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4Dipartimento MIFT, Università di Messina, I-98166 Messina, Italy

* ssavasta@unime.it

5Department of Physics, University of Michigan,

Ann Arbor, Michigan 48109-1040, USA

(Dated: July 28, 2020)

Abstract

The coherent nonlinear process where a single photon simultaneously excites two or more two-

level systems (qubits) in a single-mode resonator has recently been theoretically predicted. Here

we explore the case where the two qubits are placed in different resonators in an array of two or

three weakly coupled resonators. Investigating different setups and excitation schemes, we show

that this process can still occur with a probability approaching one under specific conditions. The

obtained results provide interesting insights into subtle causality issues underlying the simultaneous

excitation processes of qubits placed in distant resonators.
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I. INTRODUCTION

For many decades the possibility of reaching the strong coupling regime between light and

matter has been one of the major topics of research in atomic physics and quantum optics,

driving the field of cavity quantum electrodynamics (QED). In this regime, which was first

reached in Rydberg atoms interacting with the electromagnetic field confined in a high-Q

cavity [1], it is possible to observe a coherent and reversible energy exchange between light

and matter, called vacuum Rabi oscillations, at a coupling rate exceeding the losses of the

system. In 1992, the strong coupling regime was experimentally achieved [2] also with single

atoms coherently interacting with an optical cavity. Following these pioneering experiments,

this strong regime of light-matter coupling has been realized in various quantum systems,

enabling tests of fundamental physics and the study of single atom-photon processes [3], and

leading to important applications in quantum computation, quantum information processing,

sensing and metrology [4–6].

More than two decades after the observation of the strong coupling regime, the cavity-

QED community started investigating the possibility of accessing a new non-perturbative

light-matter regime in which the coupling rate can become a significant fraction of the bare

energies of the system. In 2005, it was predicted [7] that this new ultrastrong coupling

(USC) regime could be observed with a planar microcavity photon mode which is strongly

coupled to a semiconductor intersubband transition in the presence of a two-dimensional

electron gas. In this new USC regime, the rotating-wave approximation (RWA) employed in

the standard Jaynes-Cummings model [8, 9], which has been a workhorse of quantum optics

in the weak and strong coupling regimes, cannot be safely applied anymore. Indeed, it has

been shown that the counter-rotating terms in the system Hamiltonian become relevant [10–

15], giving rise to a wide variety of novel and unexpected physical phenomena in different

hybrid quantum systems [16–57].

A proper description of the USC-regime physics requires to solve some fundamental the-

oretical issues, such as the failure of the usual normal-order correlation functions to de-

scribe the correct output photon emission rate [58–61], some unphysical predictions of the

standard master equation approach [62–64], and gauge ambiguities in the quantum Rabi

and Dicke models [46, 65, 66]. Besides the vast phenomenology that has been predicted

to be observable in this new light-matter regime, the interest has also been fostered by
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the experimental realization of USC in several physical systems, including superconducting

quantum circuits [67–80], intersubband polaritons in microcavity-embedded doped quantum

wells [7, 81, 82], and other hybrid quantum systems, such as Landau polaritons [83–87],

optomechanics [88–90], microcavity exciton polaritons [91–95], magnons in microwave cavi-

ties [96, 97] and organic molecules [11, 98–109]. Among unique physical effects of the USC

regime, there are those related to the hybridization of the ground state of the quantum Rabi

Hamiltonian [7, 16, 26, 39, 44, 110–113]. Such a ground state now contains virtual excita-

tions that can be released only by applying a time-dependent perturbation to the system.

Moreover, the USC regime opens the possibility of observing higher-order processes and

nonlinear optics with two-level systems and virtual photons [40, 42, 114], symmetry break-

ing and Higgs mechanism [28], multiphoton quantum Rabi oscillations [33], and even more

counterintuitive phenomena like the emission of bunched light from individual qubits [115].

One of the most interesting nonlinear optical effects predicted in the USC regime consists

of the simultaneously excitation of two or more spatially separated atoms by a single pho-

ton [38, 116–118]. This last puzzling result, which has been studied in a quantum system

constituted by two qubit ultrastrongly coupled to a single-mode resonator, provides new in-

sights into the various quantum aspects of the interaction between light and matter and can

find useful applications for the development of novel quantum technologies. Although this

effect clearly demonstrates a relevant role of the counter-rotating terms and virtual processes

in the USC regime, the single-mode approach does not allow to fully understand some subtle

causality issues underlying this process, since the resonator mode is completely delocalized

along the cavity. Specifically, a drawback of this simplified description of the electromag-

netic field is that any information about the spatial separation between the two atoms is lost.

Hence, the question arises if it is possible to observe this effect in the presence of natural

or artificial atoms which are actually spatially separated. Here we provide a positive answer

to this question, even though further work will be required for a full understanding of the

impact of the spatial separation of the atoms on the joint absorption and emission of single

photons. Moreover, it has been recently pointed out [119] that the description of a cavity-

QED system in terms of the single-mode quantum Rabi model in the USC and deep-strong

coupling (DSC) regimes can lead to the violation of relativistic causality, and a multi-mode

version of the quantum Rabi model is required in order to capture the propagation properties

of the light field necessary to comply with causality.
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In the present work, we show that the simultaneous excitation process of two qubits

by a single cavity photon, as described in Ref. [38], can take place also in a cavity-array

system of two or three cavities, where the qubits are placed in different resonators and ul-

trastrongly interact with them. We observe that this effect can be achieved by probing the

system via two different excitation mechanisms: (i) by exciting one of the normal modes of

the coupled-cavity array or (ii) by selectively exciting only a single cavity. The substantial

difference between the two cases is that, while the first case corresponds to the interaction

of two qubits with a delocalized field and leads to a deterministic simultaneous excitation

process as in Ref. [38], the second case constitutes one of the simplest examples of a localized

system in which the excitation is initially stored in a single resonator. This makes this ef-

fect even more counterintuitive, since the excitation is continuously transferred between the

nearest-neighbor resonators, while the effect requires both atoms to feel the photon field at

the same time in order to take place. In both cases, we study the temporal evolution of the

system within both theoretical and numerical approaches, providing a clear and physically

intuitive description of the propagation and causality mechanisms underlying this simulta-

neous excitation phenomena. The process described here could be experimentally realized in

state-of-the-art circuit QED systems. Moreover, these effects can find useful applications in

quantum information processing and quantum communication protocols, where reliable and

controllable entanglement between distant qubits in a quantum network is of fundamental

importance.

