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Proposal to test quantum wave-particle superposition on
massive mechanical resonators
Wei Qin1,2, Adam Miranowicz 1,3, Guilu Long4,5,6, J. Q. You2,7 and Franco Nori 1,8

We present and analyze a proposal for a macroscopic quantum delayed-choice experiment with massive mechanical resonators. In
our approach, the electronic spin of a single nitrogen-vacancy impurity is employed to control the coherent coupling between the
mechanical modes of two carbon nanotubes. We demonstrate that a mechanical phonon can be in a coherent superposition of
wave and particle, thus exhibiting both behaviors at the same time. We also discuss the mechanical noise tolerable in our proposal
and predict a critical temperature below which the morphing between wave and particle states can be effectively observed in the
presence of environment-induced fluctuations. Furthermore, we describe how to amplify single-phonon excitations of the
mechanical-resonator superposition states to a macroscopic level, via squeezing the mechanical modes. This approach corresponds
to the phase-covariant cloning. Therefore, our proposal can serve as a test of macroscopic quantum superpositions of massive
objects even with large excitations. This work, which describes a fundamental test of the limits of quantum mechanics at the
macroscopic scale, would have implications for quantum metrology and quantum information processing.
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INTRODUCTION
Wave-particle duality lies at the heart of quantum physics.
According to Bohr’s complementarity principle,1 a quantum
system may behave either as a wave or as a particle depending
on the measurement apparatus, and both behaviors are never
observed simultaneously. This can be well demonstrated via a
single photon Mach–Zehnder interferometer, as depicted in Fig. 1a.
An incident photon is split, at an input beam-splitter BS1, into an
equal superposition of being in the upper and lower paths. This is
followed by a phase shift ϕ in the upper path. At the output beam-
splitter BS2, the paths are recombined and the detection
probability in the detector D1 or D2 depends on the phase ϕ,
heralding the wave nature of a single photon. If, however, BS2 is
absent, the photon is detected with probability 1/2 in each
detector, and thus, shows its particle nature. In Wheeler’s delayed-
choice experiment,2,3 the decision of whether or not to insert BS2
is randomly made after a photon is already inside the
interferometer. The arrangement rules out a hidden-variable
theory, which suggests that the photon may determine, in
advance, which behavior, wave or particle, to exhibit through a
hidden variable.4–11 Recently, a quantum delayed-choice experi-
ment, where BS2 is engineered to be in a quantum superposition
of being present and absent, has been proposed.12 Such a version
allows a single system to be in a quantum superposition of a wave
and a particle, so that both behaviors can be observed in a single
measurement apparatus at the same time.13,14 This extends the
conventional boundary of Bohr’s complementarity principle. The
quantum delayed-choice experiment has already been implemen-
ted in nuclear magnetic resonance,15–17 optics,18–23 and

superconducting circuits.24,25 However, all these experiments
were performed essentially at the microscopic scale.
Here, as a step in the macroscopic test for a coherent wave-

particle superposition on massive objects, we propose and analyze
an approach for a mechanical quantum delayed-choice experi-
ment. Mechanical systems are not only being explored now for
potential quantum technologies,26,27 but they also have been
considered as a promising candidate to test fundamental
principles in quantum theory.28 In this manuscript, we demon-
strate that, similar to a single photon, the mechanical phonon can
be prepared in a quantum superposition of both a wave and a
particle. The basic idea is to use a single nitrogen-vacancy (NV)
center in diamond to control the coherent coupling between two
separated carbon nanotubes (CNTs).29,30 We focus on the
electronic ground state of the NV center, which is a spin S= 1
triplet with a zero-field splitting D≃ 2π × 2.87 GHz between spin
states |0〉 and |±1〉 [see Fig. 1b]. If the spin is in |0〉, the mechanical
modes are decoupled, and otherwise are coupled. Moreover, the
mechanical noise tolerated by our proposal is evaluated and we
show a critical temperature, below which the coherent signal is
resolved.

RESULTS
Physical model
We consider a hybrid system31,32 consisting of two (labelled as
k= 1, 2) parallel CNTs and an NV electronic spin, as illustrated in
Fig. 1c. The CNTs, both suspended along the x̂-direction, carry dc
currents I1 and I2, respectively, while the spin is placed between
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them, at a distance d1 from the first CNT and at a distance d2 from
the second CNT. When vibrating along the ŷ-direction, the CNTs
can parametrically modulate the Zeeman splitting of the
intermediate spin through the magnetic field, yielding a magnetic
coupling to the spin.33–37 For simplicity, below we assume that the
CNTs are identical such that they have the same vibrational
frequency ωm and the same vibrational mass m. The mechanical
vibrations are modelled by quantized harmonic oscillators with a
Hamiltonian

Hmv ¼
X
k¼1;2

�hωmb
y
kbk ; (1)

where bk (b
y
k ) denotes the phonon annihilation (creation) operator.

The Hamiltonian characterizing the coupling of the mechanical
modes to the spin is

Hint ¼
X
k¼1;2

�hgkSzqk ; (2)

where Sz= |+1〉〈+1|− |−1〉〈−1| is the z-component of the spin,
qk ¼ bk þ byk represents the canonical phonon position operator,
and gk= μBgsyzpGk/ħ refers to the Zeeman shift corresponding to
the zero-point motion yzp= [ħ/(2mωm)]

1/2. Here, μB is the Bohr
magneton, gs≃ 2 is the Landé factor, and Gk ¼ μ0Ik= 2πd2k

� �
is the

magnetic-field gradient, where μ0 is the vacuum permeability. In
order to mediate the coherent coupling of the CNT mechanical
modes through the spin, we apply a time-dependent magnetic

field

Bx tð Þ ¼ B0 cos ω0tð Þ; (3)

with amplitude B0 and frequency ω0, along the x̂-direction, to
drive the |0〉→ |±1〉 transitions with Rabi frequency

Ω ¼ μBgsB0
2
ffiffiffi
2

p
�h
: (4)

We apply a static magnetic field

Bz ¼
X
k¼1;2

�1ð ÞkdkGk ; (5)

along the ẑ-direction to eliminate the Zeeman splitting between
the spin states |±1〉.36 This causes the same Zeeman shift,

Δ ¼ Δ� þ 3Ω2

Δþ
; (6)

where Δ±= D ±ω0, to be imprinted on |±1〉, and a coherent
coupling, of strength Ω2/Δ+, between them, as shown in Fig. 1b.
We can, thus, introduce a dark state

jDi ¼ j þ 1i � j � 1ið Þ=
ffiffiffi
2

p
; (7)

and a bright state

jBi ¼ j þ 1i þ j � 1ið Þ=
ffiffiffi
2

p
; (8)

with an energy splitting ≃2Ω2/Δ+. In this case, the spin state |0〉 is
decoupled from the dark state, and is dressed by the bright state.
Under the assumption of Ω=Δ � 1, the dressing will only increase
the energy splitting between the dark and bright states to

ωq ’ 2Ω2 1
Δ
þ 1
Δþ

� �
: (9)

This yields a spin qubit with |D〉 as the ground state and |B〉 as the
exited state. The spin-CNT coupling Hamiltonian is accordingly
transformed to

Hint ’
X
k¼1;2

�hgkσxqk ; (10)

where σx= σ++ σ−, with σ−= |D〉〈B| and σþ ¼ σy�. When we
further restrict our discussion to a dispersive regime
ωq ±ωm � jgk j, the spin qubit becomes a quantum data bus,
allowing for mechanical excitations to be exchanged between the
CNTs. By using a time-averaging treatment,38,39 the unitary
dynamics of the system is then described by an effective
Hamiltonian (see Supplementary Section 1 for a detailed
derivation), Heff= Hcnt ⊗ σz, where

Hcnt ¼ 2�hωq

ω2
q � ω2

m

X
k¼1;2

g2kb
y
kbk þ g1g2 b1b

y
2 þ H:c:

� �" #
; (11)

and σz= |B〉〈B|− |D〉〈D|. The Hamiltonian Hcnt includes a coherent
spin-mediated CNT–CNT coupling in the beam-splitter form,
which is conditioned on the spin state. Here, we neglect the
direct CNT–CNT coupling much smaller than the spin-mediated
coupling, as is described in Supplementary Section 1. Further-
more, we find that the decoupling of one CNT from the spin gives
rise to a spin-induced shift of the vibrational resonance of the
other CNT. Hence, the dynamics described by Heff can be used to
implement controlled Hadamard and phase gates.

