies, E� = E4 − E3, vs the relative coupling
strength g2/g1 (g1 = 0.20 GHz). At g2/g1 = −1 (vertical dashed
line), the gap almost vanishes. (b) Time evolutions of the photon
number 〈X−X+〉 (red curve) and two-qubit correlation function
G(2)

q (0) (black curve), which always vanishes. Here we set g1 =
−g2 = 0.20 GHz. The Rabi oscillation disappears here due to the
destructive interference effect between the transition paths. Other
parameters are the same as those in Fig. 5.

effectively excite two qubits simultaneously. By discussing
the anticrossing points around the resonant regime, we find
that this coherent transition process results from the counter-
rotating terms and has no relation to the resonant coupling
terms between two qubits. In fact, our results throughout
this paper show that when dealing with a QED system
containing longitudinal couplings, we should examine the
energy spectrum of the system carefully before adopting the
standard RWA. The counter-rotating terms might play an
important role in the physical dynamics of the whole system.

Moreover, we have demonstrated the Landau-Zener tran-
sition effects and Rabi oscillations between the states |1,g,g〉
and |0,e,e〉, which are clear signatures of the resonant coupling
between these two states. The energy of a single photon
can be divided to simultaneously excite two qubits via
the longitudinal couplings and the counter-rotating terms.
Moreover, this process is combined with four transition paths,
and there can be quantum interference between these paths.
We discussed how to control the system to achieve either
destructive or constructive interference effects. By discussing
the experimentally feasible parameters, we find it is possible
to implement our proposal and observe these quantum effects
based on current state-of-the-art circuit-QED systems.
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In fact, if we consider a more general case with nω =
�1 + �2 when deriving the resonant terms in Eq. (11), we can
expand this formula to its nth order. In such conditions, a more
general resonant Hamiltonian

H
(n)
eff = G(n)

s [anσ+
1 σ+

2 + (a†)nσ−
1 σ−

2 ], (24)

which describes higher-order effects when n photons ex-
cite two qubits simultaneously, might produce observable
quantum effects. However, we should note that the effective
rate G(n)

s decreases quickly with increasing n, which might
be overwhelmed by the nonresonant-oscillating terms and
decoherence processes.

We should emphasize that our proposal here can be a
convenient platform to observe pure quantum effects of the
counter-rotating terms. As we discussed above, these high-
order transitions only contain a single intermediate state,
and the rate is much faster compared with the proposals in
Refs. [33,36]. Therefore, the tripartite interaction in Eq. (13)
provides a different way to prepare a type of Greenberger-

Horne-Zeilinger (GHZ) state [83], (|1,g,g〉 + |0,e,e〉)/√2
(see Fig. 5). Moreover, if we can prepare two qubits in their
excited states, a single-photon output jointly emitted by two
qubits can also be obtained via this method. Therefore, this
proposal might also be exploited for quantum information pro-
cessing (including error-correction codes [35]) and quantum
optics in the microwave regime.

ACKNOWLEDGMENTS

We thank A. F. Kockum and S. Savasta for discussions and
useful comments. X.W. and H.R.L. were supported by the Nat-
ural Science Foundation of China under Grant No. 11774284.
A.M. and F.N. acknowledge the support of a grant from
the John Templeton Foundation. F.N. was partially supported
by the MURI Center for Dynamic Magneto-Optics via the
AFOSR Award No. FA9550-14-1-0040, the Japan Society for
the Promotion of Science (KAKENHI), the IMPACT program
of JST, JSPS-RFBR Grant No. 17-52-50023, CREST Grant
No. JPMJCR1676, and RIKEN-AIST Challenge Research
Fund.

[1] F. Bloch and A. Siegert, Magnetic resonance for nonrotating
fields, Phys. Rev. 57, 522 (1940).

[2] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[3] B. W. Shore and P. L. Knight, The Jaynes-Cummings model,
J. Mod. Opt. 40, 1195 (1993).

[4] E. K. Irish, Generalized Rotating-Wave Approximation for
Arbitrarily Large Coupling, Phys. Rev. Lett. 99, 173601 (2007).

[5] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[6] A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G.
Biasiol, L. Sorba, and F. Beltram, Signatures of the ultrastrong
light-matter coupling regime, Phys. Rev. B 79, 201303(R)
(2009).

[7] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E.
Solano, C. J. P. M. Harmans, and J. E. Mooij, Observation
of the Bloch-Siegert Shift in a Qubit-Oscillator System in the
Ultrastrong Coupling Regime, Phys. Rev. Lett. 105, 237001
(2010).

[8] T. Niemczyk et al., Circuit quantum electrodynamics in the
ultrastrong-coupling regime, Nat. Phys. 6, 772 (2010).

[9] M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J.
Faist, Ultrastrong Coupling Regime and Plasmon Polaritons in
Parabolic Semiconductor Quantum Wells, Phys. Rev. Lett. 108,
106402 (2012).

[10] G. Scalari et al., Ultrastrong coupling of the cyclotron transition
of a 2D electron gas to a THz metamaterial, Science 335, 1323
(2012).

[11] A. Baust et al., Ultrastrong coupling in two-resonator circuit
QED, Phys. Rev. B 93, 214501 (2016).

[12] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J.-L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupaşcu,
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