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We propose how to create and manipulate one-way nonclassical light via photon blockade in rotating
nonlinear devices. We refer to this effect as nonreciprocal photon blockade (PB). Specifically, we show that
in a spinning Kerr resonator, PB happens when the resonator is driven in one direction but not the other.
This occurs because of the Fizeau drag, leading to a full split of the resonance frequencies of the
countercirculating modes. Different types of purely quantum correlations, such as single- and two-photon
blockades, can emerge in different directions in a well-controlled manner, and the transition from PB to
photon-induced tunneling is revealed as well. Our work opens up a new route to achieve quantum
nonreciprocal devices, which are crucial elements in chiral quantum technologies or topological photonics.
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Nonreciprocal devices, allowing the flow of light fromone
side but blocking it from the other, are indispensable in awide
range of practical applications, such as invisible sensing or
cloaking, and noise-free information processing [1]. To avoid
the difficulties of conventional magnet-based devices (e.g.,
bulky and quite lossy at optical frequencies), nonreciprocal
optical devices have been demonstrated in recent experi-
ments based on nonlinear optics [2,3], optomechanics [4–6],
atomic gases [7,8], and non-Hermitian optics [9–11]. Similar
advances have also been achieved in making acoustic and
electronic one-way devices [12–17]. However, previous
studies have mainly focused on the classical regimes, i.e.,
one-way control of transmission rates instead of quantum
noises. Nonreciprocal quantum devices have been explored
very recently, including one-way quantum amplifiers
[18–24] and routers of thermal noises [25]. Such devices
can find applications for quantum control of light in chiral
and topological quantum technologies [26–28].
Herewe propose how to induce and control nonreciprocal

quantum effectswith rotating nonlinear devices. Specifically,
we show that photon blockade (PB), which is a purely
quantum effect, can emerge nonreciprocally in a spinning
Kerr resonator. We note that single-photon blockade (1PB),
i.e., blockade of the subsequent photons by absorbing the
first one [29–32], has been demonstrated experimentally in
diverse systems from cavity or circuit QED [33–40] to
cavity-free devices [41]. In view of its important role in
achieving single-photon devices, optomechanical PB
[42–45] have also been explored, offering a way to test,
e.g., the quantumness of massive objects [46–50]. In
a very recent experiment [51], two-photon blockade (2PB)

[31,52–59] has also been observed, opening a route for
creating two-photon devices. Thus, nonreciprocal PB devi-
ces, as studied here, together with other nonreciprocal
quantum devices [18–23,25], are expected to play a key
role in quantum engineering [60–62], metrology [63–65],
and quantum information processing [66,67] at the single- or
few-photon levels.
In a very recent experiment [68], an optical diode with

99.6% isolation has been demonstrated by using a spinning
resonator. Inspired by this experiment [68], here we study
nonreciprocal PB in a spinning Kerr resonator. We find that
light with sub- or super-Poissonian photon-number statistics
can emerge when driving the resonator from its left or right
side. Also, by varying the parameters of the system, different
quantum correlations (i.e., 1PB or 2PB) can be achieved for
the clockwise (CW) or counterclockwise (CCW) modes, for
a resonator spinning along the CCW direction. We note that
the main idea of nonreciprocal PB is analogous to the
classical nonreciprocity inducedby theDoppler effect,which
has been studied extensively in various areas of physics (see,
e.g., Refs. [7,8,69]). Here we focus on quantum nonreci-
procity induced by the Fizeau light-dragging effect. This
opens up the prospect of engineering nonreciprocal PB
devices for applications in, e.g., unidirectional quantum
sensing and quantum optical communications [28].
Model.—We consider a spinning optical Kerr resonator

as shown in Fig. 1. As a generic PB model [30,32,53], Kerr
interactions can also be experimentally achieved in cavity-
atom systems [33,70], or magnon devices [71], and
theoretically in optomechanical systems [42,43]. For a
resonator spinning at an angular velocity Ω, the light
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circulating in the resonator experiences a Fizeau shift, i.e.,
ω0 → ω0 þ ΔF, with [72]

ΔF ¼ � nrΩω0

c

�
1 −

1

n2
−
λ

n
dn
dλ

�
; ð1Þ

where ω0 is the resonance frequency of a nonspinning
resonator, n is the refractive index, r is the resonator radius,
and c (λ) is the speed (wavelength) of light in vacuum.
Usually, the dispersion term dn=dλ, characterizing the
relativistic origin of the Sagnac effect, is relatively small
(up to ∼1%) [68,72]. We fix the CCW rotation of the
resonator; hence ΔF > 0 (ΔF < 0) corresponds to the
situation of driving the resonator from its left (right) side;
i.e., the CW and CCW mode frequencies are ω↻;↺≡
ω0 � jΔFj, respectively.
In a frame rotating at driving frequency ωL, the effective

Hamiltonian of the system can be written at the simplest
level as [73]

Ĥ ¼ ℏðΔk þ ΔFÞâ†âþ ℏUâ†âðâ†â − kÞ þ ℏξðâ† þ âÞ;
ð2Þ

where Δk ¼ ΔL þ Uðk − 1Þ, ΔL ¼ ω0 − ωL, the tuning
parameter k is simply k ¼ 1 − ΔL=U for Δk ¼ 0, â (â†)
is the annihilation (creation) operator of the cavity field,
and ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γPin=ðℏωLÞ
p

, with the cavity loss rate γ and the

driving power Pin. The Kerr parameter is [76]
U ¼ ℏω2

0cn2=ðn20VeffÞ, where n0 (n2) is the linear (non-
linear) refraction index, and Veff is the effective mode
volume. The Kerr coupling is also attainable by using other
kinds of devices [33,42,43,70,71]. Note that the term ΔF
makes Eq. (2) fundamentally different from that used for
studying conventional PB [53].
The energy eigenstates of this system are the Fock states

jni (n ¼ 0; 1; 2;…) with eigenenergies

En ¼ nℏΔL þ ðn2 − nÞℏU � nℏjΔFj; ð3Þ

where n is the cavity photon number. The second term, with
U, leads to an anharmonic energy-level structure. The last
term, with�jΔFj, describing upper or lower shifts of energy
levelswith an amount being proportional toΩ, is the origin of
nonreciprocal implementations of PB. When jΔFj ¼ U=2
and the probe with frequency ω0 þ jΔFj (k ¼ 1.5) comes
from the left side, the light is resonantly coupled to the
transition j0i → j1i. As shown in Fig. 1(a), the transition
j1i → j2i is detuned by 2ℏU and, thus, suppressed for
U > γ; i.e., once a photon is coupled into the resonator, it
suppresses the probability of the second photon with the
same frequency going into the resonator. In contrast, by
driving from the right side, there is a two-photon resonance
with the transition j0i → j2i; hence the absorption of the first
photon favors also that of the second or subsequent photons,
i.e., resulting in photon-induced tunneling (PIT), as defined
below and shown in Fig. 1(b). This is a clear signature of
nonreciprocal 1PB; i.e., sub-Poissonian light emerges by
driving the system from one side, while super-Poissonian
light emerges by driving from the other side.
Analytical results.—To confirm this intuitive picture, we

study the μth-order (μ ¼ 2, 3) correlation function with
zero-time delay, i.e., gðμÞð0Þ≡ hâ†μâμi=hn̂iμ, with
n̂ ¼ â†â. The condition gð2Þð0Þ > 1 [gð2Þð0Þ < 1] charac-
terizes PIT [34,77] (1PB) via super-Poissonian (sub-
Poissonian) photon-number statistics or photon bunching
(antibunching) [78,79]. The latter terms can also refer to
different (i.e., two-time) optical correlation effects [79,80],
which are, however, not studied here. We stress that,
although PIT has a classical-like property of super-
Poissonian photon-number statistics [77,81,82], it is a
purely quantum effect [34]. The analysis of higher-order
correlation functions gðμÞð0Þ > 1 with μ > 2 can reveal the
relation of a particular PIT and multi-PB [73]. Thus, more
refined criteria for PIT are sometimes applied [50,81,83],
and we refer here to PIT if the conditions gðμÞð0Þ > 1 for
μ ¼ 2, 3, 4 are satisfied [73]. We also note that partially
coherent mixtures of the vacuum, and single- and multi-
photon states, as generated here, can be described by μth-
order super-Poissonian correlations, i.e., gðμÞð0Þ > 1, for
specific values of μ [84]. Particularly, gð3Þð0Þ < 1

[gð3Þð0Þ > 1] is a signature of third-order sub-Poissonian
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FIG. 1. Nonreciprocal 1PB in a spinning Kerr resonator. 1PB
arises due to the anharmonic spacing of the energy levels jni. Here
we take n ¼ 0, 1, 2, and ℏ ¼ 1, for simplicity. By fixing the CCW
rotation of the resonator (the angular speed Ω fulfills the condition
ΔF ¼ �U=2), under the same driving power Pin ¼ 2 fW and the
same detuning ΔL ¼ −U=2, i.e., k ¼ 1 − ΔL=U ¼ 1.5, (a) 1PB
emerges by driving the device from its left side (ΔF > 0), while
(b) PIT caused by two-photon resonance occurs by driving from the
right side (ΔF < 0). This PITexhibits gðμÞð0Þ > 1 (μ ¼ 2, 3, 4) [73].
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(super-Poissonian) statistics, which is also interpreted as
three-photon antibunching (bunching) in recent experi-
ments on multi-PB [51] and PIT [83]. Thus, gð3Þð0Þ, which
is usually measured with extended Hanbury Brown–Twiss
interferometers, provides a more refined test and classi-
fication of the nonclassical character of light, including
2PB (as studied below) or unconventional PB [85].
According to the quantum-trajectory method [86], the

optical decay can be included in the effective Hamiltonian
Ĥs ¼ Ĥ − ðiℏγ=2Þâ†â, where γ ¼ ω0=Q is the cavity
dissipation rate and Q is the quality factor. In the weak-
driving regime (ξ ≪ γ), by truncating the Hilbert space to
n ¼ 2, the state of this system is written as
jφðtÞi ¼ P

2
n¼0 CnðtÞjni, with probability amplitudes Cn.

Then we have the following equations of motion

_C0ðtÞ ¼ −iν0C0ðtÞ − iξC1ðtÞ;
_C1ðtÞ ¼ −i

�
ν1 − i

γ

2

�
C1ðtÞ − iξC0ðtÞ − iξ

ffiffiffi
2

p
C2ðtÞ;

_C2ðtÞ ¼ −iðν2 − iγÞC2ðtÞ − iξ
ffiffiffi
2

p
C1ðtÞ; ð4Þ

with ℏνn ¼ En, C0ð0Þ ¼ 1, C1ð0Þ ¼ C2ð0Þ ¼ 0. Solving
these equations (and dropping higher-order terms) leads to
the steady-state solutions

C1ð∞Þ ¼ −ξ
ðν1 − ν0 − i γ

2
Þ ; C2ð∞Þ ¼ −

ffiffiffi
2

p
ξC1ð∞Þ

ðν2 − ν0 − iγÞ :ð5Þ

Denoting the probability of finding m photons in the
resonator by PðmÞ ¼ jCmj2, we have

gð2Þð0Þ ¼ 2P2

ðP1 þ 2P2Þ2
≃

ðΔL þ ΔFÞ2 þ γ2=4
ðΔL þ ΔF þ UÞ2 þ γ2=4

: ð6Þ

1PB and PIT correspond to the minimum and the maximum

of gð2Þð0Þ, respectively, i.e., when U > γ, gð2Þminð0Þ ¼
1=½4ðU=γÞ2 þ 1� < 1 for ΔL ¼ −ΔF, and gð2Þmaxð0Þ ¼
4ðU=γÞ2 þ 1 > 1 for ΔL ¼ −ΔF − U.
Numerical results.—In order to confirm our analytical

results, now we numerically study the full quantum
dynamics of the system. We introduce the density operator
ρ̂ðtÞ and then solve the master equation [87,88]:

_̂ρ ¼ i
ℏ
½ρ̂; Ĥ� þ γ

2
ð2â ρ̂ â† − â†â ρ̂−ρ̂â†âÞ: ð7Þ

The photon-number probability PðnÞ ¼ hnjρ̂ssjni can be
obtained for the steady-state solutions ρ̂ss of the master
equation. The experimentally accessible parameters are
chosen as [89–93]: Veff ¼ 150 μm3, Q ¼ 5 × 109, n2 ¼
3 × 10−14 m2=W, n0 ¼ 1.4, Pin ¼ 2 fW, r ¼ 30 μm, and
λ ¼ 1550 nm. Veff is typically 102–104 μm3 [89,90], Q is
typically 109–1012 [91,92], and gð2Þð0Þ as low as ∼0.13 was

achieved experimentally [33]. Moreover, in Fig. 2, we set
Ω ¼ 29 kHz; a similar property of quantum nonreciprocity
is also confirmed for Ω ¼ 6.6 kHz (see the Supplemental
Material [73]). These values ofΩ are experimentally feasible
[68]. Very recently, spinning objects have reached much
higher velocities, reaching the GHz regime [94,95]; such
systems could also be applied to study the nonreciprocal PB
via Kerr-like optomechanical interactions [96,97]. We note
that the Kerr coefficient can be n2 ∼ 10−14 m2=W for
materials with potassium titanyl phosphate [93], and n2
can be further enhanced with various techniques [98–103],
e.g., feedback control [102,103] or quadrature squeezing
[100,101].
An excellent agreement between our analytical results

and the exact numerical results is seen in Fig. 2. Here we
use gð2Þ0 ð0Þ, gð2Þ↻ ð0Þ, and gð2Þ↺ ð0Þ to denote the cases with
ΔF ¼ 0, ΔF > 0, and ΔF < 0, respectively. For a non-
spinning resonator, regardless of the driving direction,

gð2Þ0 ð0Þ always has a dip at k ¼ 1 (i.e., ΔL ¼ 0) or a peak
at k ¼ 2 (i.e., ΔL ¼ −U), corresponding to 1PB or PIT,
respectively. In contrast, for a spinning device, by driving
from the left (right) side, we have ΔF > 0 (ΔF < 0) and,
thus, a redshift (blueshift) for gð2Þð0Þ, leads to 1PB (PIT) at

k ¼ 1.5, i.e., gð2Þ↻ ð0Þ ∼ 0.001, gð2Þ↺ ð0Þ ∼ 673. This quantum
nonreciprocity, with up to 6 orders of magnitude difference
of gð2Þð0Þ for opposite directions, is fundamentally different
from the classical transmission-rate nonreciprocity.
Nonreciprocal 2PB.—The absorption of 2 photons can

also suppress the absorption of additional photons [53].
This 2PB effect, featuring three-photon antibunching, but
with two-photon bunching, satisfies [51,73]
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FIG. 2. The second-order correlation function gð2Þð0Þ versus the
tuning parameter k for different input directions. At k ¼ 1.5, 1PB
(red curve) or PIT (blue curve) occurs by driving the device from
the left or right side, with the same strength. Here Pin ¼ 2 fW,

Ω ¼ 29 kHz for the spinning resonator, and gð2Þ0 ð0Þ corresponds
to a nonspinning resonator (green). Note that Ω is related to ΔF
by Eq. (1). For the other parameter values, see the main text. On
the scale of this figure, there are no differences between our
numerical and (approximate) analytical results [73].
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gð3Þð0Þ < f ≡ e−hn̂i;

gð2Þð0Þ ≥ fð2Þ ≡ e−hn̂i þ hn̂i · gð3Þð0Þ: ð8Þ
The third-order correlation function can be obtained
analytically as [73]

gð3Þð0Þ ¼ 6P3

ðP1 þ 2P2 þ 3P3Þ3
≃
ðΔ2 þ γ2=4Þgð2Þð0Þ
ðΔþ 2UÞ2 þ γ2=4

; ð9Þ

with Δ ¼ ΔL þ ΔF, also agreeing well with the numerical
results. Figures 3(a) and 3(b) show that 2PB emerges
around k ¼ 2.5 by driving from the left side, while we have

PIT by driving from the right side, i.e., gð2Þ↺ ð0Þ ∼ 36,

gð3Þ↺ ð0Þ ∼ 1003. By tuning the driving frequency to the
three-photon resonance [see Fig. 3(d)], it is indeed possible

to observe that gð3Þð0Þ=gð2Þð0Þ ∼ 100, as shown in Fig. 3(a)
for maxhni ¼ 0.0185. This means that the probability of
simultaneously measuring three photons can be much
larger than that of two photons in this situation. Similar
values of gð3Þð0Þ ∼ 103, gð2Þð0Þ ∼ 10 were also predicted in
the PIT analysis in Ref. [83].
Our results can be further confirmed by comparing the

photon-number distribution PðnÞ with the Poisson distri-
bution PðnÞ. Figure 3(c) shows that Pð2Þ is enhanced while
Pðn > 2Þ are suppressed by driving from the left side,
which is in sharp contrast to the case when driving from the
right side. This unidirectional 2PB effect can be intuitively
understood by considering the energy-level structure of the
system, as shown in Fig. 3(d). By choosing ΔL ¼ −3U=2
or k ¼ 2.5, the transition j0i → j2i is resonantly driven by
the left input laser, but the transition j2i → j3i is detuned
by 4ℏU, which features the 2PB effect; in contrast, by
driving from the right side, three-photon resonance happens
for the transition j0i → j3i, leading to PIT. Hence with such
a device, sub-Poissonian light can be achieved by driving it
from the left side, while super-Poissonian light is observed
by driving it from the right side.
Nonreciprocity of 1PB and 2PB.—Figure 4 shows that at

k ¼ 1.5, 1PB emerges by driving from the left side, due to

gð2Þ↻ ð0Þ ∼ 0.045, while 2PB occurs by driving from the right
side since the criteria given inEq. (8) are fulfilled forΔF < 0.
This indicates a purely quantum device with direction-
dependent counting statistics, a new nonreciprocal feature,
which has not been revealed previously. This 1PB-2PB
nonreciprocity, as also clearly seen in Fig. 4(c) for the
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driving the system from the left side (orange), while PIT occurs
by driving from the right side (blue). In (b), 2PB is confirmed by
the criteria given in Eq. (8) for the CW mode. (c) This
nonreciprocal 2PB can also be recognized from the deviations
of the photon distribution to the standard Poisson distribution
with the same mean photon number. (d) The energy-level
diagram shows the origin of this unidirectional 2PB: with
enhanced driving power Pin ¼ 0.3 pW, by choosing ΔL ¼
−3U=2 (i.e., k ¼ 2.5), 2PB emerges by driving the device from
the left (ΔF > 0), while three-photon resonance-induced PIT
emerges by driving from the right side (ΔF < 0). The other
parameters are the same as those in Fig. 2.
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populations of different Fock states, provides a route for
creating or processing different quantum states in a single
node of quantum networks [66,67]. Figures 3–4 present our
solutions of the standard master equation, given in Eq. (7),
which describes both a slow continuous nonunitary evolution
and quantum jumps occurringwith a small probability [104].
By contrast, our approximate analytical solutions, based on
the complex Hamiltonian Hs and the Schrödinger equation,
were obtained by ignoring these quantum jumps following
the standard approach of Ref. [105].
Conclusions.—We have studied nonreciprocal PB

effects in a spinning Kerr resonator. By fixing the CCW
rotation of the resonator, we find the following: (i) for
Pin ¼ 2 fW, Δsag ¼ �U=2 and k ¼ 1.5, we have 1PB and
PIT for the CW and CCW modes, respectively. (ii) For
Pin ¼ 0.3 pW, Δsag ¼ �U=2 and k ¼ 2.5, we have 2PB
and PIT for the CW and CCW modes, respectively. More
interestingly, (iii) for Pin ¼ 0.3 pW, Δsag ¼ �U=2 and
k ¼ 1.5, we have 1 and 2PB for the CW and CCW modes,
respectively (for more examples, see the Supplemental
Material [73]). These results can be useful in achieving,
e.g., nonreciprocal few-photon sources and quantum one-
way devices.
The basic mechanism of this work can be generalized to

a wide range of systems, such as acoustic and electronic
devices [12–17], to achieve, e.g., nonreciprocal phonon
blockade [46–48] as a test of the quantumness of mechani-
cal devices [79]. Our work can also be extended to study,
e.g., nonreciprocal photon turnstiles [106], nonreciprocal
photon routers [107–109], and nonreciprocal extraction of a
single photon from a laser pulse [110], by considering a
hybrid device with atoms [111,112], quantum dots [113], or
nitrogen-vacancy centers [114].
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Here, we present technical details on nonreciprocal photon blockade (PB) in a driven Kerr-type model with a Fizeau
drag. Our discussion includes: (1) single- (1PB) and two-photon blockade (2PB) effects; (2) our analytical solutions
for the steady-state optical-intensity correlation functions; and (3) rotation-induced quantum nonreciprocity.

S1. KERR-TYPE INTERACTION WITH THE FIZEAU DRAG

To realize nonreciprocal photon blockade, we consider a rotating optical resonator with a nonlinear Kerr medium
which can be described by a Kerr-type interaction with a Fizeau drag term,

ĤR = ~(ω0 + ∆F)â†â+ ~Uâ†â†ââ. (S1)
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FIG. S1. Fizeau drag ∆F versus angular velocity of the resonator for ∆F > 0 (red line) and ∆F < 0 (blue line) cases. The
optical wavelength is λ = 1550 nm, the radius of the resonator is R = 30 µm, and the linear refractive index of the resonator
is n = 1.4.
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Here, Uâ†â†ââ is the standard Kerr interaction term [S1–S4], â (â†) is the annihilation (creation) operator for
the cavity field, while U = ~ω2

0cn2/(n
2
0Veff) is the strength of the nonlinear interaction with the nonlinear (linear)

refraction index n2 (n0), an effective cavity-mode volume Veff, and the speed of light in vacuum c . Moreover, ω0 is
the resonance frequency of the non-spinning resonator, and the rotation leads to a Fizeau shift [S5]:

ω0 → ω± = ω0 + ∆F, (S2)

with

∆F = ±nrΩω0

c

(
1− 1

n2
− λ

n

dn

dλ

)
= ±ηΩ, (S3)

where ∆F > 0 (∆F < 0) denotes the light propagating against (along) the direction of the spinning resonator, λ is the
optical wavelength, n is the refractive index of the resonator, and r is the radius of the cavity. The dispersion term
dn/dλ, characterizing the relativistic origin of the Sagnac effect, is relatively small (∼ 1%) [S5, S6].

When the resonator is not spinning, the Fizeau drag is equal to zero, owing to the same resonance frequency of
light coming from the left or right side. As implied by Eq. (S3), increasing the rotation frequency Ω results in an
opposing frequency linear shift of ηΩ (see Fig. S1) for light coming from opposite directions [S6].

S2. PHOTON BLOCKADE EFFECTS

A. Origin of photon blockade

In order to study conventional photon blockade (PB), we consider the Hamiltonian (S1) including the driving term

Ĥ = ĤR + ~ξ(â†e−iωLt + âeiωLt), (S4)

where ξ =
√
γPin/(~ωL) is the driving amplitude with the cavity loss rate γ, the driving power Pin, and the driving

frequency ωL [S7]. In a frame rotating with the driving frequency ωL, the Hamiltonian is transformed to

Ĥeff = i~
dD̂†

dt
D̂ + D̂†ĤD̂,

with D̂ = exp
(
−iωLâ†ât

)
, which leads to

Ĥeff = −~ωLâ†â+ ~ω±â†â+ ~Uâ†â†ââ+ ~ξ(â† + â)

= ~(ω0 + ∆F − ωL)â†â+ ~Uâ†â†ââ+ ~ξ(â† + â).

Thus, the effective Hamiltonian of this system becomes

Ĥeff = ~(∆L + ∆F)â†â+ ~Uâ†â†ââ+ ~ξ(â† + â), (S5)

where ∆L = ω0 − ωL is the detuning between the driving field and the cavity field for the non-spinning resonator.
The Hamiltonian of the isolated spinning system, i.e.,

H0 = ~(∆L + ∆F)â†â+ ~Uâ†â†ââ,

can be expressed as

Ĥ0|n〉 = [~∆Lâ
†â+ ~∆Fâ

†â+ ~Ua†(ââ† − 1)â]|n〉
= [~∆Lâ

†â+ ~∆Fâ
†â+ ~Uâ†ââ†â− ~Uâ†â]|n〉

= [~∆Lâ
†â+ ~(∆F − U)â†â+ ~U(â†â)2]|n〉

= [n~∆L + n~(∆F − U) + n2~U ]|n〉
= En|n〉.

Thus, we obtain the eigensystem for the weak-driving case,

Ĥ0|n〉 = En|n〉, (S6)
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FIG. S2. Schematic energy-level diagram of the non-spinning resonator. This explains the occurrence of k-photon blockade
for ∆F = 0 in terms of k-photon transitions induced by the driving field satisfying the resonance condition ∆k = 0, which
corresponds to the driving-field frequency ωL = ω0 + U(k − 1). Here ~ = 1.

with eigenvalues

En = n~∆L + n~∆F + (n2 − n)~U = n~∆L + (n2 − n)~U ± n~|∆F|, (S7)

where +n~|∆F| and −n~|∆F| denote the light propagating against (∆F > 0) and along (∆F < 0) the direction of the
spinning resonator, respectively.