Quantum delayed-choice experiment with mechanical resonators
Let us first discuss the Hadamard gate. Having Ik= I and dk= d
gives a symmetric coupling gk= g, and a mechanical beam-splitter
coupling of strength

J ¼ 2g2ωq

ω2
q � ω2

m
: (12)

Fig. 1 a Demonstration of the wave-particle duality using a
Mach–Zehnder interferometer. A single photon is first split at the
input beam-splitter BS1, then undergoes a phase shift ϕ and finally is
observed at detectors D1 and D2. The photon behaves as a wave if
the output beam-splitter BS2 is inserted, or as a particle if BS2 is
removed. In quantum delayed-choice experiments, BS2 is set in a
quantum superposition of being present and absent, and conse-
quently, the photon can simultaneously exhibit its wave and particle
nature. b Level structure of the driven NV spin in the electronic
ground state. Here we have assumed that the Zeeman splitting
between the spin states |±1〉 is eliminated by applying an external
field. c Schematic representation of a mechanical quantum delayed-
choice experiment with an NV electronic spin and two CNTs. The
mechanical vibrations of the CNTs are completely decoupled or
coherently coupled, depending, respectively, on whether or not the
intermediate spin is in the spin state |0〉, with the dc current Ik
through the kth CNT, and the distance dk between the spin and the
kth CNT
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Unitary evolution for a time τ0= π/(4J) then leads to

b1 τ0ð Þ ¼ b1 � ib2ð Þ=
ffiffiffi
2

p
; (13)

b2 τ0ð Þ ¼ b2 � ib1ð Þ=
ffiffiffi
2

p
: (14)

For the phase gate, we can turn off the current, for example, of the
second CNT, so that g1= g and g2= 0. In this case, a dispersive
shift of ≃J is imprinted into the vibrational resonance of the first
CNT, which in turn introduces a relative phase ϕ ≃ Jτ1 after a time
τ1 under unitary evolution. Note that, here, both Hadamard and
phase gates are controlled operations conditional on the spin
state, as mentioned before. The two gates and their timing errors
are analyzed in detail in the Supplementary Section 2.
We now turn to the quantum delayed-choice experiment with

the macroscopic CNTs. We assume that the hybrid system is
initially prepared in the state

jΨii ¼ by1 � I2jvaci
� �

� jDi; (15)

where |vac〉 refers to the phonon vacuum and I k is the identity
operator for the kth CNT. After the initialization, the currents are
tuned to be Ik= I, to drive the system for a time τ0, and the
resulting Hadamard operation splits the single phonon into an
equal superposition across both CNTs. Then, we turn off I2 for a
time τ1 to accumulate a relative phase between the CNTs. While
achieving the desired phase ϕ, we turn on I2 following a spin
single-qubit rotation |D〉→ cos(φ)|0〉+ sin(φ)|D〉40–42 with φ a
rotation angle, and hold for another τ0 for a Hadamard operation.
Therefore, this Hadamard gate is in a quantum superposition of
being both present and absent. The three steps correspond,
respectively, to the input beam-splitter, the phase shifter and the
quantum output beam-splitter acting in sequence on a single
photon in the Mach–Zehnder interferometer, as shown in Fig. 1a.
The final state of the system therefore becomes

jΨif ¼ cos φð Þjparticleij0i þ sin φð ÞjwaveijDi; (16)

where

jparticlei ¼ 1ffiffiffi
2

p exp iϕð Þby1 þ iby2
h i

jvaci; (17)

jwavei ¼ 1
2

exp iϕð Þ � 1½ �by1 þ i exp iϕð Þ þ 1½ �by2
n o

jvaci; (18)

describe the particle and wave behaviors, respectively. The
coherent evolution of the system is given in more detail in
Supplementary Section 2. We find from Eq. (16) that the
mechanical phonon is in a quantum superposition of both a
wave and a particle, and thus can exhibit both characteristics
simultaneously. By applying microwave pulse sequences to tune
the rotation angle φ, an arbitrary wave-particle superposition state
can be prepared on demand. In the case of φ= 0, the single
phonon behaves completely as a particle, but as a wave for φ= π/
2. The morphing between them can also be observed by tuning
the rotation angle φ. The probability, Pk, of finding a phonon in the
kth CNT is given by

Pk ¼ 1
2
þ �1ð Þk1

2
sin2 φð Þ cos ϕð Þ; (19)

which includes two physical contributions, one from the particle
nature and the other from the wave nature. Note that the spin in a
mixed state cos2 φð Þj0ih0j þ sin2 φð ÞjDihDj is capable of reprodu-
cing the same measured statistics as in Eq. (19).11 Thus, in order to
exclude the classical interpretation and prove the existence of the
coherent wave-particle superposition, the quantum coherence
between the states |0〉 and |D〉 should be verified.19,20,24,25

Experimentally, such a verification can be implemented by
performing quantum state tomography to show all elements of
the density matrix of the spin.42

Next, we consider how to initialize and measure the mechanical
system. Initially, the NV spin needs to be in the state |D〉 (i.e., the
ground state of the spin qubit), one CNT, e.g., the first CNT, needs
to be in its single-phonon state, and the other CNT, e.g., the
second CNT, needs to be in its vacuum state. To prepare such an
initial state, we can begin with an arbitrary state ρini= ρ1 ⊗ ρ2 ⊗
ρspin, where ρk (k= 1, 2) and ρspin are the density matrices of the
kth CNT resonator and the spin, respectively. One can apply a
532 nm laser pulse to initialize the spin qubit in the state |0〉, and
then apply a microwave π/2-pulse to it, to obtain the super-
position state 1ffiffi

2
p j0i þ j � 1ið Þ, which is followed by a microwave

π-pulse to obtain the spin-qubit excited state |B〉. By using the
sideband-cooling technique,43–47 the CNT resonators can be
cooled down to their quantum ground state, i.e., the acoustic
vacuum |vac〉. For example, one can couple an auxiliary qubit with
a large spontaneous-emission rate to the CNT resonators.48 Once
the mechanical ground state is achieved, one can tune the spin-
qubit transition frequency ωq to be close to the CNT resonance
frequency ωm, such that the spin-CNT coupling is then approxi-
mately given by a Jaynes–Cummings-type Hamiltonian

Hint ’ �hg σþb1 þ σ�b
y
1

� �
: (20)

When acting for a time equal to π/(2g), such a Hamiltonian can,
with the spin qubit in the excited state |B〉, transfer a mechanical
excitation to the left CNT.49 Meanwhile, the spin qubit goes to its

ground state |D〉. The desired initial state jΨii ¼ by1 � I2jvaci
� �

�
jDi is then obtained. For the phonon number measurement, we
still need ωq≃ωm as in the initialization, but the spin qubit is
required to be in the ground state |D〉. In this situation, the Rabi
frequency between the spin and the mechanical resonator
depends on the number of phonons in the resonator.49–53 Thus
by directly measuring the occupation probability of |B〉, the
phonon number in each CNT can be obtained. The measurement
of the spin state is enabled by the different fluorescence of the
states |0〉 and |±1〉.54 To measure the state of the spin qubit, one
can first apply a microwave π pulse to map jDi ! 1ffiffi

2
p j0i � j � 1ið Þ

and jBi ! 1ffiffi
2

p j0i þ j � 1ið Þ, and then apply a microwave π/2 pulse

to map 1ffiffi
2

p j0i � j � 1ið Þ ! j0i and 1ffiffi
2

p j0i þ j � 1ið Þ ! j � 1i. By
measuring the Rabi oscillations between the states |0〉 and |−1〉
according to spin-state-dependent fluorescence,55 one can read-
out the spin-qubit state. If one employs the repetitive-readout
technique with auxiliary nuclear spins, the readout fidelity can be
further improved.56

Mechanical noise
Before discussing the mechanical noise, we need to analyze the
total operation time, τT= 2τ0+ τ1, required for our quantum
delayed-choice experiment. Note that during τT, we have
neglected the spin single-qubit operation time due to the driving
pulse length ~ns.57,58 Since 0 ≤ τ1 ≤ 2π/J, we focus on the
maximum τT: τmax

T ¼ 5π= 2Jð Þ. A modest spin-CNT coupling g/2π
= 100 kHz, which can be obtained by tuning the current I and the
distance d (see Supplementary Section 1), is able to mediate an
effective CNT–CNT coupling J/2π≃ 12 kHz, thus giving τmax

T ’ 0:1
ms. The relaxation time T1 of a single NV spin at low temperatures
can reach up to a few minutes. Moreover, with spin echo
techniques, a single spin in an ultra-pure diamond example
typically has a dephasing time T2≃ 2ms even at room tempera-
ture,59 corresponding to a dephasing rate γs/2π≃ 80 Hz. When
dynamical decoupling pulse sequences are employed, the
dephasing time can be made even close to one second at low
temperatures.60 These justify neglecting the spin decoherence. In
this case, the mechanical noise dominates the dissipative
processes. The dynamics of the system is therefore governed by
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the following master equation,

