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We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio
between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric
amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the
system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity
system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing
parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further
demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entangle-
ment infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is
exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement
preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our
generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide
range of physical systems, and it can provide diverse applications for quantum information processing.
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Cavity [1] and circuit [2,3] quantum electrodynamics
(QED) provide promising platforms to implement light-
matter interactions at the single-particle level by efficiently
coupling single atoms to quantized cavity fields. Exploiting
such coupled systems for quantum information processing
often requires the strong-coupling regime (SCR), where the
atom-cavity coupling g exceeds both atomic spontaneous-
emission rate γ and cavity-decay rate κ, such that a single
excitation can be coherently exchanged between atom and
cavity before their coherence is lost. A typical parameter
quantifying this property is the cooperativity defined as
C ¼ g2/ðκγÞ. Experimentally, microwave systems (like
quantum superconducting circuits) can have very high
cooperativities of order up to 104 [3–5]. However, for
most optical systems (see [6] for a notable exception in
photonic band gap cavities), it is currently challenging to
achieve the SCR and, in particular, the cooperativity of C
larger than 102 [7–12]. This directly limits the ability to
process quantum information in optical cavities. Here, we
propose a novel approach for this problem, and we
demonstrate that the light-matter coupling and coopera-
tivity can be exponentially increased with a cavity squeez-
ing parameter. Specifically, we parametrically squeeze the
cavity mode to strengthen the coherent coupling g, and at

the same time, we apply a broadband squeezed-vacuum
field to completely eliminate the noise induced by squeez-
ing. As an intriguing application, we show how to improve
exponentially the quality of steady-state entanglement.
Quantum entanglement is not only a striking feature of

quantum physics but also a fundamental resource in
quantum information technologies. The preparation of an
entangled state between atoms in optical cavities can be
directly implemented using controlled unitary dynamics
[13,14]. However, the presence of an atomic spontaneous
emission and cavity loss leads to a poor infidelity scaling
δ ¼ ð1 − F Þ ∝ 1/

ffiffiffiffi
C

p
[15], where F is the fidelity, which

characterizes the distance between the ideal and actual
states, and δ is the corresponding infidelity. This is owing to
the fact that both decays can carry away information about
the system and destroy its coherence. For this reason, many
approaches, which have been proposed for entanglement
preparation, are focused on dissipation engineering, which
treats dissipative processes as a resource rather than as a
detrimental noise [16–23]. In the resulting entanglement,
the infidelity scaling has a quadratic improvement, δ ∝ 1/C
[24–30]. Such an infidelity, however, remains lower-
bounded by the cooperativity, because only partial dis-
sipation contributes to the entanglement, which still suffers
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errors from other kinds (or channels) of dissipation. In this
Letter, we demonstrate that our approach for the cooper-
ativity enhancement can lead to an exponential suppression
of undesired dissipation and, as a consequence, of the
entanglement infidelity. Since the discussed model is
generic, our proposal can be realized in a wide range of
physical systems, in particular, optical cavities.
Basic idea.—As depicted in Fig. 1(a), we consider a

quantum system consisting of two Λ atoms and a χð2Þ
nonlinear medium. The atoms are confined in a single-
mode cavity of frequency ωc. The ground states of each
atom, jgi and jfi, are excited to the state jei, respectively,
via a laser drive with Rabi frequency Ω and the coupling to
the cavity modewith strength g, as shown in Fig. 1(b). If the
nonlinear medium is pumped (say, at frequency ωp,
amplitude Ωp, and phase θp), then the cavity mode can
be squeezed along the axis rotated at the angle ðπ − θpÞ/2.
When Ωp is close to the detuning Δc ¼ ωc − ωp/2,
the atom-cavity coupling can be enhanced expone-
ntially with a controllable squeezing parameter rp ¼
ð1/4Þ ln ½ð1þ αÞ/ð1 − αÞ�, where α ¼ Ωp/Δc. Meanwhile,
squeezing the cavity mode also induces thermal noise and
two-photon correlations in the cavity. In order to suppress
them, a possible strategy is to use the squeezed vacuum field
to drive the cavity [31–36]. This causes the squeezed-cavity

mode to equivalently interact with the thermal vacuum
reservoir, and therefore, it yields an effective cooperativity
exhibiting an exponential enhancement with 2rp.
Furthermore, to generate steady-state entanglement,

we tune the squeezed-cavity mode to resonantly drive
the transition jfi → jei, and as a result, the excitation-
number-nonconserving processes would be strongly
suppressed. Thus, in the limit of Ω ≪ gs, the ground-
state subspace, spanned by fjϕ�i ¼ ðjggi � jffiÞj0is/

ffiffiffi
2

p
;

jψ�i ¼ ðjgfi � jfgiÞj0is/
ffiffiffi
2

p g, is decoupled from all
of the excited states except the dark state, jDi ¼
ðjfei − jefiÞj0is/

ffiffiffi
2

p
, from the atom-cavity interaction.

Here, the number refers to the squeezed-cavity photon
number. For entanglement preparation, in order to be
independent of an initial state, we apply an off-resonant
microwave field of frequency ωMW to couple jgi and jfi
with the Rabi frequency ΩMW, as shown in Fig. 1(b), to
drive the transitions jϕ−i → jϕþi → jψþi. Subsequently,
the laser drive Ω excites jψþi to jDi, which then decays to
jψ−i via atomic spontaneous emission. The populations
initially in the ground-state subspace are, thus, driven to
and trapped in jψ−i, resulting in a maximally-entangled
steady state, the singlet state jSi ¼ ðjgfi − jfgiÞ/ ffiffiffi

2
p

,
between the atoms. In contrast to previous proposals of
entanglement preparation that relied on the unitary or
dissipative dynamics, and where the entanglement infidel-
ities were lower-bounded by the system cooperativities
[15,24–28], our approach can, in principle, make the
entanglement infidelity arbitrarily small by increasing the
squeezing parameter of the cavity mode for a modest value
of the cooperativity.
Enhanced light-matter interaction and cooperativity.—

Specifically, in a proper observation frame, the Hamiltonian
determining the unitary dynamics of the system reads
(hereafter, we set ℏ ¼ 1)

HðtÞ ¼
X

k

ðΔejeikhej þ ΔfjfikhfjÞ þHNL þHAC

þ 1

2
ΩMW

X

k

ðjfikhgj þ H:c:Þ þ VðtÞ: ð1Þ

Here, k ¼ 1, 2 labels the atoms, HNL¼
Δca†aþ 1

2
Ωpðeiθpa2þH:c:Þ is the nonlinear Hamiltonian

for degenerate parametric amplification, HAC ¼
g
P

kðajeikhfj þ H:c:Þ is the atom-cavity coupling
Hamiltonian, and VðtÞ¼ 1

2
Ωeiβt

P
k½ð−1Þk−1jgikhejþH:c:�

describes the interaction of a classical laser drive with the
atoms. The detunings are Δe ¼ ωe − ωg − ωMW − ωp/2,
Δf ¼ ωf − ωg − ωMW, and β ¼ ωL − ωMW − ωp/2, where
ωL is the laser frequency of the atom drive and ωz is the
frequency associated with level jzi (z ¼ g, f, e). Upon
introducing the Bogoliubov squeezing transformation
as ¼ coshðrpÞaþ exp ð−iθpÞ sinhðrpÞa† [37], HNL is dia-

gonalized to HNL ¼ ωsa
†
sas, where ωs ¼ Δc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
is