The origin of conventional n-photon blockade can be understood from the fact that due to the anharmonicity of the
energy structure, i.e., the energy difference between consecutive manifolds is not constant, the Hilbert space of the
system is restricted to the states containing at most n quanta. For example, when the optical resonator is non-spinning
(|∆F|=0), single-photon blockade (1PB) is illustrated in Fig. S2(a). If a coherent probe beam, tuned to ω0 (∆L = 0),
is coupled to the system, the probe is on resonance with the |0〉 → |1〉 transition, but the |1〉 → |2〉 transition is
detuned by 2~U and is suppressed for U > γ (where γ denotes the optical loss of the resonator). Consequently,
once a photon is coupled to the system, it suppresses the probability of coupling a second photon with the same
frequency. Similarly, two-photon blockade (2PB) corresponds to a two-photon resonance (2PR) for a non-spinning
case, as shown in Fig. S2(b). Morever, multi-PB corresponds to a multi-photon resonance [S4, S8–S12]. In addition to
multi-PB, the energy-level diagrams of multi-photon resonances in a Kerr-type system [S4] also correspond to photon-
induced tunneling (PIT) [S7, S13–S16]. This indicates that the absorption of the first photon enhances the absorption
of subsequent photons [S13]. The distinction of 1PB, multi-PB, and PIT can be found by analysing higher-order
correlation functions g(µ)(0) with µ ≥ 2, as discussed below.

Due to the rotation of the resonator, different cases of nonreciprocal PB effects can be achieved. For example,
Table II and Fig. S3 summarize the main results for Pin = 0.3 pW, and these are elaborated in detail later on in this
Supplementary Material.

We observe that the Hamiltonian, given in Eq. (S5), can be rewritten as follows

Ĥk = ~(∆k + ∆F)â†â+ ~Uâ†â(â†â− k) + ~ξ(â† + â), (S8)

where ∆k = ∆L + U(k − 1) is the frequency mismatch for the non-spinning resonator. For convenience, we refer to
k as a tuning parameter, as in Ref. [S4]. Hereafter, we analyze the resonant case of ∆k = 0, which is related to the
resonant k-photon transitions in the non-spinning resonator, as shown in Fig. S2. This condition implies that the
tuning parameter k is related to the Kerr nonlinearity and the driving-field and cavity frequencies as follows

k = −∆L/U + 1. (S9)
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B. Criteria of photon blockade

We have studied the origin of conventional PB via the anharmonic energy-level structure. In order to describe this
picture quantitatively, we apply two approaches. One is based on studying the photon-number distribution of the
system [S4, S12], and the other is based on investigating the optical intensity correlations [S12, S13, S17]. Both can
be experimentally measured [S12, S13, S17].

Concerning the first method, in the case of an ideal n-photon blockade, the cavity field shows the following photon-
number distribution [S4]:

(i) P (m) = 0 for m > n, (S10a)

(ii) P (n) 6= 0. (S10b)

with normalization
∑∞
m=0 P (m) = 1. While the first n photons are resonantly absorbed in the system, the generation

of more photons is blockaded in the cavity. However, these photon-number distribution conditions are hard to achieve
in an experiment, where P (m) 6= 0 even for m > n. Thus, a comparison with the Poissonian distribution was proposed
by Hamsen et al [S12]:

(i) P (m) < P(m) for m > n, (S11a)

(ii) P (n) ≥ P(n). (S11b)

where P(m) is the Poissonian distribution

P(m) =
〈m̂〉m

m!
exp (−〈m̂〉) , (S12)

with the same average photon number 〈m̂〉 as the cavity field. The condition, given in Eq. (S11a), indicates that
the first n photons are effectively impenetrable to the following photons; while the condition, given in Eq. (S11b),
indicates that the coupling of an initial photon to the system favors the coupling of the subsequent photons within the
first n photons. This leads to the sub-Poissonian photon-number statistics for (n+ 1) photons with the simultaneous
super-Poissonian statistics of the first n photons. To show a relative deviation of a given photon-number distribution
from the corresponding Poissonian distribution, we use the formula [S12]:

[P (n)− P(n)]/P(n). (S13)

For the second approach, correlation function G(n)(t1, t2, · · · , tn) is the quantity measured at moments t1, t2, · · · , tn
in extended Hanbury Brown-Twiss experiments with n detectors. Note that g(n) is G(n) normalized by the nth
power of the mean photon number. Thus, g(n)(0) ≡ limt→∞(t, t, · · · , t) is related to the probability of simultaneously
measuring n photons in their steady state assuming photon detections at the same time t = t1 = t2 = · · · = tn. The
larger value of g(n)(0) > 1, the higher probability of n-photon bunching (photon coalescence). And the smaller value
of g(n)(0) < 1, the lower probability of n-photon bunching, which corresponds to the higher probability of n-photon
antibunching (photon anticoalescence). The case of g(n)(0) = 1 is called photon unbunching, which is a typical feature
of coherent light for any n. These correlation functions G(n) and g(n) are basic elements of the quantum coherence
theory of Glauber [S18].”

The normalized equal-time µth-order photon correlation is given by

g(µ)(0) =

∞∑
m=µ

m!

(m− µ)!

P (m)

〈m̂〉µ
= 〈m̂〉−µ

∞∑
m=µ

m(m− 1) · · · (m− µ+ 1)P (m) =
〈â†µâµ〉
〈â†â〉µ

. (S14)

In particular, the second-order photon correlation function is

g(2)(0) =

∞∑
m=2

m(m− 1)
P (m)

〈m̂〉2
=
〈m̂(m̂− 1)〉
〈m̂〉2

=
〈â†2â2〉
〈â†â〉2

, (S15)

and the third-order photon correlation function is

g(3)(0) =

∞∑
m=3

m(m− 1)(m− 2)
P (m)

〈m̂〉3
=
〈m̂(m̂− 1)(m̂− 2)〉

〈m̂〉3
=
〈â†3â3〉
〈â†â〉3

. (S16)
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The photon-number distribution conditions for n-photon blockade, given in Eqs. (S10a) and (S10b), can be trans-
lated into the following conditions:

(i) g(n+1)(0) = 0, (S17a)

(ii) g(n)(0) 6= 0. (S17b)

As aforementioned, these strict conditions can only be fulfilled for an ideal case. The experimentally-realizable
conditions can be obtained based on Eqs. (S11a) and (S11b). Since in the weak-driving regime, the photon-number
distribution fulfills the condition P (m) � P (m + 1), it is sufficient to satisfy P (n + 1) < P(n + 1) according to the
condition in Eq. (S11a). Meanwhile, we can approximately express P (n+ 1) with g(n+1)(0) as follows:

g(n+1)(0) =

∞∑
m=n+1

m!

(m− n− 1)!

P (m)

〈m̂〉n+1
≈ (n+ 1)!

〈m̂〉n+1
P (n+ 1),

P (n+ 1) ≈ 〈m̂〉
n+1

(n+ 1)!
· g(n+1), (S18)

as the P (m) have been neglected for all m > (n+ 1). Thus, the condition, given in Eq. (S11a), reads [S12]:

P (n+ 1) < P(n+ 1),

〈m̂〉n+1

(n+ 1)!
· g(n+1)(0) <

〈m̂〉n+1

(n+ 1)!
exp (−〈m̂〉) ,

g(n+1)(0) < exp (−〈m̂〉) . (S19)

We can also obtain an approximate P (n) using a similar method as follows:

g(n)(0) =

∞∑
m=n

m!

(m− n)!

P (m)

〈m̂〉n
≈ n!

〈m̂〉n
P (n) +

(n+ 1)!

〈m̂〉n
P (n+ 1),

P (n) ≈ 〈m̂〉
n

n!
· g(n)(0)− (n+ 1)P (n+ 1),

P (n) ≈ 〈m̂〉
n

n!
· g(n)(0)− 〈m̂〉

n+1

n!
· g(n+1)(0). (S20)

Moreover, the condition, given in Eq. (S11b), then reads:

P (n) ≥ P(n),

〈m̂〉n

n!
· g(n)(0)− 〈m̂〉

n+1

n!
· g(n+1)(0) ≥ 〈m̂〉

n

n!
exp (−〈m̂〉) ,

g(n)(0)− 〈m̂〉 · g(n+1)(0) ≥ exp (−〈m̂〉) ,
g(n)(0) ≥ exp (−〈m̂〉) + 〈m̂〉 · g(n+1)(0), (S21)

i.e., the experimentally-realizable conditions, given in Eqs. (S11a) and (S11b), can be translated into the following
conditions [S12]:

(i) g(n+1)(0) < exp (−〈m̂〉) , (S22a)

(ii) g(n)(0) ≥ exp (−〈m̂〉) + 〈m̂〉 · g(n+1)(0), (S22b)

indicating a higher-order sub-Poissonian photon-number statistics.
Moreover, PIT can be quantified by photon-number correlation functions. Table I shows that more refined criteria

for PIT are sometimes applied based on higher-order correlation functions g(µ)(0) with µ > 2 [S16, S19]. Here, we
refer to PIT if the following conditions are satisfied for µ ≥ 2:

g(µ)(0) > exp (−〈m̂〉) . (S23)

For simplicity, in this work, we consider these conditions only for 2 ≤ µ ≤ 4. This indicates light with higher-order
super-Poissonian photon-number statistics, i.e., once, a photon is coupled in a resonator, it enhances the probabilities
of more photons entering the resonator. In the few-photon regime (〈m̂〉 � 1), these criteria become

g(µ)(0) > 1 for µ = 2, 3, 4. (S24)

We provide a more basic criteria to identify multi-PB and PIT by using µth-order correlation functions g(µ)(0). These
criteria lead to the same conclusions as those based on Eq. (S13).
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TABLE I. Criteria of photon-induced tunneling (PIT) used in literature.

Reference Criteria of PIT

Faraon et al. (2008) [S13] g(2)(0) is a local maximum

Majumdar et al. (2012) [S7, S14] g(2)(0) > 1

Xu et al. (2013) [S15] g(2)(0) > 1 (two-photon tunneling); g(3)(0) > g(2)(0) > 1 (three-photon tunneling)

Rundquist et al. (2014) [S16] g(3)(0) > g(2)(0)

Wang et al. (2018) [S19] g(4)(0) > g(3)(0) > g(2)(0) > 1 (phonon-induced tunneling, an analogue of PIT)

C. Single- and Multi-photon blockade

In this section, we only consider the non-spinning case (∆F=0), while the spinning case is discussed in Sec. S4.
According to criteria, given in Eqs. (S22a) and (S22b), 1PB has to fulfill the following conditions for n = 1:

(i) g(2)(0) < exp (−〈m̂〉) ≡ f, (S25a)

(ii) g(1)(0) ≥ exp (−〈m̂〉) + 〈m̂〉 · g(2)(0) ≡ f (1). (S25b)

As expected from the intuitive picture discussed in Sec. S2 A, the strongest 1PB occurs at ∆L = 0 (k = 1), since the
correlation functions fulfill the criteria of 1PB given in Eqs. (S25a) and (S25b) [see Fig. S4(a)]. In the weak-driving
regime, 〈m̂〉 � 1 implies that f → 1 and f (1) → 1. Then we obtain g(2)(0) < 1, which corresponds to the usual
criterion of 1PB, as known in the published literature.

As aforementioned in 1PB, the first photon blocks the entrance of a second photon, which indicates the enhancement
of the single-photon probability, and also the suppression of the two- or more-photon probabilities. We can clearly see
that P (1) > P(1), while P (2) < P(2) and P (3) < P(3) at k = 1 in Fig. S4(b). Moreover, 1PB can be recognized from
the the deviations of the photon distribution from the standard Poissonian distribution with the same mean photon
number [i.e., Eq. (S13)], as shown in Fig. S4(c-i).

At k = 2, we find the correlation functions fulfill g(2)(0) > g(3)(0) > g(4)(0) > 1, as shown in the inset in Fig. S4(a).
This shows that PIT corresponding to super-Poissonian photon-number behavior of light, which occurs at k = 2, since
the correlation functions satisfy the conditions given in Eq. (S24). PIT can also be recognized from the photon-number
distributions and the deviations given in Eq. (S13). As shown in Figs. S4(b) and S4(c-ii), we find that P (1) < P(1),
P (2) > P(2), P (3) > P(3), and P (4) > P(4) at k = 2. This is a clear signature of PIT. Since the case for k = 2
corresponds to a two-photon resonance, we refer to this PIT as two-photon resonance-induced PIT.