_ρ tð Þ ¼ i
�h ρ tð Þ;H tð Þ½ � � γm

2 nth
P

k¼1;2
L byk
� �

ρ tð Þ

� γm
2 nth þ 1ð Þ P

k¼1;2
L bkð Þρ tð Þ;

(21)

where ρ(t) is the density operator of the system, γm is the
mechanical decay rate, nth= [exp(ħωm/kBT)− 1]−1 is the equili-
brium phonon occupation at temperature T, and L oð Þρ tð Þ ¼
oyoρ tð Þ � 2oρ tð Þoy þ ρ tð Þoyo is the Lindblad superoperator. Here,
H(t) is a binary Hamiltonian of the form,

H tð Þ ¼ H0; 0<t � τ0; and τ0 þ τ1<t � τT

H1; τ0<t � τ0 þ τ1;

	
(22)

with

H0 ¼ J
X
k¼1;2

bykbk þ b1b
y
2 þ b2b

y
1

 !
σz (23)

and H1 ¼ Jby1b1σz . In Eq. (22), we did not include the spin single-
qubit operation before the third time interval because the length
of the driving pulse is very short, as mentioned above. The master
equation in Eq. (21) drives the phonon occupation of the kth CNT
to be

nk ¼ hbykbki τTð Þ ¼ Pk exp �γmτTð Þ þ nth 1� exp �γmτTð Þ½ �; (24)

at time t= τT. For a realistic CNT, we can set the mechanical
linewidth to be γm/2π= 0.4 Hz,61 leading to a single-phonon
lifetime of τm= 1/γm≃ 400ms. In this situation, τm is much longer
than the total operation time τT, γmτT � 1 and, thus, we obtain

nk ¼ Pk þ nthγmτT : (25)

This shows that, in addition to the coherent signal Pk, the final
occupation has a thermal contribution nthγmτT. In Fig. 2, we
demonstrate the morphing behavior between particle and wave
at T≃ 10mK, according to Eq. (25). To confirm this, we also plot
numerical simulations, which are in exact agreement with our
analytical expression. The thermal occupation, nthγmτT, increases
as the phase ϕ, because such a phase arises from the dynamical
accumulation as discussed above. However, an extremely long
phonon lifetime causes it to become negligible even at finite
temperatures, as shown in Fig. 2.
We now consider the fluctuation noise. In the limit γmτT � 1,

the fluctuation noise δnnoisek in the phonon occupation nk is
expressed, according to the analysis in the Supplementary Section
4, as

δnnoisek

� �2¼ Pk 2Pk � 1ð Þγmτm þ 2Pk þ 1ð ÞnthγmτT ; (26)

where the first term is the vacuum fluctuation, which can be
neglected, and the second term is the thermal fluctuation, which
increases with temperature. To quantitatively describe the ability
to resolve the coherent signal from the fluctuation noise, we
typically employ the signal-to-noise ratio defined as

Rk ¼ Pk
δnnoisek

: (27)

The signal-resolved regime often requires Rk>1 for any Pk.
However, the probability Pk in the range zero to unity indicates
that there always exist some Pk such that Rk<1, in particular, at
finite temperatures. Nevertheless, we find that the total fluctuation
noise

S2 ¼ δnnoise1

� �2þ δnnoise2

� �2 (28)

is kept below an upper bound

B2 ¼ γmτ
max
T þ 4nthγmτ

max
T ; (29)

and further that assuming B2<1=2 can make either or both of R1

and R2 greater than 1. In this case, at least one CNT signal is
resolved for each measurement. The conservation of the coherent
phonon number equal to 1 ensures that the unresolved signal can
be inferred from the resolved one, which allows the morphing
between wave and particle to be effectively observed from the
fluctuation noise. To quantify this, we define a signal visibility as,

R ¼
ffiffiffi
2

p

2B ; (30)

in analogy to the signal-to-noise ratio Rk . The ratio R describes
the visibility of the total signal rather than the single CNT signals.
At zero temperature (nth= 0), the noise originates only from the
vacuum fluctuation, and this yields R � 1. However, at finite
temperatures, nth increases as T, causing a decrease in R, as
shown in Fig. 3. Therefore, the requirement of R>1 sets an upper
bound on the temperature, and as a result, leads to a critical

Fig. 2 Morphing between particle and wave characteristics of a CNT
mechanical phonon. Phonon occupation a n1 and b n2 as a function
of the relative phase ϕ and the rotation angle φ. The analytical
results (colored surfaces) are in excellent agreement with the
numerical simulations (black symbols). Here, in addition to γs/2π=
200γm/2π= 80 Hz, we assume that g/2π= 100 kHz, ωm/2π= 2MHz,
Ω= 10ωm, and Δ−= 142ωm, resulting in ωq≃ 1.5ωm and then J/2π
≃ × 12 kHz, and that nth= 100, corresponding to an environmental
temperature of ≃10mK
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temperature,

Tc ¼ �hωm

kB ln 1þ 15πγm=Jð Þ= 1� 5πγm=Jð Þ½ � : (31)

The critical temperature linearly increases with J/γm, as plotted in
the inset of Fig. 3. To increase J, we can increase the current I
through the CNTs, decrease the distance d between the CNTs, or
decrease the spin-qubit transition frequency ωq. Furthermore, the
increase in the CNT resonance frequency ωm or the decrease in
the CNT loss rate γm can also lead to an increase in the critical
temperature. For modest parameters of J/2π= 12 kHz and
γm/2π= 0.4 Hz, a critical temperature Tc of ≃47mK, which is
routinely accessible in current experiments, can be achieved.

Test of macroscopicity
We have described the implementation of a quantum paradox
with massive mechanical objects with experimentally distinguish-
able single-phonon excitations. The question arises whether this
proposal can be considered as a test of macroscopicity.62,63

Typical proposals of such tests (as cited below) have been based
on implementing superpositions of macroscopically distinguish-
able states of classical-like systems, which are often referred to as
Schrödinger’s cat states (see, e.g., ref. 64). Sometimes, the meaning
of Schrödinger’s cat states is limited to “superposition states of
macroscopic systems, where the amplitude of their excitations is
large”.65 Note, however, that the term “large amplitude” can be
understood in various ways. These include the cases (criteria)
when (i) the amplitudes of the constituent states of a given
superposition are large as in classical systems, or (ii) when these
amplitudes are large enough concerning their experimental
distinguishability (i.e., compared to the resolution of detectors).
Strictly speaking, a state satisfying one of these conditions, does
not necessarily satisfy the other. For example, a superposition of
coherent states, jψi ¼ N ðjαi þ jβiÞ with N being a normalization
constant, is a cat state according to criterion (i) if jαj; jβj � 1, but
cannot be considered as a cat state according to criterion, (ii) if
ϵ � jα� βj � 1 is beyond the resolution of detectors. Conversely,
|ψ〉 is a cat state according to criterion (ii) if ϵ can be resolved
experimentally even if |α|, |β| ≈ 1, i.e., when criterion (i) is not
satisfied. In the latter case, when the amplitude of such excitations
is not large in classical terms, but still macroscopically distinguish-
able, the states are sometimes referred to as Schrödinger’s kitten

states, as, e.g., those generated and measured in ref. 66. In this
sense, the single-phonon wave-particle superposition, given in Eq.
(16), can be referred to as a Schrödinger kitten state, since the
excitations of the macroscopic mechanical systems are small, i.e.,
at the single-phonon level. Indeed, the amplitudes of single-
phonon excitations are not large enough to satisfy criterion (i).
However, such superpositions of single phonons are large enough
that the constituent states of the superposition, given in Eqs. (17)
and (18), are experimentally distinguishable, thus satisfying
criterion (ii). Therefore, such a test of a quantum principle at the
low-excitation level of massive mechanical objects can also be
viewed as a test at the macroscopic scale, as claimed, e.g., in
refs. 67–69 and references therein.
We note that a collective degree of freedom of many atoms

does not necessarily imply that the system is in a macroscopic
quantum state. However, we showed that the studied system of
macroscopic resonators can be in a maximally entangled two-
mode state. This state is described by a non-positive
Glauber–Sudarshan P function. This implies that the system itself
is quantum. Below we describe the method to amplify the small-
excitation kitten states, given in Eqs. (17) and (18), to a cat state
with large excitation.