II. MODELS AND RESULTS

Here we study a quantum system consisting of an array of N weakly coupled single-mode

resonators, each of them interacting with a two-level atom (e.g., a superconducting qubit).

The total Hamiltonian of the system can be written as [38] (hereafter, ~ = 1):

Ĥ = Ĥq + Ĥc + Ĥcc + Ĥqc , (1)

where Hc = ∑N
n=1 ω

(n)
c â†nân and Hq = ∑N

n=1 ω
(n)
q σ̂

(n)
+ σ̂

(n)
− describe, respectively, the qubit and

cavity Hamiltonians in the absence of interaction, â†n(ân) is the bosonic creation (annihila-

tion) operator for the nth resonator mode with frequency ω(n)
c , and σ̂

(n)
+ (σ̂(n)

− ) are the raising

(lowering) operators for the nth qubit with transition frequency ω(n)
q . The cavity-cavity
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interaction Hamiltonian is given by

Hcc = J
N−1∑
n=1

X̂nX̂n+1 , (2)

where X̂n ≡ â†n + ân, and J is the next-neighbour hopping rate. Finally, the last term of

Eq. (1), describing the interaction between the qubits and the cavity modes, reads

Hqc =
N∑

n=1
gn X̂n[cos(θn)σ̂(n)

x + sin(θn)σ̂(n)
z ] , (3)

where gn ≡ |gn|eiϕn denotes the coupling rate of the nth qubit to the corresponding cavity

mode, the angles θn parametrize the relative contribution of the transverse and longitudinal

couplings, while σ̂(n)
x and σ̂(n)

z are the Pauli matrices for the qubits. In circuit QED systems,

the angle θn and the transition frequency ω(n)
q can be continuously tuned by changing the

magnetic field externally applied to, e.g., a flux qubit (see, e.g., Ref. [70]). An important

feature of the interaction Hamiltonian is that it contains terms that do not conserve the

total number of excitations. Specifically, the transverse coupling ∝ σ̂x contains terms like

âσ̂− and â†σ̂+ which create or annihilate two excitation simultaneously; whereas the σ̂z-

coupling changes the resonator photon number by one, while leaving the number of qubit

excitations unchanged. Notice that the parity of qubit n is conserved only for θn = 0,

corresponding, for a flux qubit, to a zero external flux offset [70]. The terms in the total

Hamiltonian which do not conserve the number of excitations in the system can be safely

neglected in the weak-coupling regime, where the rotating-wave approximation (RWA) is

valid. However, these terms become relevant for systems entering the USC regime, where

the coupling strength gn reaches an appreciable fraction of the unperturbed frequencies (here,

ω(n)
c and ω(n)

q ) of the bare systems. One of the most interesting consequences of the presence

of these counter-rotating terms is the possibility to coherently couple quantum states with

different numbers of excitations. These unconventional couplings determine new intriguing

physical processes as, for example, multiphoton Rabi oscillations [33] and the possibility to

excite two or more spatially separated atoms with a single photon [38]. Here, we investigate

the latter process, considering a fundamentally different setup, consisting of weakly coupled

cavity arrays, where each cavity ultrastrongly interacts with a single qubit. Our results show

that, owing to the ultrastrong light-matter interaction and the parity-symmetry breaking,

it is still possible to simultaneously excite two qubits, even if they are placed in different

cavities.
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A. Two cavities, two qubits and one photon

We first focus on the study of an array of two identical cavity-qubit systems
(
ω(1)

c =

ω(2)
c = ωc ; ω(1)

q = ω(2)
q = ωq ; θ1 = θ2 = θ

)
, where the two cavities are weakly coupled

together and each one of them ultrastrongly interacts with a single qubit (see Fig. 1). In

this case, the Hamiltonian of Eq. (1) becomes

Ĥ =
2∑

n=1

[
ωc â

†
nân + ωq σ̂

(n)
+ σ̂

(n)
− + |g| eiϕnX̂n

(
cos θ σ̂(n)

x + sin θ σ̂(n)
z

)]
+ J

(
â1â

†
2 + â†1â2

)
, (4)

where, assuming that the coupling strength between the two cavities is weak, we applied

the RWA to the cavity-cavity interaction Hamiltonian Ĥcc. The Hamiltonian in Eq. (4)

can be conveniently rewritten in terms of the bosonic symmetric and antisymmetric normal

modes, also referred to as supermodes defined via the operators âS(A) = (â1± â2)/
√

2, which

diagonalise the Hamiltonian

ĤC =
2∑

n=1
ωc â

†
nân + J

(
â1â

†
2 + â†1â2

)
, (5)

describing two weakly coupled harmonic oscillators.

g g!q

J
â1 â2

!q
!c!c

Figure 1. Sketch of the system. Two identical spatially separated optical resonators, with resonance

frequency ωc, are weakly coupled together, each one of them ultrastrongly interacting with a single

two-level system (qubit) with transition frequency ωq. The photon hopping rate J between the

two resonators and the light-matter coupling strength g are indicated.

In this case, we obtain

Ĥ = ωA â
†
AâA + ωS â

†
S âS + ωq

2∑
n=1

σ̂
(n)
+ σ̂

(n)
−

+ |g|
[
X̂A

(
cos θ Φ̂−x + sin θ Φ̂−z

)
+ X̂S

(
cos θ Φ̂+

x + sin θ Φ̂+
z

)]
, (6)

where X̂S(A) ≡ â†S(A) + âS(A) and Φ̂±x(z) ≡
(
eiϕ1 σ̂

(1)
x(z) ± eiϕ2 σ̂

(2)
x(z)

)
/
√

2. The Hamiltonian

in Eq. (6) describes two bosonic modes, one symmetric and one antisymmetric with corre-

sponding frequencies ωS = ωc + J and ωA = ωc − J , both interacting with two qubits. We
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now diagonalise numerically Ĥ, indicating the resulting energy eigenvalues and eigenstates

as ωi and |Ei〉, with i = 0, 1, . . . ,. We label the states such that ωk > ωj for k > j. In

our analysis, we use the notation |NA,NS, q1, q2〉 = |NA〉
⊗ |NS〉

⊗ |q1〉
⊗ |q2〉 for the eigen-

states |Ei〉, where q = {g, e} denotes the qubit ground or excited states, respectively, and

|NS(A)〉 = {|0〉, |1〉, |2〉, . . . } represents the Fock states with a photon occupation number N

in the symmetric (antisymmetric) normal mode.