Similarly, the 2PB has to fulfill the criteria in Eqs. (S22a) and (S22b) for n = 2:

(i) g(3)(0) < exp (−〈m̂〉) ≡ f, (S26a)

(ii) g(2)(0) ≥ exp (−〈m̂〉) + 〈m̂〉 · g(3)(0) ≡ f (2). (S26b)

As expected from the intuitive picture discussed in Sec. S2 A, 2PB occurs at ∆L = −U (k = 2), since the correlation
functions fulfill the conditions of 2PB given in Eqs. (S26a) and (S26b) [see Fig. S5(a)]. We find that, at k = 2, g(3)(0)
is smaller than f defined in the criterion given in Eq. (S26a), while g(2)(0) is greater than f (2) defined in the criterion
given in Eq. (S26b). Here, 2PB indicates that the two-photon probability is enhanced as P (2) > P(2), while the other
photon-number probabilities are suppressed, as shown in Figs. S5(b) and S5(c-ii). In Fig. S4, there is PIT at k = 2.
However, in Fig. S5, there is 2PB at k = 2 with an enhanced input power. We note that it is necessary to properly
increase the driving power to obtain a good-quality 2PB, since we need a larger average photon number. Thus, we
enhance the input power from Pin = 2 fW (Fig. S4) to Pin = 0.3 pW (Fig. S5). Also, the 1PB still emerges at k = 1,
since the second-order correlation function fulfills g(2)(0) < 1 [see Fig. S5(a)], or only the single-photon probability is
enhanced at k = 1 [see Figs. S5(b) and S5(c-i)].

At k = 3, we find the correlation functions fulfill g(4)(0) > g(3)(0) > g(2)(0) > 1, as shown in the inset in Fig. S4(a).
It shows PIT occurs at k = 3, since the correlation functions satisfy the conditions given in Eq. (S24). PIT can also be
recognized from the photon-number distributions and the deviations given in Eq. (S13). As shown in Figs. S5(b) and
S5(c-iii), we find that P (1) < P(1), P (2) > P(2), P (3) > P(3), and P (4) > P(4) at k = 3. This is a clear signature
of PIT. Since the case for k = 3 corresponds to a three-photon resonance, we refer to this PIT as three-photon
resonance-induced PIT.
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(ii) (iii)
×10-3

(ii) (iii)

(a) (b)

k = 1 k = 21 PB PIT
(c)

(i) (i)

(i) (ii)

FIG. S4. (a) Correlation functions g(µ)(0) versus the tuning parameter k for the non-spinning resonator (∆F = 0). Note that

1PB emerges at k = 1, since (a-ii) g(2)(0) < f and (a-iii) g(1)(0) > f (1) fulfill the criteria given in Eqs. (S25a) and (S25b),

respectively. PIT occurs at k = 2, since g(2)(0) > g(3)(0) > g(4)(0) > 1 [see the inset in panel (a-i)] fulfills the condition given in
Eq. (S24). These 1PB and PIT can also be recognized from (b) the photon-number distributions and (c) the deviations given
in Eq. (S13). At k = 1, (b-ii) single-photon probability is enhanced as P (1) > P(1), while m-photon (m > 1) probabilities
are suppressed as P (m) < P(m) [see panels (b-i) and (c-i)]. These photon-number distributions fulfill the conditions given in
Eqs. (S11a) and (S11b) for n = 1, i.e., resulting in 1PB. At k = 2, (b-iii) single-photon probability is suppressed as P (1) < P(1),
while m-photon (m > 1) probabilities are enhanced as P (m) > P(m) [see panels (b-i) and (c-ii)], i.e., resulting in PIT. The
parameters used here are: Ω = 0, n2 = 3× 10−14 m2/W, n0 = 1.4, Veff = 150µm3, Q = 5× 109, λ = 1550 nm, Pin = 2 fW, and
r = 30µm.
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(a) (b)

(i) (i)

(ii) (iii) (ii)

×10-3

k = 1 k = 2

1 PB 2 PB

(c) k = 3

PIT

(i) (ii) (iii)

FIG. S5. (a) Correlation functions g(µ)(0) versus the tuning parameter k for the non-spinning resonator (∆F = 0). Note that

2PB occurs at k = 2, since (a-ii) g(3)(0) < f and (a-iii) g(2)(0) > f (2) fulfill the criteria given in Eqs. (S26a) and (S26b),

respectively. Also, 1PB emerges at k = 1, since g(2)(0) < 1. PIT occurs at k = 3, since g(4)(0) > g(3)(0) > g(2)(0) > 1 fulfills
the conditions given in Eq. (S24) [see the inset in panel (a-i)]. These 1PB, 2PB, and PIT can also be recognized from (b)
the photon-number distributions and (c) the deviations given in Eq. (S13). At k = 1, single-photon probability is enhanced
as P (1) > P(1), while m-photon (m > 1) probabilities are suppressed as P (m) < P(m) [see panels (b-i) and (c-i)]. These
photon-number distributions fulfill the conditions given in Eqs. (S11a) and (S11b) for n = 1, i.e., resulting in 1PB. At k = 2,
only two-photon probability P (2) is enhanced [see panels (b-i), (b-ii) and (c-ii)]. These photon-number distributions fulfill the
conditions given in Eqs. (S11a) and (S11b) for n = 2, i.e., resulting in 2PB. At k = 3, single-photon probability is suppressed
as P (1) < P(1), while m-photon (m > 1) probabilities are enhanced as P (m) > P(m) [see panels (b-i) and (c-ii)], i.e., resulting
in PIT. Here, Pin = 0.3 pW, and the other parameters are the same as those in Fig. S4.
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In a sense, light with g(3)(0) ∼ 1000 has three-photon correlations 1000 stronger than those for coherent light. We
note that the ratio of g(3)(0)/g(2)(0) can be quite large. For example, g(3)(0)/g(2)(0) ∼ 100 can be seen in Fig. S5(a).
A similar prediction g(3)(0)/g(2)(0) ∼ 100 has been reported in [S16]. This is possible since the mean photon number
is 〈n̂〉 � 1. For example, if additionally 〈â†3â3〉 ≈ 〈â†2â2〉, then g(3)(0)/g(2)(0) ≈ 1/〈n̂〉 � 1.

S3. ANALYTIC SOLUTION OF THE OPTICAL INTENSITY CORRELATION FUNCTIONS

A. Second-order correlation function

According to the quantum trajectory method [S20], we introduce an anti-Hermitian term to the Hamiltonian in
Eq. (S5) to describe the dissipation of the cavity photons. The effective non-Hermitian Hamiltonian is, thus, given by

Ĥt = ~(∆L + ∆F)â†â+ ~Uâ†â†ââ+ ~ξ(â† + â)− i~γ
2
â†â, (S27)

where γ is the rate of the cavity dissipation. Then the Hamiltonian (S27) can be expressed in a spectral representation
as

Ĥt =

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

|n〉 〈n| (â† + â)

∞∑
n′=0

|n′〉 〈n′|

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

∞∑
n′=0

|n〉(〈n| â†|n′〉+ 〈n| â|n′〉) 〈n′|

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

∞∑
n′=0

|n〉(
√
n′ + 1〈n|n′ + 1〉+

√
n′〈n|n′ − 1〉) 〈n′|

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

∞∑
n′=0

|n〉(
√
n′ + 1δn,n′+1 +

√
n′δn,n′−1) 〈n′|

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

∞∑
n′=0

|n〉(
√
n′ + 1δn,n′+1 +

√
n′δn′,n+1) 〈n′| (i)

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n′=0

√
n′ + 1|n′ + 1〉 〈n′|+ ~ξ

∞∑
n=0

√
n+ 1|n〉 〈n+ 1|

=

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

√
n+ 1|n+ 1〉 〈n|+ ~ξ

∞∑
n=0

√
n+ 1|n〉 〈n+ 1| , (ii)

(i) To avoid negative n, we changed the subscript of the second δ; Also, (ii) we substituted n for n′, for convenience.
Therefore, we obtain the Hamiltonian of the whole system as

Ĥt =

∞∑
n=0

(
En − i~

γ

2
n
)
|n〉 〈n|+ ~ξ

∞∑
n=0

√
n+ 1|n+ 1〉 〈n|+ ~ξ

∞∑
n=0

√
n+ 1|n〉 〈n+ 1| , (S28)

with eigenenergies

En = n~∆L + n~∆F + (n2 − n)~U, (S29)

where ∆F > 0 (∆F < 0) denotes the light propagating against (along) the direction of the spinning resonator.
For the weak-driving case, we restrict to a subspace spanned by the basis states {|0〉, |1〉, |2〉}. Then, the Hamiltonian

in Eq. (S28) becomes

Ĥt = E0|0〉 〈0|+
(
E1 − i~

γ

2

)
|1〉 〈1|+ (E2 − i~γ)|2〉 〈2|

+ ~ξ
√

1|1〉 〈0|+ ~ξ
√

2|2〉 〈1|+ ~ξ
√

3|3〉 〈2|

+ ~ξ
√

1|0〉 〈1|+ ~ξ
√

2|1〉 〈2|+ ~ξ
√

3|2〉 〈3| .
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Due to the limits of the basis states, the terms including |3〉 can be neglected. Then we have

Ĥt = E0|0〉 〈0|+
(
E1 − i~

γ

2

)
|1〉 〈1|+ (E2 − i~γ)|2〉 〈2|+ ~ξ|1〉 〈0|+ ~ξ

√
2|2〉 〈1|+ ~ξ|0〉 〈1|+ ~ξ

√
2|1〉 〈2| , (S30)

where:

E0 = 0,

E1 = ~∆L + ~∆F,

E2 = 2~∆L + 2~∆F + 2~U. (S31)

In this subspace, a general state can be written as

|ϕ(t)〉 =

2∑
n=0

Cn(t)|n〉 = C0(t)|0〉+ C1(t)|1〉+ C2(t)|2〉. (S32)

where Cn are probability amplitudes. We substitute the Hamiltonian (S30) and the general state (S32) into the
Schrödinger equation

i~|ϕ̇(t)〉 = Ĥt|ϕ(t)〉. (S33)

Then we have

i~|ϕ̇(t)〉 = i~Ċ0(t)|0〉+ i~Ċ1(t)|1〉+ i~Ċ2(t)|2〉, (S34)

and

Ĥt|ϕ(t)〉 = ĤtC0(t)|0〉+ ĤtC1(t)|1〉+ ĤtC2(t)|2〉, (S35)

where:

ĤtC0(t)|0〉 = (E0|0〉 〈0|+ ~ξ|1〉 〈0|)C0(t)|0〉 = E0C0(t)|0〉+ ~ξC0(t)|1〉,

ĤtC1(t)|1〉 =
[(
E1 − i~

γ

2

)
|1〉 〈1|+ ~ξ

√
2|2〉 〈1|+ ~ξ|0〉 〈1|

]
C1(t)|1〉

= ~ξC1(t)|0〉+
(
E1 − i~

γ

2

)
C1(t)|1〉+ ~ξ

√
2C1(t)|2〉,

ĤtC2(t)|2〉 = [(E2 − i~γ)|2〉 〈2|+ ~ξ
√

2|1〉 〈2|]C2(t)|2〉 = ~ξ
√

2C2(t)|1〉+ (E2 − i~γ)C2(t)|2〉,

i.e.,

Ĥt|ϕ(t)〉 = [E0C0(t) + ~ξC1(t)]|0〉+
[(
E1 − i~

γ

2

)
C1(t) + ~ξC0(t) + ~ξ

√
2C2(t)

]
|1〉

+ [(E2 − i~γ)C2(t) + ~ξ
√

2C1(t)]|2〉. (S36)

By comparing the coefficients of the same basis states in Eqs. (S34) and (S36), we have:

i~Ċ0(t)|0〉 = [E0C0(t) + ~ξC1(t)]|0〉,

i~Ċ1(t)|1〉 =
[(
E1 − i~

γ

2

)
C1(t) + ~ξC0(t) + ~ξ

√
2C2(t)

]
|1〉,

i~Ċ2(t)|2〉 = [(E2 − i~γ)C2(t) + ~ξ
√

2C1(t)]|2〉,

with νn = En/~. Then we obtain the following equations of motion for the probability amplitudes Cn(t):

Ċ0(t) = −iν0C0(t)− iξC1(t),

Ċ1(t) = −i
(
ν1 − i

γ

2

)
C1(t)− iξC0(t)− iξ

√
2C2(t), (S37)

Ċ2(t) = −i(ν2 − iγ)C2(t)− iξ
√

2C1(t),
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where νn = En/~.
Weak driving means the driving strength is smaller than the cavity damping rate ξ < γ. If there is no driving field,

the cavity field remains in the vacuum. When a weak-driving field is applied to the cavity, it may excite a single
photon or two photons in the cavity. Thus, we have the following approximate expressions: C0 ∼ 1, C1 ∼ ξ/γ, and
C2 ∼ ξ2/γ2. Then we can approximately solve the equations in Eq. (S37) using a perturbation method by discarding
higher-order terms in each equation for lower-order variables. Thus, the Eq. (S37) becomes:

Ċ0(t) = −iν0C0(t),

Ċ1(t) = −i
(
ν1 − i

γ

2

)
C1(t)− iξC0(t), (S38)

Ċ2(t) = −i(ν2 − iγ)C2(t)− iξ
√

2C1(t),

where νn = En/~.
For the initially empty cavity, the initial conditions read as: C0(0) = C0(0), and C1(0) = C2(0) = 0. Accordingly,

the solution of the zero-photon amplitude can be obtained as

C0(t) = C0(0) exp (−iν0t) . (S39)

Hence, the equation for the single-photon amplitude in Eq. (S38) becomes

Ċ1(t) = −i
(
ν1 − i

γ

2

)
C1(t)− iξC0(t) exp (−iν0t) . (S40)

To solve this equation, we introduce a slowly-varying amplitude:

C1(t) = c1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]
,

C1(0) = c1(0). (S41)

Then we obtain

Ċ1(t) = ċ1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− i
(
ν1 − i

γ

2

)
c1(t) exp

[
−i
(
ν1 − i

γ

2

)
t
]
, (S42)

and Eq. (S40) becomes:

ċ1(t)e−i(ν1−i
γ
2 )t − i

(
ν1 − i

γ

2

)
c1(t)e−i(ν1−i

γ
2 )t =− i

(
ν1 − i

γ

2

)
c1(t)e−i(ν1−i

γ
2 )t − iξC0(t)e−iν0t,

ċ1(t) =− iξC0(t) exp
[
i
(
ν1 − ν0 − i

γ

2

)
t
]
. (S43)

The solution can be obtained by integrating both sides of Eq. (S43), as follows:

c1(t)− c1(0) = −iξC0(t)

∫ t

0

exp
[
i
(
ν1 − ν0 − i

γ

2

)
t′
]
dt′,

c1(t)− c1(0) = −iξ C0(t)

i
(
ν1 − ν0 − iγ2

) {exp
[
i
(
ν1 − ν0 − i

γ

2

)
t
]
− 1
}
,

c1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]

= c1(0) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− iξ C0(t)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

,

C1(t) = C1(0) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− iξ C0(t)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

.