Amplification of the Schrödinger kitten states
Here we apply the idea and method of ref. 70 to show how to
amplify the phonon numbers of the single-phonon superposition
states |particle〉 and |wave〉, given in Eqs. (17) and (18), by
squeezing the mechanical modes b1 and b2. Thus, these states can
become Schrödinger’s cat-like states. For simplicity, but without
loss of generality, here we consider a squeezing operator

Uk ¼ exp r
2 by2k � b2k
� �h i

; (32)

acting on the mode bk (k= 1, 2), with r being a squeezing
parameter. This squeezing leads to

jS10i ¼ U1b
y
1 � U2

� �
jvaci ¼ jS1i1jS0i2; (33)

jS01i ¼ U1 � U2b
y
2

� �
jvaci ¼ jS0i1jS1i2; (34)

where we have defined the phonon squeezed Fock states |S0〉k=
Uk|0〉k and jS1ik ¼ Ukb

y
k j0ik , with |0〉k being the vacuum state of

the mechanical-mode bk. As a result, the states |particle〉 and
|wave〉 become

jPri ¼ 1ffiffiffi
2

p exp iϕð ÞjS10i þ ijS01i½ �; (35)

jWri ¼ 1
2

exp iϕð Þ � 1½ �jS10i þ i exp iϕð Þ þ 1½ �jS01if g; (36)

respectively. The final state |Ψ〉f becomes

jΨif ¼ cos φð ÞjPrij0i þ sin φð ÞjWrijDi: (37)

The modes bk for k= 1, 2 are transformed, via squeezing, to the
Bogoliubov modes described by

Uy
kbkUk ¼ cosh rð Þbk þ sinh rð Þbyk : (38)

By using this unitary transformation, one obtains the average
phonon numbers of |S0〉k and |S1〉k equal to

khS0jbykbk jS0ik ¼ sinh2 rð Þ; (39)

khS1jbykbk jS1ik ¼ 3 sinh2 rð Þ þ 1: (40)

We note that by applying this unconditional amplification
method, one can exponentially increase the distinguishability of
the states |S10〉 and |S01〉. Although, a single-shot distinguishability
of the mechanical-mode states jPri and jW ri is not increased, a
tomographic distinguishability of these states in the phase space

Fig. 3 Signal visibility R as a function of the temperature T. The
yellow shaded area represents the signal-resolved regime, where
the morphing between wave and particle can be effectively
observed in the fluctuation noise. The vertical line corresponds to
the critical temperature Tc. The inset shows a linear increase in Tc
with increasing the ratio of the spin-mediated CNT–CNT coupling
strength J to the mechanical-mode decay rate γm. Here, all
parameters are set to be the same as in Fig. 2
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is increased with the amplified amplitudes of the mechanical-
mode excitations. Indeed, the distinguishability of jPir and jWri,
as measured by the infidelity, IF ¼ 1� jhWr jPrij2 ¼
1� jhwavejparticleij2, is independent of the squeezing parameter
r for a given ϕ. For any ϕ ≠ ±π/2, the states are distinguishable,
and the highest distinguishability is for ϕ= 0,π, for which the
infidelity is IF= 1/2. Thus, even for such optimal values of ϕ, it is
impossible to deterministically distinguish the states jPri and
jWri from each other in a single-shot experiment. We refer to this
property as a single-shot distinguishability. Anyway, these
mechanical states can be macroscopically distinguished by
performing, e.g., Wigner-function tomography on a number of
their copies. Such tomographic distinguishability in phase space
indeed increases with the squeezing parameter r, as shown in
Fig. 4.
Finally, we note that the famous optical prototypes of the

Schrödinger’s cat states, which are given by the odd and even
coherent states, |ψ±〉=N (|α〉 ± |−α〉), cannot be distinguished
deterministically in a single-shot experiment either. This is
because the coherent states |α〉 and |−α〉 are not orthogonal for
finite values of α. Their overlap decreases exponentially with
increasing α, so |α〉 and |−α〉 become orthogonal in the limit of
large |α|. However, this amplification of α cannot be done
deterministically, because this process is prohibited by the no-
cloning and no-signalling theorems. Indeed, non-orthogonal
states cannot be deterministically transformed to orthogonal
(thus, completely distinguishable) states. Note that popular
methods of amplifying small-amplitude states are based on either
(i) probabilistic but accurate amplification or (ii) deterministic but
inaccurate cloning. For example, the method described, e.g., in
refs. 66,71 is probabilistic, because it is based on conditional
measurements performed on two copies of |ψ±〉. In contrast to
this, the amplification method in ref. 70, as applied here,

corresponds to approximate quantum cloning, i.e., phase-
covariant cloning by stimulated emission.

DISCUSSION
We have presented a proposal for a quantum delayed-choice
experiment with nanomechanical resonators, which enables a
macroscopic test of an arbitrary quantum wave-particle super-
position. The ability to tolerate the mechanical noise has also been
given here, demonstrating that our proposal can be implemented
with current experimental techniques. While we have chosen to
focus on a spin-nanomechanical setup, the present method could
be directly extended to other hybrid systems, for example,
mechanical devices coupled to a superconducting atom.32,49,72

Recently, an experimental work reported that photons can be
entangled in their wave-particle degree of freedom.22 This
indicates that the wave-particle nature of photons may be used
to encode flying qubits for long-distance quantum communica-
tion. Photons are ideal quantum information carriers, but they are
difficult to store. In contrast to photons, long-lived phonons could
be used for optical information storage.73 Our study shows that
phonons can also be prepared in a wave-particle superposition
state, and that the wave-particle nature of phonons is not more
special than their other degrees of freedom. Thus, the wave-
particle degree of freedom of phonons may be exploited for
storing quantum information encoded in the wave-particle degree
of freedom of photons. In addition, optomechanical interactions
can couple a mechanical mode to optical modes at different
frequencies.74 Thus, the mechanical wave-particle degree of
freedom may be employed to map quantum information encoded
in the wave-particle degree of freedom from photons at a given
frequency to photons at any desired frequency. The mechanical
wave-particle nature, as a new degree of freedom, may find
various applications in quantum information.
We believe that the macroscopicity of our single-phonon wave-

particle superposition is highly counter-intuitive, as based on a
refined version of the quantum paradox, even if the mechanical
resonators are in the single-phonon-excitation regime. Indeed, we
analyzed a “nested” kitten state, as given in Eq. (16), where the
particle and wave states, given in Eqs. (17) and (18), are purely
mechanical kitten states for ϕ ≠ ±π/2. Moreover, we have
described a method, based on mechanical-mode squeezing,
which enables the amplification of small-excitation Schrödinger
kitten states, given in Eqs. (17) and (18), to large-excitation
Schrödinger cat states of the massive mechanical resonators. For
these reasons, an experimental realization of our proposal can be
a fundamental test of a coherent wave-particle superposition of
massive objects with phonon excitations, which can be increased
exponentially by squeezing. Hence, this proposed quantum
delayed-choice experiment of massive mechanical resonators
not only leads to a better understanding of quantum theory at the
macroscopic scale, but also indicates that, like the vertical and
horizontal polarizations of photons, the mechanical wave-particle
nature, as an additional degree of freedom of phonons, may be
widely exploited for quantum information applications.
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Here, we, first, in Sec. I present more details of how to obtain the spin-controlled coherent coupling between separated
mechanical resonators. Second, in Sec. II, we show the detailed implementation of the controlled Hadamard gate, the
phase gate, and the mechanical quantum delayed-choice experiment. Next, in Sec. III, we derive in detail the phonon
occupation of each CNT at finite temperatures. Then, Sec. IV describes the detailed derivation of the fluctuation
noise and the detailed analysis of the requirement of resolving the coherent signal from the environment-induced
fluctuation. Finally, in Sec. V we show the method of the numerical simulation used in this work.

I. Spin-controlled coherent coupling between separated mechanical resonators
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ẑ
(b)

0

1 1



 

2 /  

FIG. 1. (Color online) (a) Schematic representation of a mechanical quantum delayed-choice experiment with an NV electronic
spin and two carbon nanotubes (CNTs). The mechanical vibrations of the CNTs, labelled by k = 1, 2, are completely decoupled
or coherently coupled, depending, respectively, on whether or not the intermediate spin is in the spin state |0〉, with the dc
current Ik through the kth CNT, and the distance dk between the spin and the kth CNT. (b) Level structure of the driven NV
spin in the electronic ground state. Here we have assumed that the Zeeman splitting between the spin states |±1〉 is eliminated
by applying an external field.