(a)

(b)

FIG. 1. Schematics of the proposed method for enhancing
cooperativity and maximizing steady-state entanglement. (a) Two
driven atoms are trapped inside a single-mode cavity, which
contains a χð2Þ nonlinear medium strongly pumped at amplitude
Ωp, frequency ωp, and phase θp. The cavity couples to a
squeezed-vacuum reservoir, which is generated by optical para-
metric amplification (OPA) with a squeezing parameter re and a
reference phase θe. As depicted in (b), the three-level atoms
(in the Λ configuration) are coupled to the cavity mode with a
strength g. In addition, the transition with Rabi frequency Ω
(ΩMW) is driven by a laser (microwave) field of frequency ωL
(ωMW). We also assume that, along with a cavity decay rate κ, the
excited state jei of the atoms decays to the ground states jgi and
jfi at rates γg and γf, respectively.
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the squeezed-cavity frequency. The atom-cavity
coupling Hamiltonian likewise becomes HAC ¼P

k½ðgsas − g0sa
†
sÞjeikhfj þ H:c:�, with gs ¼ g coshðrpÞ

and g0s ¼ exp ð−iθpÞg sinhðrpÞ. The excitation-number-
nonconserving processes originating from the counter-
rotating terms of the form a†s

P
kjeikhfj, and

as
P

kjfikhej can be neglected under the assumption that
jg0sj/ðωs þ Δe − ΔfÞ ≪ 1, corresponding to the rotating-
wave approximation, such that HAC is transformed to the
Jaynes-Cummings Hamiltonian

HASC ¼ gs
X

k

ðasjeikhfj þ H:c:Þ; ð2Þ

given in terms of the coupling strength gs between
the atoms and the squeezed-cavity mode. Therefore for
rp ≥ 1, we predict an exponentially-enhanced atom-cavity
coupling,

gs
g
∼
1

2
expðrpÞ; ð3Þ

as plotted in the inset of Fig. 2. This is because there are
∼ exp ð2rpÞ photons converted into a single-photon state,
j1is, of the squeezed-cavity mode. Such an exponential
enhancement of this light-matter interaction is one of our
most important results.
This squeezing also introduces additional noise into the

cavity, as mentioned in the description above. To circum-
vent such undesired noises, a squeezed-vacuum field, with
a squeezing parameter re and a reference phase θe, is used
to drive the cavity [see Fig. 1(a)]. We consider the case
where such a field has a much larger linewidth than the
cavity mode. Indeed, a squeezing bandwidth of up to∼GHz
has been experimentally demonstrated via optical para-
metric amplification [38–40]. Because the linewidth is
∼MHz for typical optical cavities, we can think of this
cavity drive as a squeezed reservoir. Hence, by ensuring
re ¼ rp and θe þ θp ¼ �nπ (n ¼ 1; 3; 5; � � �), this addi-
tional noise can be eliminated completely (see the
Supplemental Material [41] for details). As a consequence,
the squeezed-cavity mode is equivalently coupled to a
thermal vacuum reservoir, so that we can use the standard
Lindblad operator to describe the cavity decay, yielding
Las ¼

ffiffiffi
κ

p
as with κ a decay rate. Similarly, atomic sponta-

neous emission is also described with the Lindblad oper-
ators Lg1¼ ffiffiffiffi

γg
p jgi1hej, Lf1¼ ffiffiffiffiffi

γf
p jfi1hej, Lg2¼ ffiffiffiffi

γg
p jgi2hej,

and Lf2 ¼ ffiffiffiffiffi
γf

p jfi2hej. Here, we have assumed that in each
atom, jei decays to jgi and jfi, respectively, with rates γg
and γf. The dynamics of the atom-cavity system is, thus,
governed by the standard master equation in the Lindblad
form ρ̇ðtÞ ¼ i½ρðtÞ; HsðtÞ� − 1

2

P
nLðLnÞρðtÞ, where ρðtÞ is

the density operator of the system, HsðtÞ is given by HðtÞ
but with a (a†) replaced by as (a

†
s), and with HAC replaced

by HASC. Moreover, LðoÞρ ¼ o†oρ − 2oρo† þ ρo†o and

the sum runs over all dissipative processes mentioned
above. We find that the above master equation gives
an effective cooperativity Cs ¼ g2s /ðκγÞ. Consequently,
increasing rp enables an exponential enhancement in the
atom-cavity coupling, given in Eq. (3), and thus, the
cooperativity enhancement,

Cs

C
∼
1

4
exp ð2rpÞ; ð4Þ

as shown in Fig. 2. Note that our approach can exponen-
tially strengthen the coherent coupling between atom and
cavity, but does not introduce any additional noise into
the system. It is seen in Fig. 2 that the atom-cavity system
can be driven from the weak-coupling regime (WCR) to the
SCR, e.g., with C ¼ 0.2 and rp ≥ 1.5. Moreover, an
effective cooperativity of Cs > 102 can also be achieved
with modestC and rp, e.g., C ¼ 20 and rp ≥ 1.5. As one of
many possible applications in quantum information tech-
nologies, this enhancement in the cooperativity (or coher-
ent atom-field coupling) can be employed to improve the
fidelity of dissipative entanglement preparation.
Maximizing steady-state entanglement.—Let us consider

a weak drive Ω, so that the dominant dynamics of the
system is restricted to a subspace having, at most, one
excitation, and we can treat VðtÞ as a perturbation to the
system [46]. After adiabatically eliminating the excited
states, the effective Hamiltonian is given by Heff¼
ΔfðI /2−jϕþihϕ−jþH:c:ÞþΩMWðjψþihϕþjþH:c:Þ, where
I is an identity operator acting on the ground manifold of
the atoms. This implies that the microwave field can drive
the population from jϕþi (or jϕ−i) to jψþi. Upon choosing
Δe ¼ β ¼ ωs þ Δf, the population in jψþi is transferred to

Yellow: SCR for C=0.2 (or Cs>100 for C=20)

Gray: WCR for C=0.2 (or Cs<100 for C=20)
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FIG. 2. Cooperativity enhancement Cs/C versus the squeezing
parameter rp. For C ¼ 0.2, the gray and yellow shaded areas
represent the WCR (Cs < 1) and the SCR (Cs > 1), respectively.
For C ¼ 20, the two shaded areas represent the regions, respec-
tively, with Cs < 100 and Cs > 100. The inset shows the
exponentially-enhanced effective coupling, gs, between atom
and cavity.
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jψ−i via the resonant drive and then the atomic sponta-
neous emission, which is mediated by the dark state jDi.
At the same time, the transition from jψ−i to the excited
state of jφei ¼ ðjfei þ jefiÞj0is/

ffiffiffi
2

p
is off-resonant,

and it is negligible when Ω ≪ gs. In this case, the rates
of the effective decays into and out of the desired
state jψ−i ¼ jSij0is are expressed, respectively, as
Γin ¼ ðΩ/2Þ2½4γg/γ2 þ 4/ðγCsÞ þ γf/ð2γ2C2

sÞ� and Γout¼
ðΩ/2Þ2½1/ðγCsÞþðγþγfÞ/ð16γ2C2

sÞ� (see the Supplemental
Material [41] for a detailed derivation). Here, γ ¼ γg þ γf
is the total atomic decay rate. In the steady state,
the entanglement infidelity can be expressed as δ∼
1/½1þ Γin/ð3ΓoutÞ�, which is reduced to δ ∼ 3γ/ð4γgCsÞ
for Cs ≫ 1. Further, as long as rp ≥ 1, we directly obtain