We set the normalized hopping rate and the light-matter coupling strength as J/ωc = 0.05

and η ≡ |g|/ωc = 0.3, respectively. Moreover, we set the phases for the cavity-qubit coupling

strengths to ϕ1 = 0 and ϕ2 = π, respectively. This specific phase difference does not

affect the dynamics, however it will play an important role for the case of three coupled

cavities (see Sect. II B). We also consider a mixing angle θ = π/6, such that both the

longitudinal and transverse contributions to the interaction have comparable values. Figure

2(a) shows the energy differences ωi0 = ωi − ω0 for the lowest-energy states as a function of

the normalized qubit frequency ωq/ωc, which can be experimentally tuned by changing the

external magnetic flux acting on the qubit. We observe that, when ωq ' ωA/2, the spectrum

displays an avoided-level crossing between the states |E3〉 and |E4〉. It is worth noticing that

the resonance condition is quite different from the expected one, i.e., ωq = ωA/2, because

ωq and ωA are bare resonance frequencies of the matter and light components. The actual

physical frequencies are significantly dressed by the interaction (see, e.g., [33, 38, 40, 44, 120]).

Note that, just outside this avoided-level crossing region, one level remains flat as a function

of the qubit frequency with energy ω ≈ ωA, while the other shows a linear behaviour with

ω ≈ 2ωq. The origin of this splitting is due to the hybridization of the states |1A, 0S, g, g〉

and |0A, 0S, e, e〉. When the splitting is at its minimum, these states are well approximated

by the superposition states

|E3(4)〉 = (|1A, 0S, g, g〉 ± |0A, 0S, e, e〉) /
√

2 . (7)

The (numerically calculated) normalized minimum splitting has a value 2Ωeff/ωc = 16×10−3,

where Ωeff is the effective coupling rate between two qubits and one photon. It is important to

observe that the coherent coupling between these two states would not be allowed within the

RWA, since they have a different number of excitations. Moreover, as the excitation number

difference between the two states is odd, parity-symmetry breaking (θ 6= 0) is required in

order to observe this splitting. As reported in Ref. [38], the effective coupling between the
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Figure 2. (a) Energy differences ωi0 = ωi − ω0 for the lowest-energy dressed states of Ĥ as a

function of the normalized qubit frequency ωq/ωc (which can be experimentally tuned by changing

the external flux bias acting on the qubits). We consider a normalized coupling rate η ≡ |g|/ωc = 0.3

between the qubit and the resonators, while the normalized photon hopping rate between the two

resonators is J/ωc = 0.05. The phases for the cavity-qubit coupling strengths are set to ϕ1 = 0

and ϕ2 = π, respectively, and the longitudinal interaction coupling term is included by considering

a mixing angle θ = π/6. (b) Enlarged view of the inset in (a). When the cavity-qubit coupling

strengths have opposite phases (ϕ1 = 0, ϕ2 = π), the avoided-level crossing (red solid curves)

results from the coupling between the states |1A, 0S , g, g〉 and |0A, 0S , e, e〉 due to the presence

of counter-rotating terms in the system Hamiltonian. The energy splitting reaches its minimum

at ωq ' ωA/2. The crossing between the states |0A, 1S , g, g〉 and |0A, 0S , e, e〉 at ωq ' ωS/2

indicates that the qubits do not couple with the symmetric normal mode. The complementary

result is obtained when the coupling strengths have the same phase (blue dashed curves). In this

case, this splitting at ωq ' ωA/2 disappears, while the energy spectrum displays an avoided-level

crossing around ωq ' ωS/2, arising from the coherent coupling between the states |0A, 1S , g, g〉 and

|0A, 0S , e, e〉.
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states |E3〉 and |E4〉 can be analytically described by an effective Hamiltonian. Moreover,

this coherent coupling is not direct, but can only occur via virtual transitions which are

enabled by the counter-rotating terms in Ĥ. In this way, the initial state |1A, 0S, g, g〉

evolves to virtual intermediate states that eventually do not conserve the energy, but it

finally evolves to a real energy-conserving state, i.e., |0A, 0S, e, e〉. It is interesting to observe

that, for ωq ' ωS/2, the energy spectrum displays a crossing between the levels |0A, 1S, g, g〉

and |0A, 0S, e, e〉, showing that the two qubits do not interact with the symmetric normal

mode of the coupled cavities. Indeed, if the coupling strengths g1 and g2 have opposite

signs it can be shown that all the possible intermediate virtual transitions for the process

|0A, 1S, g, g〉 → |0A, 0S, e, e〉, induced by the interaction term proportional to X̂S, lead to an

intermediate state proportional to |e〉〈e| − |e〉〈e|, thus giving a vanishing contribution.

Figure 2(b) shows the comparison of the avoided-level crossing behavior for the cases

ϕ1 = 0, ϕ2 = π (solid red curves) and ϕ1 = ϕ2 = 0 (dashed blue curves). It can be observed

that the two choices lead to complementary results. Indeed, when the two coupling strengths

have same signs, the splitting at ωq ' ωA/2 disappears, while we observe the presence of

an avoided-level crossing around ωq ' ωS/2 arising from the coherent coupling between

the states |0A, 1S, g, g〉 and |0A, 0S, e, e〉. This result shows that, depending on the relative

signs of the coupling strengths, for N = 2 the simultaneous excitation of two qubits placed

in different resonators can be achieved by coupling the qubits either to the symmetric or

antisymmetric normal mode.

In order to fully understand and characterise this process, we fix the qubit frequency at

the value where the splitting, as shown in Fig. 2(a), between the energy levels corresponding

to the eigenstates |E3〉 and |E4〉 is minimum and consider the system initially prepared in

the one-photon state |1A〉 ≡ |1A, 0S, g, g〉. As we will see later, the preparation of this state

can be experimentally achieved by sending an appropriate electromagnetic Gaussian pulse

to the first cavity.