The effective Hamiltonian Heff in the article describes a spin-mediated CNT-CNT coupling conditioned on the NV
spin state. This is the basic element underlying our proposal. To understand more explicitly the spin-controlled
coupling between the CNTs, in this section we derive in detail the effective Hamiltonian. We consider a hybrid
quantum system consisting of two parallel CNTs and an NV electronic spin (a qutrit), as depicted in Fig. 1(a). Here,
for convenience, illustrations in Figs. 1(b) and 1(c) in the article are reproduced in Figs. 1(b) and 1(a), respectively.
The CNTs, respectively, carry dc currents I1 and I2, both along the +x̂–direction. A spin is placed between them, at
a distance d1 (d2) from the first (second) CNT. According to the Biot-Savart law, the CNTs can, at the position of

the spin, generate a magnetic field ~B
(0)
cnt = B

(0)
cntẑ, where

B
(0)
cnt =

∑
k=1,2

(−1)
k−1 µ0Ik

2πdk
, (1)



2

ε̂ (ε = x, y, z) is a unit vector in the ε̂–direction, µ0 is the vacuum permeability, and the subscript “cnt” refers
to the CNTs. When the CNTs vibrate along the ŷ-direction, the magnetic field is parametrically modulated by

their mechanical displacements y1 and y2, and then is reexpressed, up to first order, as ~Bcnt = ~B
(0)
cnt + ~B

(1)
cnt, where

~B
(1)
cnt = B

(1)
cntẑ is a first-order modification, and where B

(1)
cnt =

∑
k=1,2Gkyk, with a magnetic-field gradient,

Gk =
µ0Ik
2πd2

k

. (2)

Note that, here, y1 > 0 (y2 < 0) indicates a decrease in d1 (d2). Therefore, the sign, (−1)
k−1

, in Eq. (1) does not

appear in Eq. (2). Furthermore, an external magnetic field, ~Bext = Bx (t) x̂+Bz ẑ, is applied to the NV spin. We have
assumed, as required below, that Bx (t) is a time-dependent component but Bz is a dc component. The Hamiltonian
governing the NV spin is therefore given by

HNV = ~DS2
z + µBgs

[
B

(0)
cnt +Bz

]
Sz + µBgsBx (t)Sx + µBgsB

(1)
cntSz, (3)

where gs ' 2 is the Landé factor, µB the Bohr magneton, D ' 2π × 2.87 GHz the zero-field splitting, and Sε the

ε–component of the spin operator ~S (ε = x, y, z). In terms of the eigenstates, {|ms〉,ms = 0,±1}, of Sz, the operator
Sε is expanded as

Sx =
1

2

 0
√

2 0√
2 0

√
2

0
√

2 0

 , Sy =
1

2i

 0
√

2 0

−
√

2 0
√

2

0 −
√

2 0

 , and Sz =
1

2

 +1 0 0
0 0 0
0 0 −1

 , (4)

and accordingly, the Hamiltonian HNV is transformed to

HNV =
{
~D + µBgs

[
B

(0)
cnt +Bz

]}
|+ 1〉〈+1|+

{
~D − µBgs

[
B

(0)
cnt +Bz

]}
| − 1〉〈−1|

+
1√
2
µBgsBx (t) (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+ µBgsB
(1)
cnt (|+ 1〉〈+1| − | − 1〉〈−1|) . (5)

We find that the magnetic field along the ẑ–direction causes different Zeeman shifts to be imposed, respectively, on
the spin states | ± 1〉, and also that the magnetic field along the x̂–direction drives the transition between the spin
states |0〉 and| ± 1〉.

The quantum treatment of the mechanical motion demonstrates that the mechanical vibrations of the CNTs can
be modelled by two single-mode harmonic oscillators with a Hamiltonian

Hmv =
∑
k=1,2

~ωkb†kbk, (6)

where ωk is the phonon frequency and bk (b†k) is the phonon annihilation (creation) operator. Here, we have subtracted
the constant zero-point energy ~ωk/2. The mechanical displacement yk is accordingly expressed as

yk = y(k)
zp

(
bk + b†k

)
≡ y(k)

zp qk, (7)

where qk is the canonical phonon position operator, and y
(k)
zp = [~/ (2mkωk)]

1/2
, with mk being the effective mass,

describes the zero-point (zp) motion. Combining Eqs. (5), (6), and (7) gives the full Hamiltonian of the hybrid system,

HF =
∑
k=1,2

~ωkb†kbk +
{
~D + µBgs

[
B

(0)
cnt +Bz

]}
|+ 1〉〈+1|

+
{
~D − µBgs

[
B

(0)
cnt +Bz

]}
| − 1〉〈−1|

+
1√
2
µBgsBx (t) (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+
∑
k=1,2

µBgsGky
(k)
zp (|+ 1〉〈+1| − | − 1〉〈−1|) qk. (8)
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The last line in Eq. (8) describes a magnetic coupling between the spin and the mechanical modes. In order to realize
a tunable detuning between them, Bx (t) is chosen to be Bx (t) = B0 cos (ω0t) with amplitude B0 and frequency
ω0. In a frame rotating at Hrot = ~ω0 (| − 1〉〈−1|+ |+ 1〉〈+1|), the full Hamiltonian can be divided into two parts,
HF = Hlow +Hhigh, where

Hlow =
∑
k=1,2

~ωkb†kbk + ~δ+|+ 1〉〈+1|+ ~δ−| − 1〉〈−1|

+ ~Ω (| − 1〉〈0|+ |+ 1〉〈0|+ H.c.)

+
∑
k=1,2

~gk (|+ 1〉〈+1| − | − 1〉〈−1|) qk, (9)

Hhigh =~Ω [exp (i2ω0t) | − 1〉〈0|+ exp (i2ω0t) |+ 1〉〈0|+ H.c.] , (10)

account for the low- and high-frequency components, respectively. Here, we have defined

~δ± = ~D ± µBgs
[
B

(0)
nt +Bz

]
− ~ω0,

~Ω =
1

2
√

2
µBgsB0,

~gk = µBgsGky
(k)
zp . (11)

Roughly, having δ′± = δ± + 2ω0 � Ω allows one to make the rotating-wave approximation (RWA), and to straight-
forwardly remove Hhigh. However, as demonstrated in Sec. V, the accumulated error increases during the evolution,
causing the dynamics driven by Hlow to deviate largely from that driven by HF . Thus, we are not using the RWA
here. In order to suppress the error accumulation, we need to analyze the effects of Hhigh in the limit δ′± � Ω. In such
a limit, we can employ a time-averaging treatment for the high-frequency component Hhigh [1, 2], and as a result, its
effective behavior is described by the following time-averaged Hamiltonian,

Hhigh =~
(

2Ω2

δ′−
+

Ω2

δ′+

)
| − 1〉〈−1|+ ~

(
Ω2

δ′−
+

2Ω2

δ′+

)
|+ 1〉〈+1|

+ ~
Ω2

2

(
1

δ′−
+

1

δ′+

){
exp

[
i
(
δ− + δ′− − δ+ − δ′+

)
t
]
| − 1〉〈+1|+ H.c.

}
, (12)

where the first line corresponds to the energy shifts of the spin states | ± 1〉, and the second line describes a coherent
coupling between these. Accordingly, the full Hamiltonian HF is approximated to be a time-independent form,

HF ' Hlow +Hhigh. (13)

As seen in Sec. V, the error accumulation is strongly suppressed when Hhigh is included.

Tuning B
(0)
cnt + Bz = 0 yields δ+ = δ− = ∆− and δ′+ = δ′− = ∆+, implying that the spin states | ± 1〉 have

the same Zeeman shift of ∆ = ∆− + 3Ω2/∆+, as shown in Fig. 1(b). Therefore, we can define a bright state,

|B〉 = (|+ 1〉+ | − 1〉) /
√

2, which is dressed by the spin state |0〉, and a dark state, |D〉 = (|+ 1〉 − | − 1〉)
√

2, which
decouples from the spin state |0〉. In terms of the states |B〉 and |D〉, the full Hamiltonian becomes

HF '
∑
k=1,2

~ωkb†kbk + ~∆ (|B〉〈B|+ |D〉〈D|) + ~
√

2Ω (|0〉〈B|+ |B〉〈0|)

+
∑
k=1,2

~gk (|B〉〈D|+ |D〉〈B|) qk + ~
Ω2

∆+
(|B〉〈B| − |D〉〈D|) . (14)

The dressing mechanism allows us to introduce two dressed states,

|Φ−〉 = cos (θ) |0〉 − sin (θ) |B〉, (15)

|Φ+〉 = sin (θ) |0〉+ cos (θ) |B〉, (16)

where tan (2θ) = 2
√

2Ω/∆. Upon substituting them back into the full Hamiltonian in Eq. (14) and then using the
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identity operator I = |D〉〈D|+ |Φ−〉〈Φ−|+ |Φ+〉〈Φ+|, we can straightforwardly obtain

HF '
∑
k=1,2

~ωkb†kbk + ~ω+|Φ+〉〈Φ+|+ ~ωD|D〉〈D|

+
∑
k=1,2

~
[
g

(−)
k |Φ−〉〈D|+ g

(+)
k |D〉〈Φ+|+ H.c.