With the initial condition C1(0) = 0, we have the solution for the single-photon amplitude given by

C1(t) = −iξ C0(t)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

. (S44)

Consider the solution of the single-photon amplitude in Eq. (S44), the equation for the two-photon amplitude in
Eq. (S38) becomes

Ċ2(t) = −i(ν2 − iγ)C2(t)−
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

. (S45)
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To solve this equation, we introduce another slowly-varying amplitude:

C2(t) = c2(t) exp [−i(ν2 − iγ)t] ,

C2(0) = c2(0), (S46)

and obtain

Ċ2(t) = ċ2(t) exp [−i(ν2 − iγ)t]− i(ν2 − iγ)c2(t) exp [−i(ν2 − iγ)t] , (S47)

then Eq. (S45) becomes:

ċ2(t)e−i(ν2−iγ)t − i(ν2 − iγ)c2(t)e−i(ν2−iγ)t = −i(ν2 − iγ)c2(t)e−i(ν2−iγ)t −
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) [e−iν0t − e−i(ν1−i γ2 )t
]
,

ċ2(t) = −
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) {exp [i(ν2 − ν0 − iγ)t]− exp
[
i
(
ν2 − ν1 − i

γ

2

)
t
]}

. (S48)

The solution can also be obtained by integrating both sides of Eq. (S48), as follows:

c2(t)− c2(0) =−
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) ∫ t

0

{
exp[i(ν2 − ν0 − iγ)t′]− exp

[
i
(
ν2 − ν1 − i

γ

2

)
t′
]}

dt′,

c2(t)− c2(0) =−
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) {exp [i(ν2 − ν0 − iγ)t]− 1

i(ν2 − ν0 − iγ)
−

exp
[
i
(
ν2 − ν1 − iγ2

)
t
]
− 1

i
(
ν2 − ν1 − iγ2

) }
,

c2(t) exp [−i(ν2 − iγ)t] =c2(0) exp [−i(ν2 − iγ)t]−
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) · exp (−iν0t)− exp [−i(ν2 − iγ)t]

i(ν2 − ν0 − iγ)

+
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) · exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t]

i
(
ν2 − ν1 − iγ2

) ,

C2(t) =C2(0) exp [−i(ν2 − iγ)t]−
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) · exp (−iν0t)− exp [−i(ν2 − iγ)t]

i(ν2 − ν0 − iγ)

+
√

2ξ2 C0(t)

i
(
ν1 − ν0 − iγ2

) · exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t]

i
(
ν2 − ν1 − iγ2

) .

With the initial condition C2(0) = 0, we have the following solution of the two-photon amplitude

C2(t) =
√

2ξ2 C0(t)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp [−i(ν2 − iγ)t]

(ν2 − ν0 − iγ)
−

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t](

ν2 − ν1 − iγ2
) }

. (S49)

Thus, for the initially empty resonator, the solutions of the equations of motion for the probability amplitudes in
the equations in Eq. (S38) can be obtained as:

C0(t) = C0(0) exp (−iν0t) ,

C1(t) = −ξ C0(t)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

,

C2(t) =
√

2ξ2 C0(t)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp [−i(ν2 − iγ)t]

(ν2 − ν0 − iγ)
−

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t](

ν2 − ν1 − iγ2
) }

, (S50)

where

ν0 = 0, ν1 = ∆L + ∆F, ν2 = 2∆L + 2∆F + 2U.

When the initial state of the system is the vacuum state |0〉, i.e., the initial condition C0(0) = 1, then the solutions
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in Eq. (S50) are reduced to:

C0(t) =1,

C1(t) =− iξ 1

i
(
∆L + ∆F − iγ2

) {1− exp
[
−i
(

∆L + ∆F − i
γ

2

)
t
]}

,

C2(t) =

√
2ξ2(

∆L + ∆F − iγ2
) {1− exp[−i(2∆L + 2∆F + 2U − iγ)t]

(2∆L + 2∆F + 2U − iγ)
−

exp
[
−i
(
∆L + ∆F − iγ2

)
t
]

(∆L + ∆F + 2U − iγ2 )

}

+
√

2ξ2 · − exp[i(2∆L + 2∆F + 2U − iγ)t](
∆L + ∆F − iγ2

)
(∆L + ∆F + 2U − iγ2 )

, (S51)

and for the infinite-time limit exp(−At)→ 0 (t→∞), we have:

C0(∞) ≡ C0 = 1,

C1(∞) ≡ C1 =
−ξ(

∆L + ∆F − iγ2
) ,

C2(∞) ≡ C2 =
−
√

2ξC1

(2∆L + 2∆F + 2U − iγ)
. (S52)

For the state given in Eq. (S32), the infinite-time state (steady state) of the system reads as

|ϕ(t→∞)〉 = |0〉+
−ξ(

∆L + ∆F − iγ2
) |1〉+

√
2ξ2(

∆L + ∆F − iγ2
)

(2∆L + 2∆F + 2U − iγ)
|2〉, (S53)

and the normalization coefficient of the state is given by

N = 1 + |C1|2 + |C2|2 , (S54)

where:

|C1|2 =

∣∣∣∣∣ ξ(
∆L + ∆F − iγ2

) ∣∣∣∣∣
2

=
ξ2(

∆L + ∆F − iγ2
) (

∆L + ∆F + iγ2
) =

ξ2[
(∆L + ∆F)2 + γ2

4

] , (S55)

|C2|2 =

∣∣∣∣∣
√

2ξ2(
∆L + ∆F − iγ2

)
(2∆L + 2∆F + 2U − iγ)

∣∣∣∣∣
2

=
2ξ4(

∆L + ∆F − iγ2
) (

∆L + ∆F + iγ2
)

(2∆L + 2∆F + 2U − iγ)(2∆L + 2∆F + 2U + iγ)

=
2ξ4[

(∆L + ∆F)2 + γ2

4

]
[4(∆L + ∆F + U)2 + γ2]

. (S56)

The probabilities of finding single and two photons in the cavity are, respectively, given by:

P1 =
|C1|2

N
, (S57)

P2 =
|C2|2

N
. (S58)

As mentioned in Sec. S2 B, the equal-time (namely zero-time-delay) second-order correlation function can be written
as

g(2)(0) ≡
〈
â†2â2

〉
〈â†â〉2

=

〈
â†ââ†â

〉
−
〈
â†â
〉

〈â†â〉2
.
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When the cavity field is in the state given in (S32), we have

g(2)(0) =

∑2
n,n′=0 C

∗
nCn 〈n| â†ââ†â|n′〉 −

∑2
n,n′=0 C

∗
nCn 〈n| â†â|n′〉

(
∑2
n,n′=0 C

∗
nCn 〈n| â†â|n′〉)2

=
0 + |C1|2 + 4 |C2|2 − (0 + |C1|2 + 2 |C2|2)

(0 + |C1|2 + 2 |C2|2)2

=
N(P1 + 4P2 − P1 − 2P2)

N2(P1 + 2P2)2

=
2P2

N(P1 + 2P2)2
.

In the weak-driving regime, we have the following approximate formulas: C0 ∼ 1, C1 ∼ ξ/γ, and C2 ∼ ξ2/γ2, i.e.,

N ∼ 1 with |C2|2 � |C1|2 � 1. Hence, the second-order correlation function can be written as

g(2)(0) ≈ 2P2

(P1 + 2P2)2
. (S59)

Because P1 � P2, we have

g(2)(0) ≈ 2P2

P 2
1

. (S60)

Substituting Eqs. (S57) and (S58) into Eq. (S60), we can easily obtain

g(2)(0) ≈ 4ξ4[
(∆L + ∆F)2 + γ2

4

]
[4(∆L + ∆F + U)2 + γ2]

·

[
(∆L + ∆F)2 + γ2

4

]2
ξ4

=
(∆L + ∆F)2 + γ2/4

(∆L + ∆F + U)2 + γ2/4
, (S61)

where ∆F > 0 (∆F < 0) denotes the light propagating against (along) the direction of the spinning resonator.
Here, we focus on the non-spinning case (∆F = 0), the rotating case is discussed in Sec. S4. Then, the second-order

correlation function becomes

g
(2)
0 (0) =

∆2
L + γ2/4

(∆L + U)2 + γ2/4
. (S62)

When the driving laser tuned to a single-photon resonance, ∆L = 0 (k = 1), the minimum of g
(2)
0 (0) is g

(2)
0min =

(γ2/4)/(U2 + γ2/4) = [4(U/γ)2 + 1]−1. We have g
(2)
0min < 1, when U 6= 0. The larger U/γ, the smaller is the

correlation function g
(2)
0min. This indicates that 1PB can be achieved. On the other hand, for the driving laser tuning

to the two-photon resonance, ∆L = −U (k = 2), there is g
(2)
0max = (U2 + γ2/4)/(γ2/4) = 4(U/γ)2 + 1. We have

g
(2)
0max > 1 when U 6= 0. The larger U/γ, the larger is the correlation function g

(2)
0max, which indicates a strong photon-

induced tunneling caused by two-photon resonance. In Sec. S3 B, we find that this conclusion is completely confirmed
by our numerical results.

B. Third-order correlation function

Using a method similar to that in Sec. S3 A, we calculate the third-order photon-number correlation function. For
the weak-driving case, we restrict to a subspace spanned by the basis states {|0〉, |1〉, |2〉, |3〉}. Then, the Hamiltonian
in Eq. (S28) becomes

Ĥt = E0|0〉 〈0|+
(
E1 − i~

γ

2

)
|1〉 〈1|+ (E2 − i~γ)|2〉 〈2|+

(
E3 − i~

3γ

2

)
|3〉 〈3|

+ ~ξ
√

1|1〉 〈0|+ ~ξ
√

2|2〉 〈1|+ ~ξ
√

3|3〉 〈2|+ ~ξ
√

4|4〉 〈3|

+ ~ξ
√

1|0〉 〈1|+ ~ξ
√

2|1〉 〈2|+ ~ξ
√

3|2〉 〈3|+ ~ξ
√

4|3〉 〈4| .
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Due to the limits of the basis states, the terms including |4〉 can be neglected. Then we have

Ĥt = E0|0〉 〈0|+
(
E1 − i~

γ

2

)
|1〉 〈1|+ (E2 − i~γ)|2〉 〈2|+

(
E3 − i~

3γ

2

)
|3〉 〈3|

+ +~ξ|1〉 〈0|+ ~ξ
√

2|2〉 〈1|+ ~ξ
√

3|3〉 〈2|+ ~ξ|0〉 〈1|+ ~ξ
√

2|1〉 〈2|+ ~ξ
√

3|2〉 〈3| , (S63)

where:

E0 = 0,

E1 = ~∆L + ~∆F,

E2 = 2~∆L + 2~∆F + 2~U,
E3 = 3~∆L + 3~∆F + 6~U. (S64)

In this subspace, a general state can be written as

|ϕ(t)〉 =

3∑
n=0

Cn(t)|n〉 = C0(t)|0〉+ C1(t)|1〉+ C2(t)|2〉+ C3(t)|3〉. (S65)

where Cn are probability amplitudes. We substitute Hamiltonian (S63) and the general state (S65) into the
Schrödinger equation (S33) to obtain

i~|ϕ̇(t)〉 = i~Ċ0(t)|0〉+ i~Ċ1(t)|1〉+ i~Ċ2(t)|2〉+ i~Ċ3(t)|3〉; (S66)

and

Ĥt|ϕ(t)〉 = ĤtC0(t)|0〉+ ĤtC1(t)|1〉+ ĤtC2(t)|2〉+ ĤtC3(t)|3〉, (S67)

where:

ĤtC0(t)|0〉 = [E0|0〉 〈0|+ ~ξ|1〉 〈0|]C0(t)|0〉 = E0C0(t)|0〉+ ~ξC0(t)|1〉,

ĤtC1(t)|1〉 =
[(
E1 − i~

γ

2

)
|1〉 〈1|+ ~ξ

√
2|2〉 〈1|+ ~ξ|0〉 〈1|

]
C1(t)|1〉

= ~ξC1(t)|0〉+
(
E1 − i~

γ

2

)
C1(t)|1〉+ ~ξ

√
2C1(t)|2〉,

ĤtC2(t)|2〉 = [(E2 − i~γ)|2〉 〈2|+ ~ξ
√

2|1〉 〈2|+ ~ξ
√

3|3〉 〈2|]C2(t)|2〉

= ~ξ
√

2C2(t)|1〉+ (E2 − i~γ)C2(t)|2〉+ ~ξ
√

3C2(t)|3〉,

ĤtC3(t)|0〉 =

[(
E3 − i~

3γ

2

)
|3〉 〈3|+ ~ξ

√
3|2〉 〈3|

]
C3(t)|3〉 = ~ξ

√
3C3(t)|2〉+

(
E3 − i~

3γ

2

)
C3(t)|3〉,

i.e.,

Ĥt|ϕ(t)〉 = [E0C0(t) + ~ξC1(t)]|0〉+
[
~ξC0(t) +

(
E1 − i~

γ

2

)
C1(t) + ~ξ

√
2C2(t)

]
|1〉

+ [~ξ
√

2C1(t) + (E2 − i~γ)C2(t) + ~ξ
√

3C3(t)]|2〉+

[
~ξ
√

3C2(t) +

(
E3 − i~

3γ

2

)
C3(t)

]
|3〉. (S68)

By comparing the coefficients of the same basis states in Eqs. (S66) and (S68), we have:

i~Ċ0(t)|0〉 = [E0C0(t) + ~ξC1(t)]|0〉,

i~Ċ1(t)|1〉 =
[
~ξC0(t) +

(
E1 − i~

γ

2

)
C1(t) + ~ξ

√
2C2(t)

]
|1〉,

i~Ċ2(t)|2〉 = [~ξ
√

2C1(t) + (E2 − i~γ)C2(t) + ~ξ
√

3C3(t)]|2〉,

i~Ċ3(t)|3〉 =

[
~ξ
√

3C2(t) +

(
E3 − i~

3γ

2

)
C3(t)

]
|3〉,
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with νn = En/~. Then we obtain the following equations of motion for the probability amplitudes Cn(t):

Ċ0(t) = −iν0C0(t)− iξC1(t),

Ċ1(t) = −iξC0(t)− i
(
ν1 − i

γ

2

)
C1(t)− iξ

√
2C2(t),

Ċ2(t) = −iξ
√

2C1(t)− i(ν2 − iγ)C2(t)− iξ
√

3C3(t),

Ċ3(t) = −iξ
√

3C2(t)− i
(
ν3 − i

3γ

2

)
C3(t), (S69)

where νn = En/~.
Similarly, due to the weak-driving case, we have the following approximate formulas: C0 ∼ 1, C1 ∼ ξ/γ, C2 ∼ ξ2/γ2,

and C3 ∼ ξ3/γ3. Then we can approximately solve the equations in Eq. (S69) using a perturbation method by
discarding higher-order terms in each equation for lower-order variables. Thus, the Eq. (S69) becomes:

Ċ0(t) = −iν0C0(t),

Ċ1(t) = −i
(
ν1 − i

γ

2

)
C1(t)− iξC0(t),

Ċ2(t) = −i(ν2 − iγ)C2(t)− iξ
√

2C1(t),

Ċ3(t) = −i
(
ν3 − i

3γ

2

)
C3(t)− iξ

√
3C2(t), (S70)

where νn = En/~.
For an initially empty cavity, the initial conditions read as: C0(0) = C0(0), and C1(0) = C2(0) = C3(0) = 0. Then,

the solution of the zero-photon amplitude can be obtained as

C0(t) = C0(0) exp (−iν0t) . (S71)

Hence, the equation for the single-photon amplitude in Eq. (S70) becomes

Ċ1(t) = −i
(
ν1 − i

γ

2

)
C1(t)− iξC0(0) exp (−iν0t) . (S72)

To solve this equation, we introduce a slowly-varying amplitude:

C1(t) = c1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]
,

C1(0) = c1(0), (S73)

then we obtain

Ċ1(t) = ċ1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− i
(
ν1 − i

γ

2

)
c1(t) exp

[
−i
(
ν1 − i

γ

2

)
t
]
, (S74)

and Eq. (S72) becomes:

ċ1(t)e−i(ν1−i
γ
2 )t − i

(
ν1 − i

γ

2

)
c1(t)e−i(ν1−i

γ
2 )t =− i

(
ν1 − i

γ

2

)
c1(t)e−i(ν1−i

γ
2 )t − iξC0(0)e−iν0t,

ċ1(t) =− iξC0(0) exp
[
i
(
ν1 − ν0 − i

γ

2

)
t
]
. (S75)

The solution can be obtained by integrating both sides of Eq. (S75), as follows:

c1(t)− c1(0) = −iξC0(0)

∫ t

0

exp
[
i
(
ν1 − ν0 − i

γ

2

)
t′
]
dt′,

c1(t)− c1(0) = −iξ C0(0)

i
(
ν1 − ν0 − iγ2

) {exp
[
i
(
ν1 − ν0 − i

γ

2

)
t
]
− 1
}
,

c1(t) exp
[
−i
(
ν1 − i

γ

2

)
t
]

= c1(0) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− iξ C0(0)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

,

C1(t) = C1(0) exp
[
−i
(
ν1 − i

γ

2

)
t
]
− iξ C0(0)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

.
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With the initial condition C1(0) = 0, we have the solution for the single-photon amplitude given by

C1(t) = −iξ C0(0)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

. (S76)

Consider the solution of the single-photon amplitude in Eq. (S76), the equation for the two-photon amplitude in
Eq. (S70) becomes

Ċ2(t) = −i(ν2 − iγ)C2(t)−
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

. (S77)

To solve this equation, we introduce another slowly-varying amplitude:

C2(t) = c2(t) exp [−i(ν2 − iγ)t] ,

C2(0) = c2(0), (S78)

and obtain

Ċ2(t) = ċ2(t) exp [−i(ν2 − iγ)t]− i(ν2 − iγ)c2(t) exp [−i(ν2 − iγ)t] , (S79)

then Eq. (S77) becomes:

ċ2(t)e−i(ν2−iγ)t − i(ν2 − iγ)c2(t)e−i(ν2−iγ)t = −i(ν2 − iγ)c2(t)e−i(ν2−iγ)t −
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) [e−iν0t − e−i(ν1−i γ2 )t
]
,

ċ2(t) = −
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) {exp [i(ν2 − ν0 − iγ)t]− exp
[
i
(
ν2 − ν1 − i

γ

2

)
t
]}

. (S80)

The solution can also be obtained by integrating both sides of Eq. (S80), as follows:

c2(t)− c2(0) =−
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) ∫ t

0

{
exp[i(ν2 − ν0 − iγ)t′]− exp

[
i
(
ν2 − ν1 − i

γ

2

)
t′
]}

dt′,

c2(t)− c2(0) =−
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) {exp [i(ν2 − ν0 − iγ)t]− 1

i(ν2 − ν0 − iγ)
−

exp
[
i
(
ν2 − ν1 − iγ2

)
t
]
− 1

i
(
ν2 − ν1 − iγ2

) }
,

c2(t) exp [−i(ν2 − iγ)t] =c2(0) exp [−i(ν2 − iγ)t]−
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) · exp (−iν0t)− exp [−i(ν2 − iγ)t]

i(ν2 − ν0 − iγ)

+
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) · exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t]

i
(
ν2 − ν1 − iγ2

) ,

C2(t) =C2(0) exp [−i(ν2 − iγ)t]−
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) · exp (−iν0t)− exp [−i(ν2 − iγ)t]

i(ν2 − ν0 − iγ)

+
√

2ξ2 C0(0)

i
(
ν1 − ν0 − iγ2

) · exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t]

i
(
ν2 − ν1 − iγ2

) .

With the initial condition C2(0) = 0, we have the following solution of the two-photon amplitude

C2(t) =
√

2ξ2 C0(0)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp [−i(ν2 − iγ)t]

(ν2 − ν0 − iγ)
−

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t](

ν2 − ν1 − iγ2
) }

. (S81)

Consider the solution of the two-photon amplitude in Eq. (S81), the equation for the three-photon amplitude in
Eq. (S70) becomes

Ċ3(t) =− i
(
ν3 − i

3γ

2

)
C3(t) +

√
6ξ3C0(0)

exp (−iν0t)− exp [−i(ν2 − iγ)t]

i
(
ν1 − ν0 − iγ2

)
(ν2 − ν0 − iγ)

−
√

6ξ3C0(0)
exp

[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t]

i
(
ν1 − ν0 − iγ2

) (
ν2 − ν1 − iγ2

) . (S82)
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To solve this equation, we introduce the slowly-varying amplitude:

C3(t) = c3(t) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
,

C3(0) = c3(0), (S83)

and obtain

Ċ3(t) = ċ3(t) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
− i
(
ν3 − i

3γ

2

)
c3(t) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
, (S84)

then Eq. (S82) becomes:

ċ3(t)e−i(ν3−i
3γ
2 )t − i

(
ν3 − i

3γ

2

)
c3(t)e−i(ν3−i

3γ
2 )t =− i

(
ν3 − i

3γ

2

)
C3(t) +

√
6ξ3C0(0)

e−iν0t − e−i(ν2−iγ)t

i
(
ν1 − ν0 − iγ2

)
(ν2 − ν0 − iγ)

−
√

6ξ3C0(0)
e−i(ν1−i

γ
2 )t − e−i(ν2−iγ)t

i
(
ν1 − ν0 − iγ2

) (
ν2 − ν1 − iγ2

) ,
ċ3(t) =

√
6ξ3C0(0)

exp
[
i(ν3 − ν0 − i 3γ

2 )t
]
− exp

[
i(ν3 − ν2 − iγ2 )t

]
i
(
ν1 − ν0 − iγ2

)
(ν2 − ν0 − iγ)

−
√

6ξ3C0(0)
exp[i(ν3 − ν1 − iγ)t]− exp

[
−i(ν3 − ν2 − iγ2 )t

]
i
(
ν1 − ν0 − iγ2

) (
ν2 − ν1 − iγ2

) . (S85)

The solution can also be obtained by integrating both sides of Eq. (S85), as follows:

c3(t)− c3(0) =
√

6ξ3 C0(0)

i
(
ν1 − ν0 − iγ2

)
(ν2 − ν0 − iγ)

∫ t

0

{
exp

[
i(ν3 − ν0 − i

3γ

2
)t′
]
− exp

[
i(ν3 − ν2 − i

γ

2
)t′
]}

dt′

−
√

6ξ3 C0(0)

i
(
ν1 − ν0 − iγ2

) (
ν2 − ν1 − iγ2

) ∫ t

0

{
exp[i(ν3 − ν1 − iγ)t′]− exp

[
−i(ν3 − ν2 − i

γ

2
)t′
]}

dt′

=
√

6ξ3 C0(0)

i
(
ν1 − ν0 − iγ2

)
(ν2 − ν0 − iγ)

{
exp

[
i(ν3 − ν0 − i 3γ

2 )t
]
− 1

i(ν3 − ν0 − i 3γ
2 )

−
exp

[
i(ν3 − ν2 − iγ2 )t

]
− 1

i(ν3 − ν2 − iγ2 )

}

−
√

6ξ3 C0(0)

i
(
ν1 − ν0 − iγ2

) (
ν2 − ν1 − iγ2

) {exp[i(ν3 − ν1 − iγ)t]− 1

i(ν3 − ν1 − iγ)
−

exp
[
i(ν3 − ν2 − iγ2 )t

]
− 1

i(ν3 − ν2 − iγ2 )

}
,

c3(t) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
= c3(0) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
−
√

6ξ3 C0(0)
{

exp (−iν0t)− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν0 − i 3γ
2 )

+
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν2 − iγ2 )

+
√

6ξ3C0(0)
{

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp

[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν1 − iγ)

−
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν2 − iγ2 )