Figure 3(a) displays the numerically calculated time evolution of the occupation proba-

bilities P (k)(t) ≡ 〈P̂k〉, with P̂k = |k〉〈k|, for the one-photon states |1A〉 (i.e., one photon in

the antisymmetric normal mode) and |11〉 (one photon in the first cavity), together with the

probability P(ee)(t) of having both qubits simultaneously excited. In terms of the dressed
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Figure 3. (a) Time evolution of the occupation probabilities P (k)(t) ≡ 〈P̂k〉, with P̂k = |k〉〈k|,

for the single-photon states |1A〉 (red solid curve) and |11〉 (blue dot-dashed curve), together with

the probability P(ee)(t) of having both qubits simultaneously excited (black dashed curve) for the

system initially prepared in the state |1A〉 ≡ |1A, 0S , g, g〉. Vacuum Rabi oscillations showing a

reversible excitation exchange process between the qubits and the resonators are clearly visible.

The joint absorption of an antisymmetric cavity photon by the two qubits is achieved after a

Rabi half period Ωeff t = π/2, with the excitation probability P(ee) approaching one, even if they

are placed in different resonators. Here, the effects of dissipation have not been included. (b)

Temporal evolution of the same occupation probabilities P (k)(t) considered in (a), but after the

arrival of a narrow Gaussian pulse exciting the first cavity when the system is initially prepared in

its ground state. The amplitude and the central frequency of the pulse are A/ωc = 4.2× 10−2 and

ωd = (ω30 + ω40)/2, respectively.
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energy eigenstates of the system, these states can be expressed, respectively, as

|1A〉= (|E3〉+ |E4〉) /
√

2 , (8)

|11〉 =
(
|E3〉+ |E4〉+

√
2 |E5〉

)
/2 , (9)

|e, e〉= (|E3〉 − |E4〉) /
√

2 , (10)

where, for concision, we omitted in the last equation the photonic states, which are intended

to be in the ground state. Here, |e, e〉 stands for |0A, 0S, e, e〉. As expected, since |1A〉 =

(|11, 02〉 − |01, 12〉) |g, g〉/
√

2, at the initial instant of time P(1A)(0) = 1, while P(11)(0) = 1/2.

As time evolves, vacuum Rabi oscillations, showing the reversible excitation exchange process

between the qubits and the resonators, are clearly visible. Specifically, we observe that,

after a Rabi half period Ωeff t = π/2, one photon in the antisymmetric cavity mode is jointly

absorbed by the two qubits, even if they are placed in different resonators. Moreover, the

excitation probability P(ee) approaches one, showing that the multiatom absorption of a

single photon can essentially be deterministic. Notice that, in order to provide a clearer

description of this counter-intuitive excitation mechanism, the effects of dissipation have not

been taken into account. This approximation becomes experimentally reasonable when the

system loss rates are smaller than the frequency splitting between the levels involved at the

avoided-level crossing, so that the first Rabi cycles are almost not affected by dissipation.

A similar oscillating dynamics can be obtained for the system initially prepared in the state

|e, e〉. In this case, the two qubits will jointly and coherently release their energy to the

cavity. The time evolution of the system will be as shown in Fig. 3(a), but with the initial

time t = π/(2Ωeff).

As mentioned before, instead of starting from the ideal initial state |1A〉, we now consider

a more realistic case where the system is initially in its ground state |E0〉 = |0A, 0S, g, g〉

and study a direct excitation of the first cavity by an electromagnetic Gaussian pulse. The

corresponding driving Hamiltonian is

Ĥd = E(t) cos(ωd t)X̂1 , (11)

where X̂1 = X̂S + X̂A and

E(t) = A exp
[
−(t− t0)2/(2τ 2)

]
/(τ
√

2π) , (12)

with A and τ the amplitude and the standard deviation of the Gaussian pulse, respectively.

The central frequency of the pulse has been chosen to be in the middle of the two split
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transition energies ωd = (ω30 + ω40)/2. The pulse bandwidth must be sufficiently narrow in

order to ensure that only the states |E3〉 and |E4〉 are excited, so that the pulse can directly

excite the state |1A〉 = (|E3〉+ |E4〉) /
√

2, and the symmetric mode |1S〉 is not excited. This

corresponds to a pulse duration ∼ τ significantly larger than the transfer time ∼ π/(2J)

of photons from one cavity to the other. In this way, even if the system is fed through a

single cavity only, both cavities are actually excited simultaneously without any causality

issue, because the excitation time τ is larger than the transfer time ∼ π/(2J). With this

excitation scheme, the resulting dynamics is very similar to the case of two atoms in a single

cavity [38].

Figure 3(b) shows the dynamics of the occupation probabilities P(1A), P(11), and P(ee)

after the arrival of the π-like Gaussian pulse initially exciting the first cavity described by the

Hamiltonian in Eq. (11). We observe that, since the pulse time width is not much narrower

than the Rabi period, after the arrival of the pulse, the antisymmetric normal mode is not

completely populated and the excitation is partially transferred to the qubits. Therefore, the

first peak of the antisymmetric normal mode occupation probability in Fig. 3(b) is slightly

lower than the second one. Once the antisymmetric mode is completely populated, the

dynamics of vacuum Rabi oscillations, showing the reversible excitation exchange between

one photon in the antisymmetric normal mode and the two qubits, is the same as in Fig. 3(a).

It is also worth noticing that, in the absence of any system nonlinearity as, e.g., in the case

of a system empty (without atoms) resonators, coherent excitation, as described by the

Hamiltonian in Eq. (11), would give rise to a coherent intra-cavity field, not to a single-

photon Fock state. However, the very strong interaction of the cavity array with the two

atoms induces an anharmonicity to the level structure which is able to prevent the resonant

excitation of higher-photon states (photon-blockade, see, e.g., [121, 122]). In the case of lower

atom-cavity coupling strengths, the photonic system could be complemented by additional

Kerr nonlinearities, which are able to induce photon blockade [38].