]
qk

+ ~
Ω2

∆+

[
cos (2θ) |Φ+〉〈Φ+| −

1

2
sin (2θ) (|Φ+〉〈Φ−|+ H.c.)− cos2 (θ) |D〉〈D|

]
. (17)

Here,

ω+ =
√

∆2 + 8Ω2, (18)

ωD =
1

2

(
∆ +

√
∆2 + 8Ω2

)
, (19)

g
(−)
k =− gk sin (θ) , (20)

g
(+)
k =gk cos (θ) . (21)

Under the assumption of ∆ � Ω, we have θ ' 0, such that sin (θ) ' sin (2θ) ' 0, cos (θ) ' cos2 (θ) ' cos (2θ) ' 1,
ω+ ' ∆ + 4Ω2/∆, ωD ' ∆ + 2Ω2/∆, and |Φ+〉 ' |B〉. In this limit, the coupling between |0〉 and |B〉 only causes
an energy splitting, of ' 2Ω2/∆, between the states |B〉 and |D〉, so |B〉 and |D〉 can be used to define a spin qubit.
Correspondingly, the full Hamiltonian is approximated as

H ′F =
∑
k=1,2

~ωkb†kbk +
1

2
~ωqσz +

∑
k=1,2

~gkσxqk, (22)

where ωq = 2Ω2/∆ + 2Ω2/∆+, σz = |B〉〈B| − |D〉〈D|, and σx = σ+ + σ− with σ− = |D〉〈B| and σ+ = σ†−. Modest
parameters [3–9], mk = 1.0 × 10−22 kg, ωk/2π = 2 MHz, dk ' 2 nm, and Ik ' 380 nA, could result in a spin-CNT
coupling of up to gk/2π ' 100 kHz.

Furthermore, from Eq. (22) it is found that the sequential actions of the terms σ+b1 and σ−b
†
2, as well as of the

counter-rotating terms σ−b1 and σ+b
†
2, can transfer a mechanical phonon from the left to the right CNT, and the

reverse process is caused by their Hermitian conjugates. When restricting our discussion to a dispersive regime,

ωq ± ωk � |gk|, (23)

this phonon transfer becomes dominant. Hence, in the dispersive regime the dynamics described by H ′F in Eq. (22)
enables a spin quantum bus for the mechanical phonons and can be used to realize a coherent CNT-CNT coupling.
In order to show more explicitly, we rewrite H ′F in the interaction picture as

H ′F =
∑
k=1,2

~gk
{
σ+bk exp [i (ωq − ωk)] + σ+b

†
k exp [i (ωq + ωk)] + H.c.

}
. (24)

The condition in Eq. (23) justifies to use a time-averaging treatment of the Hamiltonian H ′F [1, 2]. In the time-
averaging treatment, all terms in Eq. (24) are considered as high-frequency components and exhibit time-averaged
behaviors. Based on this, the dynamics of the system can be determined by an effective Hamiltonian

Heff =
2~ωq

ω2
q − ω2

m

 ∑
k=1,2

g2
kb
†
kbk + g1g2

(
b1b
†
2 + b2b

†
1

)⊗ σz. (25)

Here, we have assumed that ωk = ωm. As expected, Eq. (25) shows a coherent spin-mediated CNT-CNT coupling,
corresponding to the standard linear coupler transformation, which can give rise to a direct phonon exchange. Thus
in this case, the spin qubit works as a quantum bus. At the same time, it also shows that the CNT-CNT coupling
can be turned off if the intermediate spin is in the state |0〉. This is because the NV spin in the state |0〉 is decoupled
from the CNTs, and the mechanical phonons can no longer be transferred from one CNT to another. Specifically, if
the spin is in the state |D〉 or |B〉, the CNTs are coupled; however, if the spin is instead in the state |0〉, they are
decoupled. Note that in Eq. (25) ac Stark shifts caused to be imposed on the qubit have been excluded because we
focus only on the quantum states of the CNTs.
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In the last part of this section, we evaluate the direct coupling between the CNTs. For simplicity, we assume that
Ik = I, dk = d, and that the CNTs have the same length L. The attractive force acting on the kth CNT is

~Fk = (−1)
k−1

F ŷ, (26)

where

F =
µ0LI

2

2π (d− y1 + y2)
(27)

is the force size. The work done by the force is given straightforwardly by

W =
µ0LI

2 (y1 − y2)

2π (d− y1 − y2)
. (28)

After applying a perturbation expansion and then a quantization, this direct CNT-CNT coupling is found to be

W =~W (1) (b1 − b2 + H.c.)

+ ~W (2)

[(
b1 + b†1

)2

+
(
b2 + b†2

)2

− 2
(
b1 + b†1

)(
b2 + b†2

)]
, (29)

where

W (1) =
µ0LI

2yzp

2πd~
, (30)

W (2) =
µ0LI

2y2
zp

2πd2~
. (31)

For a modest setup [3–9], m = 1.0× 10−22 kg, ωm = 2π × 2 MHz, L = 10 nm, d = 2 nm, and I = 380 nA, we have

W (1) ' 2π × 20 kHz, (32)

which is much smaller than the mechanical resonance frequency ωm, and also have

W (2) ' 2π × 1 kHz, (33)

which is much smaller than the spin-mediated CNT-CNT coupling, for example, ' 2π × 12 kHz, as shown in the
section below. Therefore, the direct CNT-CNT coupling can be neglected in our setup.

II. Controlled Hadamard gate, phase gate, and mechanical quantum delayed-choice experiment

In order to implement a quantum delayed-choice experiment with macroscopic CNT mechanical resonators, we
need a controlled Hadamard gate and a phase gate to act on the CNT mechanical modes. Below, we demonstrate
how the effective Hamiltonian in Eq. (25) can be used to make all required gates. Let us first consider the controlled
Hadamard gate. Tuning the currents to be Ik = I and, at the same time, the distances to be dk = d results in a
symmetric coupling gk = g. The effective Hamiltonian Heff is accordingly reduced to Heff = Hcnt ⊗ σz, where

Hcnt = ~J

∑
k=1,2

b†kbk + b1b
†
2 + b2b

†
1

 (34)

is a beam-splitter-type interaction, and where

J =
2g2ωq
ω2
q − ω2

m

(35)

is an effective CNT-CNT coupling strength. In our discussion, the NV spin is restricted to a subspace spanned by
{|0〉, |D〉}, where the spin is a control qubit of a Hadamard gate. The spin in the state |D〉 mediates the coherent
coupling between the separated CNTs, and causes them to evolve under the Hamiltonian Hcnt in Eq. (34). According
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to the Heisenberg equation of motion, bk (t) = exp (iHcntt/~) bk exp (−iHcntt/~), the unitary evolution for a time
t = τ0 ≡ π/ (4J) corresponds to a Hadamard-like gate,

b1 (τ0) =
1√
2

(b1 − ib2) , (36)

b2 (τ0) =
1√
2

(b2 − ib1) . (37)

However, when the spin state is |0〉, the two CNTs decouple from each other. In this case, their quantum states
remain unchanged under the unitary evolution, yielding

b1 (t) = b1, (38)

b2 (t) = b2. (39)

We have therefore achieved a spin-controlled Hadamard gate between the CNTs. That is, if the NV spin is in the
state |D〉, then the Hadamard operation is applied to the CNTs, and if the NV spin is in the state |0〉, then the states
of the CNTs are unchanged.

We next consider the phase gate. For the phase gate, we tune the currents to be I1 6= 0 and I2 = 0, such that
g1 = g and g2 = 0, causing the effective Hamiltonian in Eq. (25) to become

Hcnt = ~Jb†1b1σz. (40)

We find from Eq. (40) that there exists a spin-induced shift, J , of the mechanical resonance. This dispersive shift
can, in turn, introduce a dynamical phase, φ (t) = Jt, onto the first CNT. With the spin being in the state |D〉, we
solve the Heisenberg equations of motion for the CNTs, and then obtain a phase gate,

b1 (t) = exp [iφ (t)] b1, (41)

b2 (t) = b2. (42)

In fact, similar to the controlled Hadamard gate discussed above, the phase gate can also be controlled by the spin
according to Eq. (40).