δ ∼
3γ

γg exp ð2rpÞC
: ð5Þ

This explicitly shows an exponential improvement over the
infidelity in the case of previous entanglement preparation
protocols relying on engineered dissipation. The parametri-
cally-enhanced cooperativity enables the entanglement
infidelity to be very close to zero even for a modest value
of C, rather than lower-bounded by 1/

ffiffiffiffi
C

p
and 1/C [see

Fig. 3(a)]. For the cooperativity values, which are easily
accessible in current experiments, an entanglement infi-
delity of up to δ ∼ 10−3 can be generated at a time
t ¼ 200/γ, as shown in Fig. 3(b). Note that, by increasing
the driving laser strength Ω, the population transfer into the
desired state is faster and, then, the infidelity is smaller for a
given preparation time. However, at the same time, a
nonadiabatic error increases with Ω, causing an increase
in the infidelity. Thus, these are two competing processes.
In addition, a larger C can more strongly reduce this
nonadiabatic error and, therefore, lead to a smaller optimal
driving strength [see Fig. 3(b)]. In a realistic setup based on
ultracold 87Rb atoms coupled to a Fabry-Perot resonator as
discussed below [11], an atomic linewidth of γ/2π ¼
3 MHz and the cooperativity of C ¼ 42 could result in
δ ∼ 1.2 × 10−3, together with t ∼ 11 μs, which allows us to
neglect atomic decoherence.
We now consider the counter-rotating terms. In the limit

jg0sj/Δe ≪ 1, we find that such terms cause an energy shift
of jg0sj2/ð2ΔeÞ to be imposed on the ground states and a
coherent coupling, of strength jg0sj2/ð2ΔeÞ, between the
states jϕþi and jϕ−i [47]. To remove these detrimental
effects, the detunings need to be modified as Δe¼
β− jg0sj2/ð2ΔeÞ¼ωsþΔf− jg0sj2/Δe and Δf ¼ ΩMW/

ffiffiffi
2

p þ
jg0sj2/ð2ΔeÞ, according to the analysis given in the
Supplemental Material [41]. In this situation, the full
system can be mapped to a simplified system that excludes
the counter-rotating terms and has been discussed above.
We numerically integrate the full master equation with the
modified detunings [48,49], and find that, as in Fig. 3(a),

the exact entanglement infidelity is in excellent agreement
with the prediction of the effective dynamics during a very
long time interval (e.g., 0 ≤ t ≤ 500/γ).
Possible implementations.—We consider a possible

experimental implementation utilizing ultracold 87Rb atoms
trapped in a high-finesse Fabry-Perot resonator [11]. Here,
the 87Rb atoms are used for the Λ-configuration atoms, and
the Fabry-Perot resonator works as the single-mode
cavity. When focusing on electric-dipole transitions of
the D1 line at a wavelength of 795 nm, we choose
jgi≡ jF ¼ 1; mF ¼ −1i, jfi≡ jF ¼ 2; mF ¼ −2i, and

jei≡ jF0 ¼ 2; m0
F ¼ −2i, where Fð0Þ and mð0Þ

F are quantum
numbers characterizing the Zeeman states in the manifolds
5S1/2 (5P1/2). In this situation, a circularly σ−-polarized
control laser and a π-polarized-cavity mode are needed
to couple the transitions jF ¼ 1; mF ¼ −1i → and
jF ¼ 2; mF ¼ −2i → jF0 ¼ 2; m0

F ¼ −2i, respectively.
For the two ground states, although their electric-dipole
transition is forbidden due to their same parity, a microwave
field could directly couple these states through the mag-
netic-dipole interaction. Such a coupling has experimen-
tally reached values of hundreds of kHz [50,51]. Moreover,
the cavity mode can be squeezed typically using, e.g., a
periodically-poled KTiOPO4 (PPKTP) crystal [52–54].
In order to generate a squeezed-vacuum reservoir, we
can also use a PPKTP crystal with a high-bandwidth
pump, so the squeezing bandwidth of up to ∼GHz
[38,39] is possible.
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FIG. 3. (a) Evolution of the entanglement infidelity δ for
different driving strengths Ω ¼ 0.5γ, 1.0γ, and 1.5γ, with the
cooperativity C ¼ 20. We assumed Δf ¼ Ω/27/4 and Δf ¼
Ω/27/4 þ jg0sj2/ð2ΔeÞ, Δe ¼ 200g0s when using the effective (thick
curves) and full (symbols) master equations, respectively. This
yields an excellent agreement especially for time t ∈ ½0; 500/γ�.
The steady-state error decreases as Ω and becomes closer to
6/ðe2rpCÞ (thin solid line), far below both 1/

ffiffiffiffi
C

p
(thin dashed line)

and 1/C (thin dotted-dashed line). (b) Entanglement infidelity at
t ¼ 200/γ as a function of C and Ω. Here, due to excellent
agreement between our predictions based on the full and effective
master equations in panel (a), only the latter equation was used in
panel (b). The solid line represents the optimal drive resulting in
the smallest error for a given cooperativity. In both plots, we have
assumed that γg ¼ γ/2, κ ¼ 2γ/3,ΩMW ¼ ffiffiffi

2
p

Δf , rp ¼ 3, θp ¼ π,
while the initial state of the atoms is ðI − jψ−ihψ−jÞ/3 and the
cavity is initially in the vacuum.
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Solid-state implementations can be considered in the
context of nitrogen-vacancy (NV) centers in diamond with
a whispering-gallery-mode (WGM) microresonator [7]. In
this setup, the electronic spin states of the NV centers are
used to form the Λ-configuration structures, such that
jgi≡ j3A2; ms ¼ −1i, jfi≡ j3A2; ms ¼ þ1i, and jei≡
ðjE−; ms ¼ þ1i þ jEþ; ms ¼ −1iÞ/ ffiffiffi