The simultaneous excitation process of the two qubits with a single photon can also be

achieved by initially exciting only the first cavity. This can be realized experimentally by

feeding the cavity with a fast Gaussian pulse (with respect to the transfer time between the

cavities). Specifically, in order to completely populate the first cavity before the excitation

is transferred to the second one, the pulse bandwidth Γ = π/τ has to be much larger than

the energy splitting Ω = 2J between the two cavity normal modes, i.e., Γ� Ω. Figure 4(a)
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shows the time evolution of the occupation probabilities P(11)(t), P(12)(t), and P(ee)(t) with

the system initially prepared in the state

|ψ1〉 = (|1A, 0S, g, g〉+ |0A, 1S, g, g〉) /
√

2 = |11〉 . (13)

Besides the expected photon hopping between the two weakly-coupled cavities, as the time

evolves, we observe that this excitation-transfer process is accompanied by the simultaneous

excitation of the two qubits. However, in contrast to the previous case, where the probability

for the qubits to be simultaneously excited reached one, here we observe the maximum prob-

ability P(ee) = 1/2 at t = π/(2Ωeff). This difference can be explained by considering that

a direct excitation of the first cavity only corresponds to an equal weight superposition of

both the symmetric and antisymmetric normal modes (see Eq. (13)), each of them carrying

half of the total initial excitation. However, since the qubits do not interact with the sym-

metric mode, only the antisymmetric excitation contribution can be transferred to the two

qubits, resulting into a maximum joint qubit excitation probability P(ee) = 1/2. This result

indicates that the simultaneous excitation of two qubits with one photon is still possible, but

the qubits cannot be excited with probability P(ee) = 1. Moreover, the corresponding values

P(11) = P(12) = 1/4 for the cavity occupation probabilities can be explained by directly

following the dynamics of the system. Indeed we observe that, when the system is prepared

in the superposition state |ψ1〉, then the state |0A, 1S, g, g〉 evolves freely, as an eigenstate

of Ĥ. On the contrary, since the qubits are coupled with the antisymmetric normal mode,

once again we observe the coherent energy exchange process |1A, 0S, g, g〉 ↔ |0A, 0S, e, e〉 so

that at t = π/(2Ωeff) the system is in the state

|ψ2〉 = (|0A, 0S, e, e〉+ |0A, 1S, g, g〉) /
√

2 . (14)

In terms of the energy eigenstates of the Hamiltonian of the uncoupled system (J = g = 0),

the state |ψ2〉 can be expressed as

|ψ2〉 = 1√
2
|01, 02, e, e〉+ 1

2 (|11, 02, g, g〉+ |01, 12, g, g〉) , (15)

thus explaining the observed values, in Fig. 4(a), for the occupation probabilities P(11),P(12)

and P(ee).

Finally, even for this case we consider the system initially prepared in its ground state

and study the system dynamics after the arrival of a Gaussian pulse exciting the first cavity
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Figure 4. (a) Time evolution of the occupation probabilities P(11)(t) (red solid curve), P(12)(t)

(blue dotted curve), and P(ee)(t) (black dot-dashed curve) with the system initially prepared in the

one-photon state |ψ1〉 given in Eq. (13). As the time evolves, the expected photon hopping between

the two weakly-coupled cavities is accompanied by the simultaneous excitation of the two qubits

by a single-cavity photon. The maximum probability P(ee) = 1/2 is achieved at t = π/(2Ωeff). The

corresponding values P(11) = P(12) = 1/4 for the cavity occupation probabilities can be explained

considering that at t = π/(2Ωeff) the system is in the state |ψ2〉 given in Eq. (15). Here, the

effects of losses have not been taken into account. (b) Temporal evolution of the same occupation

probabilities P (k)(t) considered in (a), after the arrival of a broad Gaussian pulse exciting the first

cavity when the system is initially prepared in its ground state. The amplitude and the central

frequency of the pulse are A/ωc = 0.27 and ωd ' (ω̄34 + ω50)/2, with ω̄34 = (ω30 + ω40)/2.

and described by Eq. (11). Unlike the previous case, in order to excite the states |E3〉,

|E4〉 and |E5〉 we need to apply a broad-bandwidth Gaussian pulse with central frequency

ωd ' (ω̄34 + ω50)/2, where ω̄34 = (ω30 + ω40)/2. The temporal evolution of the occupation
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probabilities, after the arrival of the Gaussian pulse feeding the first cavity, is shown in

Fig. 4(b). It is interesting to observe that, in the absence of the qubits, the excitation

would simply be transferred from one cavity to the another. Indeed, the simultaneous

excitation process can take place because, except for some specific instants of time, in which

the excitation is totally localized in one cavity only, the field is delocalized over the two

adjacent cavities. For this reason, both qubits feel the electric field simultaneously reaching

the maximum excitation probability when the field is equally distributed between the two

cavities, even if they are detuned from the cavity mode.

The causal mechanisms underlying the possibility for a single photon to be jointly ab-

sorbed by the two qubits under different excitation processes can be explained by considering

a simpler system constituted by the two weakly coupled cavities only. If the system is ini-

tially prepared in the state |11, 02〉, the complete population transfer |11, 02〉 → |01, 12〉 will

take place after a period T = π/(2J). From an experimental point of view, if we consider the

system to be prepared in its ground state |01, 02〉, the direct excitation of the antisymmetric

normal mode |−〉 = (|11, 02〉 − |01, 12〉) /
√

2 can be realized by feeding the first cavity with a

Gaussian pulse whose bandwidth Γ has to be smaller than the energy splitting between the

two normal modes, i.e., Γ� 2J . Since in this case for the temporal pulse width δt� T , the

photon can travel back and forth between the two cavities before the normal mode becomes

fully populated and the electric field always results delocalized over the whole cavity array.

In contrast to this, the realization of a localized cavity mode (e.g., the state |11, 02〉) can be

achieved by feeding the first cavity with a fast optical Gaussian pulse whose bandwidth has

to be large enough to excite the superposition state (|+〉+ |−〉) /
√

2. The condition Γ� 2J

ensures that, being δt � T , the pulse duration is short enough to localise the electric field

in the first cavity. Then, due to the cavity-cavity interaction the excitation-transfer process

will take place and the electric field will be completely delocalized over the two cavities only

at the instants of time when P(11) = P(12) = 1/2.

B. Three cavities, two qubits and one photon

Here we extend the previous analysis to a more complex system consisting of an array of

three weakly-coupled cavities, where the two end cavities ultrastrongly interact with a single

qubit while the central cavity is empty [as shown in Fig. 5(a)]. The Hamiltonian describing
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the system is

Ĥ =
3∑

n=1
ω(n)

c â†nân +
2∑

n=1

[
ωq σ̂

(n)
+ σ̂

(n)
− + J

(
â†nân+1 + â†n+1ân

)
+ |g| eiϕ(2n−1)X̂(2n−1)

(
cos θ σ̂(n)

x + sin θ σ̂(n)
z

)]
, (16)

where the normalized hopping rate and light-matter coupling strength are, respectively,

J/ωc = 0.05 and η ≡ |g|/ωc = 0.3, and the presence of the longitudinal interaction term

is taken into account by considering a mixing angle θ = π/6. Due to the small value of

the normalized hopping rate J/ωc, we apply the RWA to the cavity-cavity interaction term.