,

C3(t) = C3(0) exp

[
−i
(
ν3 − i

3γ

2

)
t

]
−
√

6ξ3 C0(0)
{

exp (−iν0t)− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν0 − i 3γ
2 )

+
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν2 − iγ2 )

+
√

6ξ3C0(0)
{

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp

[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν1 − iγ)

−
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν2 − iγ2 )

.
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With the initial condition C3(0) = 0, we have the following solution of the three-photon amplitude

C3(t) = −
√

6ξ3 C0(0)
{

exp (−iν0t)− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν0 − i 3γ
2 )

+
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν2 − iγ2 )

+
√

6ξ3C0(0)
{

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp

[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν1 − iγ)

−
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν2 − iγ2 )

. (S86)

Thus, for the initially empty resonator, the solutions of the equations of motion for the probability amplitudes in
the equations in Eq. (S70) can be obtained as:

C0(t) = C0(0) exp (−iν0t) ,

C1(t) = −ξ C0(0)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp
[
−i
(
ν1 − i

γ

2

)
t
]}

,

C2(t) =
√

2ξ2 C0(0)(
ν1 − ν0 − iγ2

) {exp (−iν0t)− exp [−i(ν2 − iγ)t]

(ν2 − ν0 − iγ)
−

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp [−i(ν2 − iγ)t](

ν2 − ν1 − iγ2
) }

,

C3(t) = −
√

6ξ3 C0(0)
{

exp (−iν0t)− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν0 − i 3γ
2 )

+
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
)

(ν2 − ν0 − iγ)(ν3 − ν2 − iγ2 )

+
√

6ξ3C0(0)
{

exp
[
−i
(
ν1 − iγ2

)
t
]
− exp

[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν1 − iγ)

−
√

6ξ3C0(0)
{

exp [−i(ν2 − iγ)t]− exp
[
−i
(
ν3 − i 3γ

2

)
t
]}(

ν1 − ν0 − iγ2
) (
ν2 − ν1 − iγ2

)
(ν3 − ν2 − iγ2 )

, (S87)

where

ν0 = 0, ν1 = ∆L + ∆F, ν2 = 2∆L + 2∆F + 2U, ν3 = 3∆L + 3∆F + 6U.

When the initial state of the system is the vacuum state |0〉, i.e., the initial condition C0(0) = 1, the solutions in
Eq. (S87) are reduced to:

C0(t) =1,

C1(t) =− ξ 1(
∆L + ∆F − iγ2

) {1− exp
[
−i
(

∆L + ∆F − i
γ

2

)
t
]}

,

C2(t) =

√
2ξ2(

∆L + ∆F − iγ2
) {1− exp[−i(2∆L + 2∆F + 2U − iγ)t]

(2∆L + 2∆F + 2U − iγ)
−

exp
[
−i
(
∆L + ∆F − iγ2

)
t
]

(∆L + ∆F + 2U − iγ2 )

}

+
√

2ξ2 exp[−i(2∆L + 2∆F + 2U − iγ)t](
∆L + ∆F − iγ2

)
(∆L + ∆F + 2U − iγ2 )

,
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C3(t) = −
√

6ξ3

{
1− exp

[
−i
(
3∆L + 3∆F + 6U − i 3γ

2

)
t
]}(

∆L + ∆F − iγ2
)

(2∆L + 2∆F + 2U − iγ)
(
3∆L + 3∆F + 6U − i 3γ

2

)
+
√

6ξ3

{
exp[−i(2∆L + 2∆F + 2U − iγ)t]− exp

[
−i
(
3∆L + 3∆F + 6U − i 3γ

2

)
t
]}(

∆L + ∆F − iγ2
)

(2∆L + 2∆F + 2U − iγ)(∆L + ∆F + 4U − iγ2 )

+
√

6ξ3

{
exp

[
−i
(
∆L + ∆F − iγ2

)
t
]
− exp

[
−i
(
3∆L + 3∆F + 6U − i 3γ

2

)
t
]}(

∆L + ∆F − iγ2
)

(∆L + ∆F + 2U − iγ2 )(2∆L + 2∆F + 6U − iγ)

−
√

6ξ3

{
exp[−i(2∆L + 2∆F + 2U − iγ)t]− exp

[
−i
(
3∆L + 3∆F + 6U − i 3γ

2

)
t
]}(

∆L + ∆F − iγ2
)

(∆L + ∆F + 2U − iγ2 )(∆L + ∆F + 4U − iγ2 )
,

and for the infinite-time limit exp(−At)→ 0 (t→∞), we have:

C0(∞) ≡ C0 = 1,

C1(∞) ≡ C1 =
−ξ(

∆L + ∆F − iγ2
) ,

C2(∞) ≡ C2 =
−
√

2ξC1

(2∆L + 2∆F + 2U − iγ)
,

C3(∞) ≡ C3 =
−
√

3ξC2(
3∆L + 3∆F + 6U − i 3γ

2

) . (S88)

For the state given in Eq. (S65), the infinite-time state (steady state) of the system reads as

|ϕ(t→∞)〉 = |0〉+
−ξ(

∆L + ∆F − iγ2
) |1〉+

√
2ξ2(

∆L + ∆F − iγ2
)

(2∆L + 2∆F + 2U − iγ)
|2〉

+
−
√

6ξ3(
∆L + ∆F − iγ2

)
(2∆L + 2∆F + 2U − iγ)

(
3∆L + 3∆F + 6U − i 3γ

2

) |3〉, (S89)

and the normalization constant of the state is given by

N = 1 + |C1|2 + |C2|2 + |C3|2 , (S90)

where:

|C1|2 =

∣∣∣∣∣ ξ(
∆L + ∆F − iγ2

) ∣∣∣∣∣
2

=
ξ2(

∆L + ∆F − iγ2
) (

∆L + ∆F + iγ2
) =

ξ2[
(∆L + ∆F)2 + γ2

4

] , (S91)

|C2|2 =

∣∣∣∣∣
√

2ξ2(
∆L + ∆F − iγ2

)
(2∆L + 2∆F + 2U − iγ)

∣∣∣∣∣
2

=
2ξ4(

∆L + ∆F − iγ2
) (

∆L + ∆F + iγ2
)

(2∆L + 2∆F + 2U − iγ)(2∆L + 2∆F + 2U + iγ)

=
2ξ4[

(∆L + ∆F)2 + γ2

4

]
[4(∆L + ∆F + U)2 + γ2]

, (S92)

|C3|2 =

∣∣∣∣∣ −
√

6ξ3(
∆L + ∆F − iγ2

)
(2∆L + 2∆F + 2U − iγ)

(
3∆L + 3∆F + 6U − i 3γ

2

) ∣∣∣∣∣
2

=
6ξ6∣∣∆L + ∆F − iγ2

∣∣2 |(2∆L + 2∆F + 2U − iγ)|2
∣∣3∆L + 3∆F + 6U − i 3γ

2

∣∣2
=

6ξ6[
(∆L + ∆F)2 + γ2

4

]
[4(∆L + ∆F + U)2 + γ2]

[
9(∆L + ∆F + 2U)2 + 9γ2

4

] . (S93)
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The probabilities of finding single, two and three photons in the cavity are, respectively, given by:

P1 =
|C1|2

N
, (S94)

P2 =
|C2|2

N
, (S95)

P3 =
|C3|2

N
. (S96)

As mentioned in Sec. S2 B, the equal-time third-order correlation function can be written as

g(3)(0, 0) ≡ g(3)(0) ≡
〈
a†3a3

〉
〈â†â〉3

=

〈
â†â(â†â− 1)(â†â− 2)

〉
〈â†â〉3

=

〈
(â†â)3 − 3(â†â)2 + 2â†â

〉
〈â†â〉3

When the cavity field is in the state (S65), we have

g(3)(0) =

∑3
n,n′=0 C

∗
n′Cn 〈n′| (â†â)3|n〉 − 3

∑3
n,n′=0 C

∗
n′Cn 〈n′| (â†â)2|n〉+ 2

∑3
n,n′=0 C

∗
n′Cn 〈n′| â†â|n〉

(
∑3
n,n′=0 C

∗
n′Cn 〈n′| â†â|n〉)3

=
|C1|2 + 8 |C2|2 + 27 |C3|2 − 3(|C1|2 + 4 |C2|2 + 9 |C3|2) + 2(|C1|2 + 2 |C2|2 + 3 |C3|2)

(|C1|2 + 2 |C2|2 + 3 |C3|2)3

=
N(P1 + 8P2 + 27P3 − 3P1 − 12P2 − 27P3 + 2P1 + 4P2 + 6P3)

N2(P1 + 2P2 + 3P3)3

=
6P3

N(P1 + 2P2 + 3P3)3

In the weak-driving regime, we have the following approximate amplitudes: C0 ∼ 1, C1 ∼ ξ/γ, C2 ∼ ξ2/γ2, and

C3 ∼ ξ3/γ3, i.e., N ∼ 1 with |C3|2 � |C2|2 � |C1|2 � 1. Hence, the third-order correlation function can be written
as

g(3)(0) ≈ 6P3

P 3
1

. (S97)

Substituting Eqs. (S94) and (S96) into Eq. (S97), we can easily obtain

g(3)(0) ≈ 36ξ6[
(∆L + ∆F)2 + γ2

4

]
[4(∆L + ∆F + U)2 + γ2]

[
9(∆L + ∆F + 2U)2 + 9γ2

4

] ·
[
(∆L + ∆F)2 + γ2

4

]3
ξ6

=

[
(∆L + ∆F)2 + γ2

4

]2
[(∆L + ∆F + U)2 + γ2

4 ]
[
(∆L + ∆F + 2U)2 + γ2

4

] , (S98)

where ∆F > 0 (∆F < 0) denotes the light propagating against (along) the direction of the spinning resonator.
Here, we focus on the non-spinning case (∆F = 0), the rotating case is discussed in Sec. S4. For this case, the

third-order correlation function becomes

g
(3)
0 (0) =

(∆2
L + γ2/4)2

[(∆L + U)2 + γ2/4][(∆L + 2U)2 + γ2/4]
. (S99)

Including the second-order correlation function, we can quantitatively compare our analytical results with numerical
calculations [S21, S22]. We find an excellent agreement between the numerical calculations and the approximate
analytical solutions, as shown in Fig. S6. Here, the solid curves are plotted using the numerical solution, while

the curves with symbols are based on the analytical solution given in Eqs. (S62) and (S99). As for the g
(2)
0 (0) ≈

2P (2)/P (1)2, given in Eq. (S60), the dip D(2) and the peak P (2) in the light green curves correspond to the single-
and two-photon resonant driving cases, respectively. In the single-photon resonant driving case (k = 1), a single
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photon can be resonantly injected into the cavity, while the probability of finding two photons in the cavity is largely

suppressed due to the energy restriction; this represents 1PB. We find that the analytical value of g
(2)
0 (0) ∼ 0.0008 at

this dip D(2), which is well-matched with our numerical value g
(2)
0 (0) ∼ 0.0009. In the two-photon resonant driving

case (k = 2), the probability for finding two photons inside the cavity is resonantly enhanced, and this corresponds
to a peak in the curve of g(2)(0). We find that the analytical value of g(2)(0) ∼ 974 at this peak P (2) is above the
numerical solution g(2)(0) ∼ 673, since we neglected the two-photon probability in the denominator of the analytical

formula [this can be seen more clearly in Eqs. (S59) and (S62)]. As for the g
(3)
0 (0) ≈ 6P (3)/P (1)3, given in Eq. (S97),

the dip D(3) and the peaks P
(3)
1 and P

(3)
2 in the dark green curves correspond to the single-, two-, and three-photon

resonant-driving cases, respectively. In the single-photon resonant-driving case (k = 1), P (1) � P (2) � P (3), thus,

there is a dip [i.e., D(3)] in the g
(3)
0 (0) curve. For the two-photon resonant-driving case (k = 2), the single-photon

probability is suppressed, which causes the occurrence of the peak P
(3)
1 . However, the peak P

(3)
1 is lower than the

peak P
(3)
2 at k = 3, since the three-photon probability is enhanced at k = 3 (i.e., three-photon resonant-driving case),

but still suppressed at k = 2 (i.e., two-photon resonant-driving case).

D

D

P

P1

P2

FIG. S6. The second- and third-order correlation functions versus the tuning parameter k for the non-spinning resonator case.

The symbols denote our approximate analytical results [g
(2)
0 (0) given in Eq. (S62), g

(3)
0 (0) given in Eq. (S99)], while the solid

curves correspond to our numerical results. Here, D(2) [D(3)] is the dip in the g
(2)
0 (0) [g

(3)
0 (0)] curves; P (2) and P (3) are the

peaks in the g
(2)
0 (0) and g

(3)
0 (0) curves, respectively. The parameters used here are the same as those in Fig. S4.
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S4. ROTATION-INDUCED QUANTUM NONRECIPROCITY

A. Rotation-induced shifts

For the optical microtoroid resonator, an input-laser light applied from the left or right side of the cavity causes
a clockwise (CW) circulating mode or a counterclockwise (CCW) circulating mode. When the microresonator is
rotating, ∆F > 0 and ∆F < 0 denote the cases with the light propagating against and along the spinning direction of
the resonator, respectively, i.e., for the CCW spinning resonator, ∆F > 0 (∆F < 0) indicates an input-laser applied
from the left (right) side; for the CW spinning resonator, ∆F > 0 (∆F < 0) indicates an input-laser used from the
right (left) side.