2
p

. The NV spins
have extremely long coherence times at room temperature,
while the WGM microresonators made out of nonlinear
crystals exhibit strong optical nonlinearities [55,56]. These
are the key requirements for the entanglement preparation
with a weak atom drive and a squeezed-cavity mode.
As an alternative example of solid-state system, the

proposed method of maximizing steady-state entanglement
can also be realized in superconducting quantum circuits
[57–59], where two flux or transmon qubits and a coplanar
waveguide resonator are used [2,60]. A superconducting
quantum interference device (SQUID) can be inserted into
the resonator, which is able to create the squeezed vacuum in
the resonator [31,61–65]. All required parts of such devices
havebeen implemented in superconducting experiments [3].
Conclusions.—Wehave shown that parametric squeezing

enables an exponential enhancement of both coherent
coupling between an atom and a cavity, as well as the
corresponding cooperativity. As a simple application, the
steady-state entanglement preparation, which results in an
exponentially better fidelity than previous dissipation-based
protocols, has also been demonstrated here. In principle, our
method can be extended to other local quantum operations,
e.g., many-body entanglement preparation [28,66] and
quantum gate implementations [29,67–70]. We suggest to
use squeezed light for only performing local intracavity
quantum operations and to turn it off for converting sta-
tionary qubits into flying qubits. Moreover, due to a
controllable squeezed-cavity frequency, the present method
should enable reaching the ultra-SCR in optical cavities.
Thus, one may observe many interesting phenomena in
cavity-QED, similar to those observed in circuit QED [3,71–
73]. Indeed, in particular for optical cavities, enhancing the
light-matter interaction and cooperativities is of both fun-
damental and practical importance, so we expect that this
technique could find diverse applications in quantum
technologies [74,75].
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In this Supplemental Material to the article on “Exponentially-Enhanced Light-Matter Interaction, Cooperativities,
and Steady-State Entanglement Using Parametric Amplification”, we first present more details of the elimination
of squeezing-induced noises to show an exponential enhancement of the light-matter interaction, as well as of the
cooperativity. Then, we derive an effective master equation including an effective Hamiltonian and effective Lindblad
operators, and also give a detailed description of our entanglement preparation method. Finally, we discuss, in detail,
the effects of counter-rotating terms and show how to remove them.

S1. Elimination of squeezing-induced fluctuation noise

To demonstrate more explicitly the elimination of the squeezing-induced noise, we now derive the Lindblad master
equation for our atom-cavity system. In addition to an exponential enhancement of the atom-cavity coupling, the
squeezing can introduce undesired noise, including thermal noise and two-photon correlations, into the cavity mode.
In order to avoid such noises, our approach employs an auxiliary, high-bandwidth squeezed-vacuum field, which can
be experimentally generated, e.g., via optical parametric amplification [S1, S2]. Owing to the bandwidth of the
squeezed-vacuum field of up to ∼ GHz, the auxiliary field can be thought of as a squeezed-vacuum reservoir for a
typical cavity mode with its bandwidth of order of MHz. When being coupled to the cavity mode, the auxiliary field
can suppress or even completely eliminate these undesired types of noise of the squeezed-cavity mode.

The Hamiltonian determining the unitary dynamics of our atom-cavity system, as shown in Fig. 1, is given by
Eq. (1) and, for convenience, is recalled here

H (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] +HAC +HNL

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S1)

HNL = ∆ca
†a+

1

2
Ωp
[
exp (iθp) a

2 + H.c.
]
, (S2)

HAC = g
∑
k

(a|e〉k〈f |+ H.c.) , (S3)

V (t) =
1

2
Ω exp (iβt)

∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S4)

Here k = 1, 2 labels the atoms, g is the atom-cavity coupling, the annihilation operator a corresponds to the cavity
mode, Ω (ΩMW) is the Rabi frequency of the laser (microwave) drive applied to the atoms, and Ωp (θp) is the amplitude
(phase) of the strong pump applied to the nonlinear medium. We have defined the following detunings:

∆c = ωc − ωp/2, (S5)

∆e = ωe − ωg − ωMW − ωp/2, (S6)

∆f = ωf − ωg − ωMW, (S7)

β = ωL − ωMW − ωp/2, (S8)



2

where ωc is the cavity frequency, ωL (ωMW) is the frequency of the laser (microwave) drive applied to the atoms, ωp
is the frequency of the strong pump applied to the nonlinear medium, and ωz is the frequency associated with level
|z〉 (z = g, f, e). When the cavity mode is coupled to the squeezed-vacuum reservoir with a squeezing parameter re
and a reference phase θe, the dynamics of the atom-cavity system is described by the following master equation [S3]:

ρ̇ (t) =i [ρ (t) , H (t)]− 1

2

{∑
x′

L (Lx′) ρ (t) + (N + 1)L (La) ρ (t)

+NL
(
L†a
)
ρ (t)−ML′ (La) ρ (t)−M∗L′

(
L†a
)
ρ (t)

}
, (S9)

where ρ (t) is the density operator of the system, a Lindblad operator La =
√
κa describes the cavity decay with a

rate κ, and

N = sinh2 (re) and M = cosh (re) sinh (re) e
−iθe (S10)

describe thermal noise and two-photon correlations caused by the squeezed-vacuum reservoir, respectively. Moreover,

L (o) ρ (t) = o†oρ (t)− 2oρ (t) o† + ρ (t) o†o, (S11)

L′ (o) ρ (t) = ooρ (t)− 2oρ (t) o+ ρ (t) oo (S12)

and the sum runs over all atomic spontaneous emissions, including the Lindblad operators

Lg1 =
√
γg|g〉1〈e|, Lf1 =

√
γf |f〉1〈e|, Lg2 =

√
γg|g〉2〈e|, Lf2 =

√
γf |f〉2〈e|. (S13)

Note that, here, we have assumed that the atoms are coupled to a thermal reservoir and that in each atom, |e〉 decays
to |g〉 and |f〉, respectively, with rates γg and γf .

When pumped, the nonlinear medium can squeeze the cavity mode along the axis rotated at an angle (π − θp) /2,
with a squeezing parameter rp = (1/4) ln [(1 + α) / (1− α)], where α = Ωp/∆c. This results in a squeezed-cavity
mode, as described by the Bogoliubov transformation as = cosh (rp) a+ exp (−iθp) sinh (rp) a

† [S3], such that

HNL = ωsa
†
sas, (S14)

where ωs = ∆c

√
1− α2 is the squeezed-cavity frequency. In terms of the mode as, the atom-cavity interaction

Hamiltonian HAC in Eq. (S3) is reexpressed as

HAC =
∑
k

[(
gsas − g′sa†s

)
|e〉k〈f |+ H.c.