Having achieved all required gates, we now turn to the detailed description of the macroscopic quantum delayed-
choice experiment with CNT resonators. The hybrid system is initially prepared in the state |Ψ〉i ≡ |Ψ (0)〉 =(
b†1 ⊗ I2|vac〉

)
⊗ |D〉, where |vac〉 refers to the phonon vacuum of the CNTs and I2 is the identity operator on the

second CNT. First, we turn on the currents of the CNTs and ensure Ik = I. After a time τ0, a Hadamard operation
is applied to the CNTs and accordingly, |Ψ〉i becomes

|Ψ (τ0)〉 =
1√
2

(
b†1 + ib†2

)
|vac〉|D〉. (43)

Then, we turn off the current of the second CNT for a phase accumulation for a time τ1. As a consequence, the
system further evolves to

|Ψ (τ0 + τ1)〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉|D〉. (44)

While achieving the desired phase φ, we make a spin single-qubit rotation |D〉 → cos (ϕ) |0〉+ sin (ϕ) |D〉, and have

|Ψ (τ0 + τ1)〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉 (cosϕ|0〉+ sinϕ|D〉) . (45)

Here, note that, we have ignored the length of the driving pulse of the spin rotation as being of the order of ns,
and thus assumed that the state of the CNTs remains unchanged. At the end of the driving pulse, we turn on the
current of the second CNT again and hold for another τ0 to perform a Hadamard gate. This gate is in a quantum
superposition of being present and absent. The three operations on the mechanical phonon correspond to the actions,
on a single photon, of the input beam splitter, the phase shifter, and the output beam splitter, respectively, in quantum
delayed-choice experiments with a Mach-Zehnder interferometer. The final state is therefore given by

|Ψ〉f ≡ |Ψ (2τ0 + τ1)〉 = cos (ϕ) |particle〉|0〉+ sin (ϕ) |wave〉|D〉, (46)
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FIG. 2. (Color online) (a) Probability P1 and (b) P2 as a function of the rotation angle ϕ and the relative phase φ. This
represents a continuous transition between a particle-type behavior (ϕ = 0) and a wave-type behavior (ϕ = π/2).

where

|particle〉 =
1√
2

[
exp (iφ) b†1 + ib†2

]
|vac〉, (47)

|wave〉 =
1

2

{
[exp (iφ)− 1] b†1 + i [exp (iφ) + 1] b†2

}
|vac〉, (48)

describe particle and wave behaviors, respectively. This reveals that the CNT mechanical phonon is in a quantum
superposition of both a particle and a wave. The probability of finding a single phonon in the kth CNT is expressed
as

Pk =
1

2
+ (−1)k

1

2
sin2 (ϕ) cos (φ) , (49)

according to Eq. (46). In Fig. 2, we have plotted the probabilities P1 and P2 versus the rotation angle ϕ and the
relative phase φ. In this figure we find that the mechanical phonon shows a morphing behavior between particle
(ϕ = 0) and wave (ϕ = π/2).

We now consider the timing errors of the Hadamard and phase gates. We first consider the Hadamard gate. We
assume that the error of the time required for performing the Hadamard gate is δ0, such that the actual evolution
time for the gate becomes τ ′0 = τ0 + δ0. In order to estimate the effect of this timing error on the gate performance,
we introduce a gate fidelity, defined as

F0 = 〈Ψtarget,0|ρactual,0 (τ ′0) |Ψtarget,0〉, (50)

where |Ψtarget,0〉 is the target state given by the ideal Hadamard gate, and ρactual,0 (τ ′0) is the actual state obtained
by integrating the exact master equation, given by Eq. (122). In Fig. 3, we plot the gate fidelity, F0, versus the

timing error δ0 (red curve). In this figure, the initial state for the Hadamard gate is assumed to be b†1|vac〉|D〉, so that

the target state is |Ψtarget,0〉 = 1√
2

(
b†1 + ib†2

)
|vac〉|D〉. Here, |vac〉 represents the acoustic vacuum state of the CNT

resonators. From this figure, we find that for −0.32τ0 . δ0 . 0.34τ0, the gate fidelity F0 can be kept above 0.9.
For the phase gate, we assume, as above, that the timing error is δ1. Thus, the actual evolution time for the phase

gate is τ ′1 = τ1 + δ1. We also introduce a gate fidelity, defined as

F1 = 〈Ψtarget,1|ρactual,1 (τ ′1) |Ψtarget,1〉, (51)

where |Ψtarget,1〉 is the target state given by the ideal phase gate, and ρactual,1 (τ ′1) is the actual state obtained from
the exact master equation, given in Eq. (122). The gate fidelity F1 is plotted as a function of the timing error δ1

in Fig. (3) (blue curve). There, we assumed that the initial state for the phase gate is 1√
2

(
b†1 + ib†2

)
, and that the

phase accumulated is equal to π. The target state |Ψtarget,1〉 is, therefore, given by 1√
2

(
−b†1 + ib†2

)
. It is seen from

this figure that, as long as −0.15τ1 . δ1 . 0.12τ1, we can obtain the gate fidelity of F1 > 0.9.
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FIG. 3. (Color online) Gate fidelity as a function of the timing error. We have assumed that δ0/τ0 = δ1/τ1 = δ, and that

the initial state is: (i) b†1|vac〉|D〉 for the Hadamard gate, and (ii) 1√
2

(
b†1 + ib†2

)
|vac〉|D〉 for the phase gate that accumulates

a relative phase π. Here, in addition to γs/2π = 200γm/2π = 80 Hz, we have assumed that g/2π = 100 kHz, ωm/2π = 2 MHz,
Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then J/2π ' 12 kHz. We have also assumed that nth = 100, which
corresponds to the environment temperature of ' 10 mK.

0 /4 /2
0.8

0.9

1

FIG. 4. (Color online) (a) Fidelity F as a function of the rotation angle ϕ. All the results are numerically obtained by
integrating the exact master equation in Eq. (122). Here, in addition to γs/2π = 200γm/2π = 80 Hz, we have assumed that
g/2π = 100 kHz, ωm/2π = 2 MHz, Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then J/2π ' 12 kHz. We have
also assumed that nth = 100, which corresponds to an environmental temperature of ' 10 mK.

Note that the spin, in a classical mixed state of the form cos2 (ϕ) |0〉〈0| + sin2 (ϕ) |D〉〈D|, would lead to the
same measured statistics in Eq. (49), that is, a local hidden variable model is capable of reproducing the quantum
predictions. This is a loophole [10–13]. However, as discussed in Refs. [14–17], this loophole can be avoided as long
as the second Hadamard operation is ensured to be in a truly quantum superposition of being present and absent. In
our proposal, the second Hadamard operation is conditioned on the spin state. If the spin is in the |0〉 state, then the
Hadamard operation is absent; if the spin is in the |D〉 state, then the Hadamard operation is present; if the spin is
in a quantum superposition of the |0〉 and |D〉 states, then the Hadamard operation is in a quantum superposition of
being present and absent. To confirm such a quantum superposition, in Fig. (4) we numerically calculate the fidelity,
F = f 〈Ψ|ρactual (τT ) |Ψ〉f , between the desired state |Ψ〉f in Eq. (46) and the actual state ρactual (τT ) obtained from

the exact master equation in Eq. (122). From this figure, we find that the fidelity is very close to unity even for the
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finite temperature of T ' 10 mK. Furthermore, in experiments, in order to exclude the classical interpretation and
prove the existence of the coherent wave-particle superposition, the quantum coherence between the states |0〉 and |D〉
should be verified. Experimentally, this coherence can be prepared by a spin single-qubit operation [18–20], and can
be verified by performing quantum state tomography to show all the elements of the density matrix of the spin [20].

III. Phonon occupation at finite temperatures

We begin by considering the total operation time, which is given by τT = 2τ0 + τ1, as discussed in Sec. II. Here,
τ0 = π/ (4J) is the time for the Hadamard gate and τ1 ∈ [0, 2π/J ] is the time for the phase gate. In a realistic
setup, we can assume ωm/2π ' 2 MHz, ωq/2π ' 3 MHz, and g/2π = 100 kHz, such that J/2π ' 12 kHz, yielding a
maximum total time τmax

T = 2τ0 + τmax
1 ' 0.1 ms, where τmax

1 = 2π/J is the maximum phase gate time. Note that,
the operation time τT depends inversely on the CNT-CNT coupling strength J , but the enhancement in J is limited
by the validity of the effective Hamiltonian Heff .