When the resonator is rotating, the second-order correlation function in Eq. (S61) can be written as

g
(2)
± (0) =

(∆L ± |∆F|)2 + γ2/4

(∆L ± |∆F|+ U)2 + γ2/4
, (S100)

where g
(2)
− (0) [g

(2)
+ (0)] denotes the equal-time second-order correlation function for ∆F < 0 (∆F > 0).

For the ∆F < 0 case, 1PB emerges at ∆L = |∆F| with g
(2)
− (0) = (γ2/4)/(U2 + γ2/4) = [4(U/γ)2 + 1]−1. This

minimum value of g
(2)
− (0) is independent of the angular speed Ω; thus, the minimum value of g

(2)
− (0) is a constant.

Since |∆F| is an amount proportional to the angular speed Ω, the dip D(2) experiences linearly shifts with Ω. Also,
D(2) experiences linearly shifts to the opposite direction for the ∆F < 0 case, since now 1PB emerges at ∆L = − |∆F|.
The shifts of the curve can also be understood from an energy-level structure, where the rotation of the resonator
causes upper or lower shifts of energy levels, as shown in Fig. S3.

Here, we plot the correlation function g(2)(0) as a function of k when the angular speed Ω takes various values,
as shown in Fig. S7. For the ∆F < 0 case, a blue shift of the g(2)(0) curve can be clearly seen in Fig. S7(a). For
the ∆F > 0 case, a red shift can be seen in Fig. S7(b). This indicates a highly-tunable nonreciprocal PB device, i.e.,
sub-Poissonian light can be achieved by driving from one side; super-Poissonian light emerges by driving from the
opposite side (see Fig. 2 in the main article).

For example, let us now fix the CCW rotation of the resonator; hence ∆F > 0 (∆F < 0) corresponds to the
situation of driving the resonator from its left (right) side, i.e., the CW (CCW) mode frequency is ω� ≡ ω0 + |∆F|
(ω	 ≡ ω0 − |∆F|), as aforementioned. When the optical resonator rotates with an angular velocity Ω = 6.6 kHz [S6],

we find g
(2)
� (0) ∼ 0.39 and g

(2)
	 (0) ∼ 2.53, i.e., sub-Poissonian light can be achieved by driving the device from its left

side, while super-Poissonian light emerges by driving from the right side, as shown in Fig. S8.
The third-order correlation function Eq. (S98) in the rotating resonator becomes

g
(3)
± (0) =

[(∆L ± |∆F|)2 + γ2/4]2

[(∆L ± |∆F|+ U)2 + γ2/4][(∆L ± |∆F|+ 2U)2 + γ2/4]
, (S101)

(a) (b)F F

FIG. S7. Dependence of the equal-time second-order correlation functions g
(2)
± (0) on the tuning parameter k for various values

of the angular speed Ω. The symbols are our approximate analytical results given in Eq. (S100), while the solid curves are our
numerical results. The other parameters used here are the same as those in Fig. S4.
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FIG. S8. Second-order correlation function g(2)(0) versus the tuning parameter k for different input directions. At k = 1.5,
sub- and super-Poissonian light can be achieved by driving the device from its left (red curve) and right (blue curve) sides,
respectively. Here, we assume that the angular velocity is Ω = 6.6 kHz [S6] (Ω = 0) for the spinning (non-spinning) resonator.
The other parameter values are the same as those in the main text.

where g
(3)
− (0) (g

(3)
+ (0)) denotes the third-order optical intensity correlation for the ∆F < 0 (∆F > 0) case. Similarly,

the curve of g(3)(0) also experiences opposite shifts for different driving directions.

B. Nonreciprocal photon blockade

We have investigated PB effects (witnessing sub-Poissonian light) and photon-induced tunneling (PIT, correspond-
ing to super-Poissonian light) for the non-spinning case in the former Sections. Note that PB and PIT always emerge
at fixed locations of the tuning parameter k, no matter if the input-laser comes from the left or right side (see Figs. S4
and S5). However, the rotation of the resonator can lead to upper or lower shifts of energy levels for different driving
directions, as discussed in Sec. S4 A. Therefore, using a spinning nonlinear optical resonator, under the same driving
frequencies, PIT can emerge by driving from one side and 1PB/2PB can emerge by driving from the other direction,
i.e., unidirectional 1PB/2PB. Furthermore, 1PB for driving from one side and 2PB for driving from the opposite
direction can also be realized with this spinning device.

As shown in Figs. S9(a) and S9(b), when the angular speed of the resonator is Ω = 58 kHz, we find (i) 1PB for ∆F > 0
and PIT for ∆F < 0, at k = 2.0; (ii) 2PB for ∆F > 0 and PIT for ∆F < 0, at k = 3.0. These nonreciprocal 1PB and
2PB can also be confirmed by comparing the photon-number distribution P (n) with the Poissonian distribution P(n).
Figure S9(b) shows that: (i) single-photon probability P (1) is enhanced while two- and more-photon probabilities
P (m > 1) are suppressed for the ∆F > 0 case, leading to 1PB; in contrast, P (1) is suppressed while P (m > 1)
are enhanced for the ∆F < 0 case, leading to PIT. (ii) only two-photon probability P (2) is enhanced for ∆F > 0,
which corresponds to 2PB; in contrast, PIT emerges for ∆F < 0. The unidirectional 2PB can also be achieved at
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FIG. S9. Optical intensity correlation functions g
(2)
± (0) (dashed curves) and g

(3)
± (0) (solid curves) versus the tuning parameter k

for different driving directions. Different cases of nonreciprocal PB can be achieved for different angular speeds (a,b) Ω = 58 kHz
and (c,d) Ω = 29 kHz. These effects can also be recognized from (b,d) the deviations of the photon distribution to the standard
Poissonian distribution with the same mean photon number [i.e., Eq. (S13)]. The panels (b) and (d) correspond to panels (a)
and (b), respectively. Here, ‘PIT’ is photon-induced tunneling, and the other parameters used here are the same as those in
Fig. S5.

k = 2.5 when Ω = 29 kHz, as shown in Figs. S9(c) and S9(d). Such quantum nonreciprocities indicate one-way
quantum devices at the few-photon level, and open up exciting prospects for applications in nonreciprocal quantum
technologies, such as nonreciprocal quantum information processing or few-photon topological devices [S23–S25].

More interestingly, when the angular speed of the nonlinear optical resonator is Ω = 29 kHz, 2PB emerges at k = 1.5
for ∆F < 0, while 1PB emerges with the same driving strength for ∆F > 0, as shown in Figs. S9(c) and S9(d). In
contrast to the nonreciprocities of the former cases between the sub- and super-Poissonian states of light, this is a new
kind of nonreciprocal PB between two sub-Poissonian states of light, indicating possible applications for few-photon
nonreciprocal devices with direction-dependent counting-statics.

All of the cases of nonreciprocal PB can be intuitively understood by considering the energy-level structure of the
system. As shown in Fig. S3(a), for the ∆F > 0 case, when angular speed fulfills |∆F| = U and the probe light with
frequency ω0 + |∆F| (k = 2.0), the light is resonantly coupled to the transition |0〉 → |1〉. The transition |1〉 → |2〉 is
detuned by 2~U and, thus, suppressed for U > γ, i.e., once, a photon is coupled into the resonator, it suppresses the
probability of the second photon with the same frequency going into the resonator. In contrast, for the ∆F < 0 case,
there is a three-photon resonance with the transition |0〉 → |3〉, hence the absorption of the first photon favors also
that of the second or subsequent photons, i.e., resulting in PIT. This is a clear signature of nonreciprocal 1PB, i.e.,
sub-Poissonian light emerges for ∆F > 0, while super-Poissonian light can be observed for ∆F < 0.

As shown in Figs. S3(c) [S3(e)], for the ∆F > 0 case, by choosing |∆F| = U (|∆F| = U/2) and ∆L = −2U
(∆L = −3U/2), the transition |0〉 → |2〉 is resonantly driven by the input laser, but the transition |2〉 → |3〉 is
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TABLE II. Different cases of nonreciprocal PB effects in a spinning resonator for Pin = 0.3 pw. Here, photon-induced tunneling
(PIT) corresponds to an n-photon resonance (n PR).

No. ∆F > 0 ∆F < 0 Conditions Parameters

(1) 1PB PIT (3PR) ∆F = ±U , ∆L = −U Ω = 58 kHz, k = 2.0

(2) PIT (3PR) 1PB prohibited

(3) 2PB PIT (4PR) ∆F = ±U , ∆L = −2U Ω = 58 kHz, k = 3.0

(4) PIT (4PR) 2PB prohibited

(5) 2PB PIT (3PR) ∆F = ±U/2, ∆L = −3U/2 Ω = 29 kHz, k = 2.5

(6) PIT (3PR) 2PB prohibited

(7) 1PB 2PB ∆F = ±U/2, ∆L = −U/2 Ω = 29 kHz, k = 1.5

(8) 2PB 1PB prohibited

detuned by 4~U , which features the 2PB effect; in contrast, for the ∆F < 0 case, four-photon resonance (three-photon
resonance) happens for the transition |0〉 → |4〉 (|0〉 → |3〉), leading to PIT. This is also a nonreciprocal PB.

As shown in Fig. S3(g), for the ∆F > 0 case, when |∆F| = U/2 and ∆L = −U/2 (k = 1.5), the input light is
resonantly coupled to the transition |0〉 → |1〉, and the transition |1〉 → |2〉 is detuned by 2~U , leading to 1PB.
More interestingly, for the ∆F < 0 case, the input light is just resonantly coupled to the transition |0〉 → |2〉, and the
transition |2〉 → |3〉 is detuned by 4~U , i.e., resulting in 2PB. This 1PB-2PB nonreciprocity can suggest an application
for a purely quantum device with direction-dependent counting statistics. This new nonreciprocal feature, which (to
our knowledge) has not been revealed previously.

Table II shows different cases of nonreciprocal PB. Interestingly, both PB-PIT and 1PB-2PB nonreciprocities can
only occur in an irreversible way. Unidirectional 1PB for ∆F > 0, i.e., 1PB emerges for ∆F > 0 and PIT emerges
for ∆F < 0, can occur with the same angular speeds (∆F = ±U), and the same driving frequencies (∆L = −U).
However, the case of PIT for ∆F > 0 and 1PB for ∆F < 0 cannot be observed with the same angular speeds and
driving frequencies, i.e., one-way 1PB is an irreversible quantum nonreciprocal effect. Also, 1PB-2PB nonreciprocity
can only happen in the case of 1PB for ∆F > 0 and 2PB for ∆F < 0, but not vice versa.

Note that 1PB and 2PB correspond to the single- and two-photon resonances, respectively. PIT is also caused by
a multi-photon resonance. The multi-photon resonance can be clearly seen in energy-level diagrams, thus, the origin
of this irreversible feature can be understood from the energy-level diagrams for ∆F > 0 and ∆F < 0. Without the
rotation, the energy-level diagrams for the ∆F > 0 and ∆F < 0 cases are symmetric. Due to the rotation, energy levels
experience shifts to different directions for ∆F > 0 and ∆F < 0, leading to asymmetries of energy-level diagrams, as
shown in Fig. S3. From Sec. S2 A, the energy levels of this spinning system are En = n~∆L + n~∆F + (n2 − n)~U .
Thus, we have

En/n = ~(∆L + ∆F) + (n− 1)~U. (S102)

Then the driving frequency of an n-photon resonance for the ∆F > 0 case is

ωL = ω0 + |∆F|+ nU − U, (S103)

and the driving frequency of an m-photon resonance for the ∆F < 0 case is

ω′L = ω0 − |∆F|+mU − U. (S104)

Under the same driving frequency, we have

ω0 + |∆F|+ nU − U = ω0 − |∆F|+mU − U
|∆F|+ nU = −|∆F|+mU

2|∆F| = (m− n)U. (S105)

Because |∆F| > 0 (i.e., Ω 6= 0) and U > 0, we have the following condition for the allowed cases of nonreciprocal PB

n < m. (S106)
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When the driving frequencies for ∆F > 0 and ∆F < 0 are the same, an n-photon resonance for ∆F > 0 and an
m-photon resonance for ∆F < 0 can only happen under the condition n < m. In contrast to this, the cases of n > m
are prohibited, as shown in Figs. S3(b), S3(d), S3(f), and S3(h).
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