]
, (S15)

where gs = g cosh (rp) and g′s = exp (−iθp) g sinh (rp). Under the assumption that |g′s|/ (ωs + ∆e −∆f ) � 1, we can
make the rotating-wave approximation to neglect the counter-rotating terms, which results in a standard Jaynes-
Cummings Hamiltonian

HASC = gs
∑
k

(as|e〉k〈f |+ H.c.) . (S16)

This Hamiltonian describes an interaction between the atoms and the squeezed-cavity mode, and demonstrate that
as long as rp ≥ 1, there is an exponential enhancement in the atom-cavity coupling,

gs
g
∼ 1

2
exp (rp) . (S17)

Furthermore, the master equation in Eq. (S9) can accordingly be reexpressed as

ρ̇ (t) = i [ρ (t) , Hs (t)]

− 1

2

{∑
x′

L (Lx′) ρ (t) + (Ns + 1)L (Las) ρ (t)

+NsL
(
L†as
)
ρ (t)−MsL′ (Las) ρ (t)−M∗sL′

(
L†as
)
ρ (t)

}
, (S18)

Hs (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas +HASC

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S19)



3

where Ns and Ms are given, respectively, by

Ns = cosh2 (rp) sinh2 (re) + sinh2 (rp) cosh2 (re)

+
1

2
sinh (2rp) sinh (2re) cos (θe + θp) , (S20)

Ms = exp (iθp) [sinh (rp) cosh (re) + exp [−i (θe + θp)] cosh (rp) sinh (re)]

× [cosh (rp) cosh (re) + exp [i (θp + θe)] sinh (re) sinh (rp)] , (S21)

corresponding to an effective thermal noise and two-photon correlations of the squeezed-cavity mode, and where
Las =

√
κas is a Lindblad operator corresponding to the decay of the squeezed-cavity mode, gs = g cosh (rp) is the

enhanced, controllable atom-cavity coupling. We have neglected the counter-rotating terms to obtain the Hamiltonian
Hs. From Eqs. (S20) and (S21), we can, as re = 0, observe the noise caused only by squeezing the cavity mode.
However, when choosing re = rp and θe + θp = ±nπ (n = 1, 3, 5, · · · ), we have

Ns = Ms = 0, (S22)

so that the master equation is simplified to a Lindblad form,

ρ̇ (t) = i [ρ (t) , Hs (t)]− 1

2

∑
x

L (Lx) ρ (t) . (S23)

Here, the sum runs over all dissipative processes, including atomic spontaneous emission and squeezed-cavity decay.
From Eq. (S23), we find that the squeezed-cavity mode is equivalently coupled to a thermal reservoir, and the
squeezing-induced noises are completely removed as desired. Therefore, we can define the effective cooperativity
Cs = g2

s/ (κγ), and obtain an exponential enhancement in the atom-cavity cooperativity C = g2/ (κγ), that is,

Cs
C

= cosh2 (rp) ∼
1

4
exp (2rp) . (S24)

This can be used to improve the quality of dissipative entanglement preparation. The resulting entanglement infidelity
is no longer lower-bounded by the cooperativity C of the atom-cavity system and could be, in principle, made very
close to zero.

Our method is to use a squeezed-vacuum field to suppress the noise of the squeezed-cavity mode, including thermal
noise and two-photon correlations. This makes the squeezed-cavity mode equivalently coupled to a thermal-vacuum
reservoir. Therefore, this method only changes the environment of the squeezed-cavity mode, and cannot cause the
cavity mode to violate the Heisenberg uncertainty principle. To elucidate more explicitly the physics underlying this
effect and to obtain an analytical understanding, we consider a simple case when the cavity mode is decoupled from
the atoms. In this case, the Hamiltonian only includes the nonlinear term given in Eq. (S2). The cavity mode is then
coupled to the squeezed-vacuum reservoir. Following the same method as before, we can find that the squeezed-cavity
mode is equivalently coupled to a thermal vacuum reservoir. The corresponding master equation is

ρ̇ (t) = i
[
ρ (t) , ωsa

†
sas
]
− κ

2

[
a†sasρ (t)− 2asρ (t) a†s + ρ (t) a†sas

]
. (S25)

We now calculate the Heisenberg uncertainty relation of the cavity mode a evolving according to the master equation
given in Eq. (S25). To start, we define two rotated quadratures at an angle (π − θp) /2,

X1 =
1

2

{
a exp [−i (π − θp) /2] + a† exp [i (π − θp) /2]

}
, (S26)

X2 =
1

2i

{
a exp [−i (π − θp) /2]− a† exp [i (π − θp) /2]

}
. (S27)

In terms of the as mode, X1 and X2 can be reexpressed as

X1 = x1as + x∗1a
†
s, (S28)

X2 = −i
(
x2as − x∗2a†s

)
. (S29)

Here,

x1 =
1

2
{exp [−i (π − θp) /2] cosh (rp)− exp [i (π + θp) /2] sinh (rp)} , (S30)

x2 =
1

2
{exp [−i (π − θp) /2] cosh (rp) + exp [i (π + θp) /2] sinh (rp)} . (S31)



4

According to the master equation in Eq. (S25), a straightforward calculation gives

(∆X1)
2

= 〈X2
1 〉 − 〈X1〉2

=
{
y2

1 exp (−i2ωst)
[
〈asas〉(0)− 〈as〉2(0)

]
+ 2|y1|2

[
〈a†sas〉(0)− 〈a†s〉(0) 〈as〉(0)

]
+ y∗21 exp (i2ωst)

[
〈a†sa†s〉(0)− 〈a†s〉2(0)

] }
exp (−κt) +

1

4
exp (2rp) , (S32)

(∆X2)
2

= 〈X2
2 〉 − 〈X2〉2

=
{
y2

2 exp (−i2ωst)
[
〈as〉2(0)− 〈asas〉(0)

]
+ 2|y2|2

[
〈a†sas〉(0)− 〈a†s〉(0) 〈as〉(0)

]
+ y∗22 exp (i2ωst)

[
〈a†s〉2(0)

]
− 〈a†sa†s〉(0)

}
exp (−κt) +

1

4
exp (−2rp) , (S33)

where 〈O〉(t) represents the expectation value of the operator O at the evolution time t. For simplicity, and without
loss of generality, we assume that the squeezed-cavity mode is initially in a Fock state |ns〉, with ns being the
squeezed-cavity photon number. In this case, we have

(∆X1)
2

=
1

4
[2ns exp (−κt) + 1] exp (2rp) , (S34)

(∆X2)
2

=
1

4
[2ns exp (−κt) + 1] exp (−2rp) , (S35)

and then

(∆X1) (∆X2) =
1

4
[2ns exp (−κt) + 1] ≥ 1

4
. (S36)

It is found, from Eq. (S36), that the Heisenberg uncertainty relation holds, as expected.
We now turn to the discussion of the squeezed vacuum drive. The squeezing strength re and squeezing phase θe are

experimentally adjustable quantities. In optics, the squeezed vacuum can be produced by a pumped χ(2) nonlinear
medium (e.g., a periodically-poled KTiOPO4 (PPKTP) crystal) placed in an optical cavity [S1, S2, S4, S5]. This
method is similar to generating cavity-field squeezing of a atom-cavity system. The parameters re and θe can be
controlled by the amplitude and phase of the laser, which pumps the crystal. To confirm the values of the parameters,
one can further measure these by using balanced homodyne detection [S6]. The parameters rp and θp can be controlled
analogously in such a way to fulfill the conditions re = rp and θe + θp = ±nπ (n = 1, 3, 5, · · · ). We note that optical
squeezing has also been experimentally implemented utilizing a waveguide cavity [S7].