Moreover, we consider the case in which the two end cavities are resonant (ω(1)
c = ω(3)

c = ωc),

while the central cavity can be detuned by an amount ∆. The interaction between these

three cavities is described by the Hamiltonian

Ĥ ′C = ωc (â†1â1 + â†3â3) + (ωc + ∆) â†2â2 + J
2∑

n=1
(â†nân+1 + â†n+1ân) , (17)

which produces three normal modes: an antisymmetric flat state, and two symmetric modes

whose energy splitting is Ω =
√

8J2 + ∆2. The transformation, which diagonalizes Ĥ ′C , can

be written in matrix form:
âS1

âA

âS2

 =


2J/N−

(
∆− Ω

)
/N− 2J/N−

−1/
√

2 0 1/
√

2

2J/N+
(
∆ + Ω

)
/N+ 2J/N+



â1

â2

â3

 , (18)

with N± = [8J2 + (∆± Ω)2]1/2
. In Eq. (18), âA and âS1(S2) are, respectively, the bosonic

annihilation operators for the antisymmetric state and the two symmetric normal modes

whose corresponding frequencies are ωA = ωc and ωS1,2 = (2ωc + ∆∓ Ω) /2.

The effect of the detuning on the spatial profile of the three normal modes is displayed

in Fig. 5(b). We observe that, unlike the antisymmetric mode, which is not affected by the

detuning, the spatial profile of the two symmetric normal modes changes significantly with

increasing values of ∆, and also exhibits an opposite behavior. Specifically, while the lower-

energy mode âS1 becomes totally delocalized in the end cavities, the higher-energy mode âS2

completely localizes in the central cavity. This preliminary analysis suggests that the choice

of coupling the two qubits to the antisymmetric mode, which is both detuning-independent

and delocalized in the two end cavities where the qubits are placed, is the best strategy for

achieving the desired effect of simultaneous excitation of two qubits with a single photon.
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!q !q

-1.0

-0.5

0

0.5

1.0

-6-4-20246
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âA
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Figure 5. (a) Sketch of an array of three optical resonators weakly coupled with their nearest

neighbours. The two resonant end cavities ultrastrongly interact with a single qubit with transition

frequency ωq, while the central cavity is empty and can be detuned by an amount ∆. The photon

hopping rate between the three resonators and the light-matter coupling strength are indicated with

J and g, respectively. (b) Density plot of the transformation matrix diagonalizing Ĥ ′C , evaluated

for different values of the normalized detuning ∆/ωc for J/ωc = 0.05 and η ≡ |g|/ωc = 0.3. While

the antisymmetric normal mode is not affected by the detuning, the spatial profile of the two

symmetric normal modes changes significantly with increasing values of ∆. Specifically, for higher

values of the detuning, the lower-energy mode âS1 becomes totally delocalized in the end cavities,

while the higher-energy mode âS2 is completely localized in the central cavity.

Focusing on the resonant case ∆ = 0, the Hamiltonian of Eq. (16) can be conveniently

rewritten in terms of the normal mode operators as

Ĥ′ =
∑

k∈[S1,S2,A]
ωk â

†
kâk + ωq

2∑
n=1

σ̂
(n)
+ σ̂

(n)
−

+ |g|
[

1√
2
(
X̂S2 − X̂S1

) (
cos θ Φ̂+

x + sin θ Φ̂+
z

)
− X̂A

(
cos θ Φ̂−x + sin θ Φ̂−z

)]
, (19)

where X̂A ≡ â†A + âA, X̂S1(S2) ≡ â†S1(S2) + âS1(S2), and Φ̂±x(z) ≡
(
eiϕ1 σ̂

(1)
x(z) ± eiϕ3 σ̂

(2)
x(z)

)
/
√

2.

Figure 6(a) shows the energy differences ωi0 = ωi − ω0 for the lowest-energy eigen-

states |Ei〉 (with i = 0, 1, . . . ) of Ĥ′, numerically calculated as a function of the normal-

ized qubit frequency ωq/ωc by setting the phases of the two cavity-qubit coupling strengths

to ϕ1 = 0 and ϕ3 = π, respectively. Here we use the notation |NS1 ,NS2 ,NA, q1, q2〉 =

17



|NS1〉
⊗ |NS2〉

⊗ |NA〉
⊗ |q1〉

⊗ |q2〉 for the eigenstates |Ei〉, where q = {g, e} denote the qubit

ground or excited states, respectively, and |Nk〉 = {|0〉, |1〉, |2〉, . . . }, with k ∈ [S1, S2, A], rep-

resents the Fock state with photon occupation Nk in the corresponding normal mode.

Note that the energy spectrum presents a more complicated structure with respect to

the case of the two cavity-qubit array. Specifically, two energy-level crossings, both in-

volving the state |0S1 , 0S2 , 0A, e, e〉 (which displays a linear behavior with ω ≈ 2ωq), can

be observed in correspondence to the qubit frequencies ωq ' ωS1/2 and ωq ' ωS2/2. The

other states involved in the two energy-level crossings are, respectively, |1S1 , 0S2 , 0A, g, g〉

and |0S1 , 1S2 , 0A, g, g〉, indicating that when the cavity-qubit coupling strengths have oppo-

site phases, the qubits do not couple with the two symmetric normal modes. Interestingly, in

the region between these two-level crossings, an apparent additional one between the levels

|E4〉 and |E5〉 appears at ωq ' ωA/2. Actually, what appears as a crossing on this scale

turns out to be an avoided-level crossing on an enlarged view, as in Fig. 6(b). This splitting,

which has a normalized value 2Ωeff/ωc = 2 × 10−3 at its minimum, clearly originates from

the hybridization of the states |0S1 , 0S2 , 0A, e, e〉 and |0S1 , 0S2 , 1A, g, g〉. The resulting states

are well approximated by

|E4(5)〉 = (|0S1 , 0S2 , 1A, g, g〉 ± |0S1 , 0S2 , 0A, e, e〉)/
√

2 . (20)