Superconducting quantum circuits, due to their tunable nonlinearity and low losses for microwave fields, are other
promising devices for producing squeezed states. The most popular method to generate microwave squeezing is to
use a Josephson parametric amplifier (JPA) [S8–S12]. The JPA is a superconducting LC resonator, which consists
of a superconducting quantum interference device (SQUID). This resonator can be pumped not only through the
resonator, but also by modulating the magnetic flux in the SQUID. In this case, the parameters re and θe can be
controlled by the amplitude and phase of a pump tone used to modulate the magnetic flux. Recent experiments have
shown that the squeezed vacuum, generated by a JPA, can be used to reduce the radiative decay of superconducting
qubits [S10] and to modify resonance fluorescence [S13]. The squeezing of quantum noise has also been demonstrated
with tunable Josephson metamaterials [S14].

S2. Perturbative treatment and maximizing steady-state entanglement

For the preparation of a steady entangled state, e.g., the singlet state |S〉 = (|gf〉 − |fg〉) /
√

2, the key element is
that the system dynamics cannot only drive the population into |ψ−〉, but also prevent the population from moving
out of |ψ−〉. In our approach, when we choose ∆e = β = ωs + ∆f , the coherent couplings mediated by the laser drive
and by the squeezed-cavity mode are resonant. In addition, the microwave field also resonantly drives the transition

|φ−〉 ↔ |φ+〉 ↔ |ψ+〉. (S37)

The proposed entanglement preparation can, therefore, be understood via a hopping-like model, as illustrated in
Fig. S1(a). Note that, here, ∆f is required to be nonzero, or |φ−〉 becomes a dark state of the microwave drive, whose
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population is trapped and cannot be transferred to |ψ+〉. In the preparation process, the populations initially in the
states |φ−〉, |φ+〉, and |ψ+〉 can be coherently driven to the dark state |D〉 through the microwave and laser drives
and, then, decay to the desired state |ψ−〉 through two atomic decays, respectively, with rates γg1 and γg2. Indeed,
such atomic decays originate, respectively, from the spontaneous emissions, |e〉 → |g〉, of the two atoms, so we have
γg1 = γg2 = γg/4. Furthermore, owing to the laser drive, the state |ψ−〉 is resonantly excited to |ϕe〉. This state is
then resonantly coupled to |ff〉|1〉s by the squeezed-cavity mode. The cavity loss causes the latter state to decay
to |ff〉|0〉s, thus giving rise to population leakage from |ψ−〉. However, because of the exponential enhancement in
the atom-cavity coupling [i.e., gs ∼ g exp (rp) /2 in Eq. (S17)], the state |ϕe〉 is split into a doublet of dressed states,

|e±〉 = (|ϕe〉 ± |ff〉|1〉s) /
√

2, exponentially separated by

2
√

2gs ∼
√

2g exp (rp) , (S38)

which is much larger than the couplings strength Ω± = Ω/
(
2
√

2
)
, as shown in Fig. S1(b). Hence, the population leak-

age from |ψ−〉 is exponentially suppressed, and we can make the effective decay rate, Γout, out of |ψ−〉, exponentially
smaller than the effective decay rate, Γin, into |ψ−〉. To discuss these decay rates more specifically, we need to give an
effective master equation of the system, when the laser drive Ω is assumed to be much smaller than the interactions
inside the excited-state subspace. In this case, the coupling between the ground- and excited-state subspaces is treated
as a perturbation, so that both cavity mode and excited states of the atoms can be adiabatically eliminated.

f
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2 2 sg


/ 2
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/ 2
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eff

g

     
2

eff
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(c) eff

FIG. S1. (Color online) (a) Hopping-like model for the proposed steady-state nearly-maximal entanglement preparation. (b)
Exponential suppression in the leakage of the population in |ψ−〉. (c) Effective dynamics after adiabatically eliminating the
states |D〉, |e+〉, and |e−〉.

Specifically, we follow the procedure in Ref. [S15], and begin by considering the Lindblad master equation in
Eq. (S23). For convenience, we rewrite the Hamiltonian Hs (t) as

Hs (t) = Hg +He + v(t) + v†(t) , (S39)
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with

Hg =
∑
k=1,2

[
∆f |f〉k〈f |+

ΩMW

2
(|f〉k〈g|+ H.c.)

]
, (S40)

He =
∑
k=1,2

|e〉k〈e|+ ωsa
†
sas +HASC, (S41)

representing the interactions, respectively, inside the ground- and excited-state subspaces, and

v(t) =
1

2
exp (iβt) Ω

∑
k=1,2

exp [i (k − 1)π] |g〉k〈e| (S42)

being the deexcitation from the excited-state subspace to the ground-states subspace. Under the assumption that the
laser drive Ω is sufficiently weak compared to the coupling gs, the effective Hamiltonian and Lindblad operators read:

Heff = − 1

2

[
v(t) (HNH − β)

−1
v†(t)

]
+Hg, (S43)

Lx,eff = Lx (HNH − β)
−1
v†(t) , (S44)

where

HNH = He −
i

2

∑
x

L†xLx (S45)

is the no-jump Hamiltonian. The system dynamics is, therefore, determined by an effective master equation

ρ̇g(t) = i [ρg(t) , Heff]− 1

2

∑
x

L (Lx,eff) ρg(t) , (S46)

where ρg(t) is the reduced density operator associated only with the ground states of the atoms. After a straightforward
calculation restricted in the Hilbert space having at most one excitation, we have:

Heff = ∆f (I/2− |φ+〉〈φ−|+ H.c.) + ΩMW (|ψ+〉〈φ+|+ H.c.) , (S47)

Lg1,eff = rg [(|ψ+〉+ |ψ−〉) (γeff,0〈ψ+|+ γeff,2〈ψ−|) + γeff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)] , (S48)

Lg2,eff = − rg [(|ψ+〉 − |ψ−〉) (γeff,0〈ψ+| − γeff,2〈ψ−|) + γeff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)] , (S49)

Lf1,eff = rf [(|φ+〉 − |φ−〉) (γeff,0〈ψ+|+ γeff,2〈ψ−|) + γeff,1 (|ψ+〉 − |ψ−〉) (〈φ+|+ 〈φ−|)] , (S50)

Lf2,eff = − rf [(|φ+〉 − |φ−〉) (γeff,0〈ψ+| − γeff,2〈ψ−|) + γeff,1 (|ψ+〉+ |ψ−〉) (〈φ+|+ 〈φ−|)] , (S51)

Las,eff = ras

[
κeff,1|ψ−〉 (〈φ+|+ 〈φ−|)−

1√
2
κeff,2 (|φ+〉 − |φ−〉) 〈ψ−|

]
. (S52)

Here,

I = |φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|, (S53)

|φ±〉 =
1√
2

(|gg〉 ± |ff〉) , (S54)

|ψ±〉 =
1√
2

(|gf〉 ± |fg〉) , (S55)

and

rg(f) = exp (−iβt)
Ω
√
γg(f)

4γ
, (S56)

ras = exp (−iβt) Ω

2
√
γ
, (S57)

γeff,0 =
1

∆̃e,1

, (S58)

γeff,m =
ω̃s,m

ω̃s,m∆̃e,m−1 −mCs
, (S59)

κeff,m =

√
mCs

ω̃s,m∆̃e,m−1 −mCs
, (S60)
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where

ω̃s,m =
1

κ
(ωs +m∆f − β)− i

2
, (S61)

∆̃e,m−1 =
1

γ
[∆e + (m− 1) ∆f − β]− i

2
, (S62)

for m = 1, 2, and where γ = γg + γf is the total atomic decay rate.
Having obtained the effective master equation, let us now consider the decay rates Γin and Γout. According to the

effective Lindblad operators in Eqs. (S48)-(S52), the decay rates of moving into and out of the singlet state |ψ−〉 are
given, respectively, by

Γin =
Ω2

4γ2

(
γg|γeff,0|2 + 2γf |γeff,1|2 + 4γ|κeff,1|2

)
, (S63)

Γout =
Ω2

4γ2

(
γg|γeff,2|2 + 2γf |γeff,2|2 + 2γ|κeff,2|2

)
. (S64)

Let us define the entanglement fidelity as F = 〈ψ−|ρg (t) |ψ−〉 (that is, the probability of the atoms being in |ψ−〉)
and, then, the entanglement infidelity as δ = 1 − F . In the steady state (t → +∞), the entanglement infidelity is
found

δ ∼ 1

1 + Γin/ (3Γout)
. (S65)

Note that, here, we have assumed that |φ+〉, |φ−〉, and |ψ+〉 have the same population in a steady state. In order to
prepare nearly-maximal steady-state entanglement, we choose the detunings to be

∆e = β = ωs + ∆f , (S66)

such that ω̃s,m ∼ ∆̃e,m−1 ∼ −i/2, yielding

Γin

Γout
∼ 4γg

γ
Cs � 1, (S67)

for Cs � 1. As shown in Fig. S1(c), the underlying dynamics is as follows: after adiabatically eliminating the excited
states |D〉, |e+〉, and |e−〉, the states |ψ+〉 and |ψ−〉 are directly connected by two effective spontaneous emission

processes with rates γg1eff and γg2eff ,

γg1eff = γg2eff = |rgγeff,0|2 ∼
γg
4γ2

Ω2, (S68)

and at the same time, the desired state |ψ−〉 leaks the population through an effective cavity decay with a rate κeff,

κeff = |rasκeff,2|2/2 ∼
Ω2

16γCs
. (S69)

Therefore, together with the effective Hamiltonian Heff driving the populations from both |φ+〉 and |φ−〉 to |ψ+〉, the
initial populations in the ground-states subspace of the atoms can be transferred to |ψ−〉 and trapped in this state.
By substituting Eq. (S67) into Eq. (S65), we can straightforwardly have

δ ∼ 3γ

4γgCs
. (S70)

As long as rp ≥ 1, an exponential enhancement of the cooperativity, Cs/C ∼ exp (2rp) /4, is obtained, leading to

δ ∼ 3γ

γg exp (2rp)C
. (S71)

This equation shows that we can increase the squeezing parameter rp, so as to exponentially decrease the entanglement
infidelity, as seen in Fig. S2. Moreover, the result in this figure also reveals that, by decreasing Ω, one can suppress non-
adiabatic errors and, thus, can cause the steady-state infidelity to approach a theoretical value, as expected. Hence,
as opposed to prior entanglement preparation protocols, which relied on controlled unitary dynamics or engineered
dissipation, such an infidelity is no longer lower bounded by the cooperativity C and, in principle, can be made very
close to zero.
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FIG. S2. (Color online) Steady-state entanglement infidelity versus the squeezing parameter rp. We have plotted the numerical
infidelity for Ω = 0.5γ (dashed curve), Ω = 1.0γ (dashed-dotted curve), and Ω = 1.5γ (dotted curve) by calculating the effective
master equation, and also plotted the theoretical prediction (solid curve). Here, we have assumed that γg = γ/2, κ = 2γ/3,

C = 20, ∆f = Ω/27/4, ΩMW =
√

2∆f , and that with the vacuum cavity, the initial state of the atoms is (I − |ψ−〉〈ψ−|) /3.

S3. Effects of the counter-rotating terms

The counter-rotating terms of the form a†s
∑
k |e〉k〈f | and as

∑
k |f〉k〈e|, which result from optical parametric

amplification, do not conserve the excitation number, and can couple the ground- and double-excited states subspaces.
Thus, this would give rise to an additional leakage of the population in the desired state |ψ−〉, and decrease the
entanglement fidelity. For example, in the presence of the counter-rotating terms, the state |ψ−〉 can be excited

to a double-excitation state (|ge〉 − |eg〉) |1〉s/
√

2, which, then, de-excites to the ground state |gg〉|0〉 through cavity
decay and spontaneous emission. In general, we can decrease the ratio |g′s|/ (2∆e) to reduce errors induced by these
excitation-number-nonconserving processes. However, to reduce such errors more efficiently in the limit of |g′s|/ (2∆e),
we analyze effects of counter-rotating terms, in detail, in this section, and demonstrate that by modifying external
parameters, we can remove these terms and the full system can be mapped to a simplified system described above.

According to Eqs. (S14) and (S15), the full Hamiltonian of the system in the terms of the squeezed mode as is

H (t) =
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas

+
∑
k

[(
gsas − g′sa†s

)
|e〉k〈f |+ H.c.

]
,

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) , (S72)

V (t) =
1

2
Ω exp (iβt)

∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S73)

Indeed, the counter-rotating terms can be treated as the high-frequency components of the full Hamiltonian. In order
to explicitly show these high-frequency components, we can express H (t) into a rotating frame at

H0 = ∆e

∑
k

|e〉k〈e|+ (ωs + ∆f ) a†sas. (S74)
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Thus, H (t) is transformed to

H (t) = ∆f

(∑
k

|f〉k〈f | − a†sas

)
+
∑
k

(
gsas|e〉k〈f | − ei2∆etg′sa

†
s|e〉k〈f |+ H.c.

)
+

1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V, (S75)

V =
1

2
Ω
∑
k

[
(−1)

k−1 |g〉k〈e|+ H.c.
]
. (S76)

Here, we have chosen ∆e = β = ωs + ∆f . Because ∆f is required to be much smaller than ∆e, H (t) can be divided
into two parts, H (t) = Hlow +Hhigh, where

Hlow = ∆f

(∑
k

|f〉k〈f | − a†sas

)
+ gs

∑
k

(as|e〉k〈f |+ H.c.)

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V, (S77)

Hhigh =
∑
k

(
−ei2∆etg′sa

†
s|e〉k〈f |+ H.c.

)
, (S78)

represent the low- and high- frequency components, respectively. Here, we consider the limit |g′s|/∆e � 1. By using
a time-averaging treatment [S16], the behavior of Hhigh can be approximated by a time-averaged Hamiltonian,

HTA =
|g′s|2

2∆e

∑
k

a†sas (|e〉k〈e| − |f〉k〈f |)

− |g
′
s|2

2∆e

∑
k,k′

(|f〉k〈e|) (|e〉k′〈f |) . (S79)

The first term describes an energy shift depending on the photon number of the squeezed-cavity mode, and the second
term describes a direct coupling between the two atoms. Accordingly, H (t) becomes H (t) ' Hlow +HTA, and after
transforming back to the original frame, we obtain

H (t) '
∑
k

[∆e|e〉k〈e|+ ∆f |f〉k〈f |] + ωsa
†
sas

+ gs
∑
k

(as|e〉k〈f |+ H.c.) ,

+
1

2
ΩMW

∑
k

(|f〉k〈g|+ H.c.) + V (t) +HTA. (S80)

We find, from Eq. (S79), that the counter-rotating terms are able to conserve the excitation number as long as
|g′s|/∆e � 1. Therefore, we can restrict our discussion in a subspace having at most one excitation, as discussed
above. In this subspace, HTA is expanded as

HTA =− |g
′
s|2

2∆e
(I/2 + |ϕe〉〈ϕe| − |φ+〉〈φ−|+ H.c.)