It is important to observe that, similarly to the two cavity-qubit array case, the coherent

coupling between these two states would neither be allowed within the RWA, nor in the

absence of the longitudinal interaction term (θ = 0). Moreover, the states |0S1 , 0S2 , 0A, e, e〉

and |0S1 , 0S2 , 1A, g, g〉 do not couple directly, but the process occurs via intermediate energy

non-conserving processes enabled by the counter-rotating terms in Ĥ′. It is interesting to

observe that, when the coupling strengths are opposite in phase, all the possible intermedi-

ate virtual transitions for the process |0S1 , 0S2 , 1A, g, g〉 → |0S1 , 0S2 , 0A, e, e〉 are induced by

the interaction term proportional to X̂A, while the term proportional to
(
X̂S2 − X̂S1

)
gives

vanishing contributions. The choice of same coupling strength phases (ϕ1 = ϕ3) would lead

to the complementary situation with the two qubits decoupled from the antisymmetric mode

and simultaneously interacting with the two symmetric modes âS1 and âS2 . In this case, the

simultaneous excitation of the two qubits with a single photon can occur via two different

processes (|1S1 , 0S2 , 0A, g, g〉 → |0S1 , 0S2 , 0A, e, e〉 and |0S1 , 1S2 , 0A, g, g〉 → |0S1 , 0S2 , 0A, e, e〉).

However, since the symmetric normal modes are mainly localized in the central empty cav-

18



0.3 0.4 0.5 0.6 0.7 0.80

0.5

1

1.5

(a) 

0.55 0.6 0.65 0.7
0.95

1

1.05

1.10

1.15

(b) 

Figure 6. Energy differences ωi0 = ωi−ω0 for the lowest-energy dressed states of H′ as a function of

the normalized qubit frequency ωq/ωc in the absence of detuning (∆ = 0). We set the normalized

qubit-resonator coupling rate and the inter-cavity photon hopping rate to η ≡ |g|/ωc = 0.3 and

J/ωc = 0.05, respectively. The phases for the cavity-qubit coupling strengths are ϕ1 = 0 and

ϕ3 = π, while the longitudinal interaction coupling term is included by considering a mixing angle

θ = π/6. (b) Enlarged view of the inset in (a). When the cavity-qubit coupling strengths are

opposite in phase (ϕ1 = 0, ϕ3 = π), the avoided level crossing results from the coupling between

the states |0S1 , 0S2 , 1A, g, g〉 and |0S1 , 0S2 , 0A, e, e〉, due to the presence of counter-rotating terms in

the system Hamiltonian. The energy splitting reaches its minimum at ωq ' ωA/2. The presence

of two energy-level crossings corresponding to the qubit frequencies ωq ' ωS1/2 and ωq ' ωS2/2,

both involving the state |0S1 , 0S2 , 0A, e, e〉, indicates that the two qubits do not couple with the two

symmetric normal modes.
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ity, the energy splittings of the avoided-level crossings between these states, as well as the

corresponding effective couplings, are much smaller.

1. Dynamics after exciting the antisymmetric mode

In order to fully understand the excitation transfer between a single photon and two

qubits in a three cavity-qubit array, we now study the dynamics of the system initially

prepared in the one-photon state |1A〉 ≡ |0S1 , 0S2 , 1A, g, g〉, fixing the qubit frequency at the

value where the splitting in Fig. 6(b) between levels |E4〉 and |E5〉 is minimum. Moreover,

for the sake of simplicity, we consider the system loss rates to be significantly smaller than

the frequency splitting between the levels involved in the avoided-level crossing, so that the

effect of dissipation can be neglected.
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Figure 7. (a) Time evolution of the occupation probabilities P (k)(t) ≡ 〈P̂k〉, with P̂k = |k〉〈k|, for

the one-photon states |1A〉 (red solid curve) and |11〉 (blue dot-dashed curve), together with the

probability P(ee)(t) of having both qubits simultaneously excited (black dashed curve). Here, the

system is initially prepared in the one-photon state |1A〉 ≡ |0S1 , 0S2 , 1A, g, g〉 and in the absence

of detuning (∆ = 0). As the times evolves, the excitation is progressively transferred to the two

qubits at the same time, until the maximum simultaneous qubit excitation (P(ee) = 1) by a single

photon is reached at t = π/(2Ωeff). (b) Temporal dynamics of the occupation probabilities P (11)

(blue solid curve), P (12) (green dashed curve) and P (13) (red dot-dashed curve), together with

the probability P(ee) (black dashed curve) of having both qubits simultaneously excited when the

system is initially prepared in the one-photon state |ψ1〉 = |11〉 of the first resonator with ∆ = 0.

(c) Temporal dynamics of the same occupation probabilities P (k)(t) considered in (b) but in the

presence of the detuning ∆/ωc = 0.5.
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The numerically calculated time evolution of the occupation probabilities P (k)(t) ≡ 〈P̂k〉,

with P̂k = |k〉〈k|, for the one-photon states |1A〉 (a single photon in the antisymmetric

normal mode), |11〉 and |13〉 (a single photon in the first and third cavities, respectively),

together with the probability P(ee)(t) of having both qubits simultaneously excited, are dis-

played in Fig. 7(a). As expected, P(1A)(0) = 1 at the initial instant of time, and since

|1A〉 = (|01, 02, 13〉 − |11, 02, 03〉) /
√

2, we observe that the end cavities are equally popu-

lated
[
P(11)(0) = P(13)(0) = 1/2

]
, while the central cavity is empty

[
P(12)(0) = 0

]
. As time

evolves, the excitation is progressively transferred to the two qubits at the same time, until

the maximum simultaneous qubit excitation [with P(ee)(0) = 1] is reached at t = π/(2Ωeff).

It is interesting to observe that, since we are exciting the antisymmetric mode, the central

cavity remains empty during the whole process. This fact remains valid even if the central

cavity is detuned (∆ 6= 0), so that the system displays the same dynamics in the non-zero

detuning case, the only difference being that the simultaneous excitation of the two qubits

is achieved at a different instant of time.

The excitation of the antisymmetric normal mode, which is the most effective way to

achieve the desired effect, can be experimentally achieved by sending a suitable narrow

Gaussian pulse to the first cavity, whose central frequency of the pulse has to be chosen to be

in the middle of the two split transition energies ωd = (ω40+ω50)/2. For the sake of simplicity,

here we do not present numerical calculations for the dynamics of the system excited by a

Gaussian pulse, since the results would not add any additional physical information.

2. Dynamics after exciting the first cavity

We now turn to the study of the system dynamics when, instead of exciting the antisym-

metric mode, we directly excite only the first cavity. Unlike the previous case, this process

strongly depends on the detuning ∆.

The dynamics of the occupation probabilities P(k) for a three coupled cavity-qubit array

system initially prepared in the one-photon state |11〉 can be studied for arbitrary values of

the detuning ∆ by using a semi analytical approach. Choosing the energy eigenstates |Ej〉

of Ĥ′ as basis, and considering that only the states |E3〉, |E4〉, |E5〉, and |E6〉 are involved in

the process, the time evolution of the initial state |11(t)〉 in the Schrödinger picture can be
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written as:

|11(t)〉 =
6∑

j=3
cj e
−iωjt|Ej〉, (21)

where ωj are the numerically evaluated eigenvalues and the coefficients cj, which depend

on J and ∆, are given by the elements of the transformation matrix in Eq. (18). The time

evolution of the occupation probability P(k)(t) for a generic state |k〉 =
6∑

j=3
dj|Ej〉 are simply

given by:

P(k)(t) = |〈k|11(t)〉|2 =

∣∣∣∣∣∣
6∑

j=3
cjdj e

−iωjt

∣∣∣∣∣∣
2

. (22)

Figure 7(b) shows the time evolution of the occupation probabilities P(11)(t), P(12)(t),

P(13)(t), and P(ee)(t) for the resonant case ∆ = 0, when the system is initially prepared

in the one-photon state

|ψ1〉 = (|0S1 , 1S2 , 0A, g, g〉 − |1S1 , 0S2 , 0A, g, g〉) /2− |0S1 , 0S2 , 1A, g, g〉/
√

2 = |11〉 . (23)

As the time evolves, we observe that the excitation, continuously propagating between the

three cavities, is progressively transferred to both qubits at the same time, even if they

are detuned from the central cavity. We observe that initially the system dynamics is

not affected by the presence of the qubits and the system behaves like an array of three

weakly-coupled resonant cavities. Once the excitation starts to be transferred to the qubits,

the system undergoes a more complex dynamics and the probability for the qubits to be

simultaneously excited reaches its maximum P(ee) = 1/2 at t = π/(2Ωeff). As expected,

at this instant of time the electric field is completely delocalized only in the end cavities

with P(11) = P(13) = 1/4, while the central cavity is depopulated. This result can be

easily understood by considering that, after the system is prepared in the state |ψ1〉, the

superposition (|0S1 , 1S2 , 0A, g, g〉 − |1S1 , 0S2 , 0A, g, g〉) /2 evolves freely since the qubits are not

coupled to the symmetric modes.

In contrast to this, due to the interaction between the qubits and the antisymmetric mode,

the above-described coherent-energy-exchange process |0S1 , 0S2 , 1A, g, g〉 → |0S1 , 0S2 , 0A, e, e〉

takes place so that at t = π/(2Ωeff) the system will be in the state

|ψ2〉 = (|0S1 , 1S2 , 0A, g, g〉 − |1S1 , 0S2 , 0A, g, g〉) /2− |0S1 , 0S2 , 0A, e, e〉/
√

2 . (24)

The observed values for the occupation probabilities P(k) in Fig. 7(b) can be explained by

considering that, in terms of the energy eigenstates of the Hamiltonian of the uncoupled
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system (J = g = 0), this state can be expressed as

|ψ2〉 = (|11, 02, 03, g, g〉+ |01, 02, 13, g, g〉) /2− |01, 02, 03, e, e〉/
√

2 . (25)

Finally, in Fig. 7(c) we present numerical results for the dynamics of the system initially

prepared in the state |ψ1〉 for ∆/ωc = 0.5. In this case, the excitation of the first cavity

can be obtained by exciting a superposition of the lowest-energy symmetric mode and the

antisymmetric mode [see Fig. 5(b)]. This could be experimentally realized by sending a

suitable broad Gaussian pulse to the first cavity, able to excite the energy levels |E3〉, |E4〉,

|E5〉 and |E6〉 simultaneously.

We observe that the system dynamics displays a different trend with respect to the

resonant case. Indeed, due to the strong detuning, the central cavity acts like a high-

potential barrier and the excitation is transferred back and forth via photon tunneling only

between the end cavities, with the system effectively behaving like a two coupled cavity-

qubit array. During the whole process, the central cavity remains very low-populated and

the excitation is progressively transferred to the qubits, and the maximum simultaneous

excitation probability P(ee) = 1/2 is reached at t = π/(2Ωeff), where Ωeff/ωc = 4.5× 10−4 is

the effective coupling for ∆/ωc = 0.5 between two qubits and a single photon.

The processes described here could be experimentally observed by placing two supercon-

ducting artificial atoms at opposite ends of an array of capacitively-coupled superconducting

waveguides. These anomalous multiatom excitation and emission processes can find appli-

cations for the development of novel quantum technologies for quantum information and

communication as, for example, the realization of new effective methods for quantum infor-

mation transfer between photons and qubits in quantum networks.

III. CONCLUSIONS

When the light-matter coupling strength increases, the vacuum fluctuations of the elec-

tromagnetic field become able to efficiently induce virtual transitions, replacing the role of

the intense applied fields in nonlinear optics [55, 56, 114]. In this way, higher-order pro-

cesses involving counter-rotating terms can create an effective coupling between two states

of a system with different numbers of excitations. One of the most interesting examples

is the process where a single photon in an electromagnetic resonator can jointly excite two
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atoms interacting with the same resonator. We have investigated this intriguing nonlinear

optical process in the case where each of the two atoms is coupled to a distinct resonator.

Specifically we studied: (i) the case of two coupled resonators, each of them interacting

with a single atom, and (ii) the case of two resonator-atom systems weakly coupled through

a central resonator (resonant or detuned with respect to the other two). We studied the

dynamics of these systems under different excitation conditions, showing that a coherent

energy transfer between a single photon and two spatially separated atoms can still occur

with a probability approaching one, under specific excitation conditions.

The results obtained provide interesting insights into subtle causality issues underlying

the simultaneous excitation of two-level systems placed in distant resonators. The processes

described here could be experimentally realized in state-of-the-art circuit QED systems. It

would be interesting and useful for applications to extend these studies to the cases of spa-

tially separated atomic ensembles [118], and distant qubits coupled to open waveguides [123].

Moreover, further insights on the processes here analysed can be gained by considering two

or more spatially separated atoms in a multimode cavity [119]. It would also be interesting

to extend the description of other vacuum-boosted nonlinear optical processes in the USC

regime [40, 114], including coupled and/or multi-mode resonators.
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