− |g
′
s|2

∆e

(
I(1)/2− |φ(1)

+ 〉〈φ
(1)
− |+ H.c.

)
, (S81)

where

I(1) = |φ(1)
+ 〉〈φ

(1)
+ |+ |φ

(1)
− 〉〈φ

(1)
− |+ |ψ

(1)
+ 〉〈ψ

(1)
+ |+ |ψ

(1)
− 〉〈ψ

(1)
− |,

|φ(1)
± 〉 = (|gg〉 ± |ff〉) |1〉s/

√
2,

|ψ(1)
± 〉 = (|gf〉 ± |fg〉) |1〉s/

√
2. (S82)
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Equation (S81) indicates that the counter-rotating terms introduce an energy shift of |g′s|2/ (2∆e) imposed upon the
ground states, and a coherent coupling, of strength |g′s|2/ (2∆e), between the states |φ+〉 and |φ−〉. From Fig. S1(a),
we find that in the regime, where Ω/|g′s| is comparable to |g′s|/∆e, such an energy shift can cause the |ψ+〉 → |D〉
transition to become far off-resonant and, thus, suppress the population into the desired state |ψ−〉. Meanwhile,
this introduced coupling may increase the entanglement error originating from the microwave dressing of the ground
states. For example, if ∆f = |g′s|2/ (2∆e), then the state |φ−〉 becomes a dark state of the microwave drive. In this
case, the population in |φ−〉 is trapped and cannot be transferred to |ψ−〉. To remove these detrimental effects, it
is essential to compensate this energy shift. According to the above analysis, the detunings in Eq. (S66) need to be
modified as

∆e = β − |g
′
s|2

2∆e
= ωs + ∆f −

|g′s|2

∆e
. (S83)

This modification simplifies the full dynamics to the same hopping-like model, as shown in Fig. S1(a) with ∆f →
∆′f = ∆f −|gs|2/ (2∆e). Therefore, we can map the full system to a simple system that excludes the counter-rotating
terms and has been discussed above.
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FIG. S3. (Color online) Entanglement infidelity δ as a function of time tγ for (a) Ω = 0.5γ, (b) Ω = 1.0γ, and (c) Ω = 1.5γ,
assuming a cooperativity of C = 20. Solid and dashed-dotted curves are obtained, respectively, from integrations of the effective
and full master equations, both with detunings ∆f = Ω/27/4 and ∆e = β = ωs+∆f . Dashed curves are also given by calculating

the full master equation but with modified detunings ∆f = Ω/27/4+|g′s|2/ (2∆e) and ∆e = β−|g′s|2/ (2∆e) = ωs+∆f−|g′s|2/∆e.
For both full cases, we have assumed ∆e = 200g′s. In all plots, we have assumed that γg = γ/2, κ = 2γ/3, ΩMW =

√
2∆f ,

rp = 3, and θp = π. Moreover, the initial state of the atoms is (I − |ψ−〉〈ψ−|) /3 and the cavity was initially in the vacuum.

To understand this process better, we can follow the same method as above, but now with the Hamiltonian in
Eq. (S80). Thus, we find the effective Hamiltonian and Lindblad operators as follows:

H ′eff = ∆′f (I/2− |φ+〉〈φ−|+ H.c.) + ΩMW (|ψ+〉〈φ+|+ H.c.) , (S84)

L′g1,eff = r′g
[
(|ψ+〉+ |ψ−〉)

(
γ′eff,0〈ψ+|+ γ′eff,2〈ψ−|

)
+ γ′eff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)

]
, (S85)

L′g2,eff = − r′g
[
(|ψ+〉 − |ψ−〉)

(
γ′eff,0〈ψ+| − γ′eff,2〈ψ−|

)
+ γ′eff,1 (|φ+〉+ |φ−〉) (〈φ+ + 〈φ−|)

]
, (S86)

L′f1,eff = r′f
[
(|φ+〉 − |φ−〉)

(
γ′eff,0〈ψ+|+ γ′eff,2〈ψ−|

)
+ γ′eff,1 (|ψ+〉 − |ψ−〉) (〈φ+|+ 〈φ−|)

]
, (S87)

L′f2,eff = − r′f
[
(|φ+〉 − |φ−〉)

(
γ′eff,0〈ψ+| − γ′eff,2〈ψ−|

)
+ γ′eff,1 (|ψ+〉+ |ψ−〉) (〈φ+|+ 〈φ−|)

]
, (S88)

L′as,eff = r′as

[
κ′eff,1|ψ−〉 (〈φ+|+ 〈φ−|)−

1√
2
κ′eff,2 (|φ+〉 − |φ−〉) 〈ψ−|

]
. (S89)

Here,

∆′f = ∆f −
|gs|2

2∆e
, (S90)

r′g(f) = exp(−iβt)
Ω
√
γg(f)

4γ
, (S91)

r′as = exp(−iβt) Ω

2
√
γ
, (S92)
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and

γ′eff,0 =
1

∆̃′e
, (S93)

γ′eff,m =
ω̃′s,m

ω̃′s,m∆̃′e,m−1 −mCs
, (S94)

κ′eff,m =

√
mCs

ω̃′s,m∆̃′e,m−1 −mCs
(S95)

where

∆̃′e = (∆e + ∆f − β) /γ − i/2, (S96)

ω̃′s,m =

[
ωs +m

(
∆f −

|g′s|2

∆e

)
− β

]
/κ− i/2, (S97)

∆̃′e,m−1 =

[
∆e − β + (m− 1)

(
∆f −

|g′s|2

∆e

)]
/γ − i/2, (S98)

for m = 1, 2. Upon using the modified parameter, given in Eq. (S83), we obtain ∆̃′e ∼ ω̃′s,m ∼ ∆̃′e,m−1 ∼ −i/2.
This implies that the dynamics is the same as what we have already described for the simplified system without the
counter-rotating terms, thereby leading to the same entanglement infidelity. To confirm this, we perform numerical
calculations, as shown in Fig. S3. Specifically, we plot the entanglement infidelity as a function of rescaled time. Solid
curves indicate the results obtained by integrating the effective master equation, whereas dashed and dashed-dotted
curves reveal the predictions of the full master equation, respectively, with modified and unmodified detunings. These
results demonstrate that the detrimental effects of the counter-rotating terms can be strongly suppressed by modifying
external parameters, in particular, as what we have discussed above, for the case of weak Ω driving strengths, which
are necessary for the validity of the perturbative treatment used in our approach.
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