The total decoherence in our setup can be divided into two parts, one from the spin and the other from the CNTs.
The spin decoherence in general includes the relaxation and the dephasing. For an NV electronic spin, the relaxation
time T1 can reach up to several minutes at low temperatures and the dephasing time can be T2 ' 2 ms even at room
temperature [21, 22]. These justify neglecting the spin decoherence. For the mechanical decoherence, despite a long
phonon life, the low mechanical frequency makes the CNT mechanical modes very sensitive to the environmental
temperature. In this section and in Sec. IV, we discuss the effects of the mechanical noise on our quantum delayed-
choice experiment, and demonstrate that the morphing between wave and particle can still be effectively observed
even at finite temperatures.

As a result, the dissipative processes, in the hybrid system considered here, are induced only by the mechanical
decoherence, which arises from the vacuum fluctuation and thermal noise. The full dynamics of the system can then
be governed by the following master equation

ρ̇ (t) =
i

~
[ρ (t) , H (t)]− γm

2
nth

∑
k=1,2

L
(
b†k

)
ρ (t)− γm

2
(nth + 1)

∑
k=1,2

L (bk) ρ (t) , (52)

where ρ is the density operator of the system, γm is the mechanical decay rate, nth = [exp (~ωm/kBT )− 1]
−1

is the
equilibrium phonon occupation at temperature T , and L (o) ρ (t) = o†oρ (t) − 2oρ (t) o† + ρ (t) o†o is the Lindblad
superoperator. Here, H (t) is a binary Hamiltonian of the form,

H (t) =

{
H0, 0 < t ≤ τ0, and τ0 + τ1 < t ≤ τT
H1, τ0 < t ≤ τ0 + τ1,

(53)

with

H0 =~J

∑
k=1,2

b†kbk + b1b
†
2 + b2b

†
1

σz, (54)

H1 =~Jb†1b1σz. (55)

The three time intervals in Eq. (53) correspond to the first Hadamard gate, the phase gate and the second Hadamard
gate, respectively. Note that in Eq. (53), we did not include the spin single-qubit rotation before the third interval
because the length of the driving pulse is of the order of ns. We can derive the system evolution step by step.

Let us now consider the first evolution interval 0 < t ≤ τ0. During this interval, the coupling of the CNT mechanical
modes introduces two delocalized phononic modes,

c± =
1√
2

(b1 ± b2) , (56)

such that H0 is diagonalized to be

H0 = 2~Jc†+c+σz, (57)

and the master equation in Eq. (52) is reexpressed, in terms of the modes c±, as

ρ̇ = i
[
ρ, 2Jc†+c+σz

]
− γm

2
nth

∑
µ=1,2

L
(
c†µ
)
ρ (t)− γm

2
(nth + 1)

∑
µ=1,2

L (cµ) ρ (t) . (58)
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In order to calculate the phonon occupations at the end of the first interval, we need to obtain the equations of motion

for 〈c†±c±〉, 〈c
†
+c−〉, 〈c

†
+c−σz〉, and 〈c†+c−σ2

z〉. Here, 〈O〉 represents the expectation value of the operator O. Following
the master equation in Eq. (58), we have

d

dt
〈c†±c±〉 =− γm〈c†±c±〉+ γmnth, (59)

d

dt
〈c†+c−〉 =i2J〈c†+c−σz〉 − γm〈c

†
+c−〉, (60)

d

dt
〈c†+c−σz〉 =i2J〈c†+c−σ2

z〉 − γm〈c
†
+c−σz〉, (61)

d

dt
〈c†+c−σ2

z〉 =i2J〈c†+c−σz〉 − γm〈c
†
+c−σ

2
z〉, (62)

where we have used the relation σ3
z = σz. We can straightforwardly solve the differential equation (59) to find

〈c†±c±〉 (t) =

(
1

2
− nth

)
exp (−γmt) + nth. (63)

Combining Eqs. (61) and (62) gives

〈c†+c−σjz〉 (t) = (−1)
j 1

2
exp (−i2Jt) exp (−γmt) , (64)

for j = 1, 2. Upon substituting Eq. (64) back into Eq. (60), we can then obtain

〈c†+c−〉 (t) =
1

2
exp (−i2Jt) exp (−γmt) . (65)

It is found, according to Eq. (56), that in the localized-mode basis,

〈b†kbk〉 (τ0) =

(
1

2
− nth

)
exp (−γmτ0) + nth, (66)

〈b†1b2〉 (τ0) =
i

2
exp (−γmτ0) . (67)

For the second evolution interval τ0 < t ≤ τ0 + τ1, we directly use the master equation in Eq. (52) but with H (t)
replaced by H1. When comparing with the master equation in Eq. (58), we see that the equations of motion for

〈b†kbk〉, 〈b
†
1b2〉, 〈b

†
1b2σz〉, and 〈b†1b2σ2

z〉 should have the same forms as in Eqs. (59), (60), (61), and (62), but with the
substitutions c+ → b1, c− → b2 and 2J → J . In combination with the initial conditions, given in Eqs. (66) and (67),
we follow the same procedure as above to find

〈b†kbk〉 (τ0 + τ1) =

(
1

2
− nth

)
exp [−γm (τ0 + τ1)] + nth, (68)

〈b†1b2〉 (τ0 + τ1) =
i

2
exp (−iJτ1) exp [−γm (τ0 + τ1)] . (69)

We now turn to the third evolution interval τ0 + τ1 < t ≤ 2τ0 + τ1. Before this interval or at the end of the second
interval, we apply a single qubit rotation, |D〉 → cos (ϕ) |0〉+ sin (ϕ) |D〉, on the NV spin to engineer the subsequent
Hadamard operation to be in a quantum superposition of being absent and present. In this situation, we still use
the delocalized-mode basis and the corresponding master equation in Eq. (58). According to Eqs. (68) and (69), the
initial conditions of the last evolution can be rewritten, in terms of c±, as

〈c†±c±〉 (τ0 + τ1) =

[
1

2
± 1

2
sin (Jτ1)− nth

]
exp [−γ (τ0 + τ1)] + nth, (70)

〈c†+c−〉 (τ0 + τ1) =− i

2
cos (Jτ1) exp [−γ (τ0 + τ1)] , (71)

〈c†+c−σjz〉 (τ0 + τ1) = (−1)
j

sin2 (ϕ) 〈c†+c−〉 (τ0 + τ1) , (72)
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for j = 1, 2. Then, as before, solving the differential equations in Eqs. (59), (60), (61) and (62) leads to

〈c†±c±〉 (t) =

[
1

2
± 1

2
sin (Jτ1)− nth

]
exp (−γmt) + nth, (73)

〈c†+c−〉 (t) =− i

2
cos (Jτ1)

{
cos2 (ϕ) + sin2 (ϕ) exp [−i2J (t− τ0 − τ1)]

}
exp (−γmt) , (74)

which, in turn, gives

nk ≡ 〈b†kbk〉 (τT ) = (Pk − nth) exp (−γmτT ) + nth, (75)

which is the phonon occupation of the kth at the end of the third interval. For a realistic CNT, the mechanical
linewidth can be set to γm/2π = 0.4 Hz [23], and then we obtain a phonon lifetime of ' 400 ms, which is much longer
than the maximum total time τmax

T ' 0.1 ms. This ensures γmτT � 1, which results in

nk ' Pk + nthγmτT . (76)

This shows that the occupation for each CNT has two contributions: one from a coherent phonon signal and one
from thermal excitations. Furthermore, we find from Eq. (76) that the thermal excitations have equal contributions
to n1 and n2. This is because the thermal excitations do not contribute to the interference. For an environmental
temperature T = 10 mK, the equilibrium phonon occupation is nth ' 100, yielding nthγmτ

max
T ' 0.03, which can be

neglected, as shown in Fig. 2 of the article.

IV. Signal-to-noise ratio at finite temperatures

In addition to the thermal occupation, nthγmτT , in Eq. (76), the desired signal Pk is also always accompanied
by fluctuation noise. Such a noise includes vacuum fluctuations and thermal fluctuations. In particular, the latter
increases with temperature, so that the signal can be completely drowned in the noise when the temperature is
sufficiently high. In this case, it is very difficult to observe the morphing between wave and particle. Thus in this
section, we analyze this fluctuation noise in detail, and demonstrate that, in order for the morphing behavior to be
observed effectively, the total fluctuation noise of both CNTs should be limited by an upper bound, which leads to a
critical temperature Tc.

Specifically, we begin by deriving the fluctuation δnk in the occupation nk, for k = 1, 2. This is defined by

(δnk)
2

= 〈
(
b†kbk

)2

〉 (τT )− 〈b†kbk〉
2 (τT )

= 〈b†kb
†
kbkbk〉 (τT ) + nk − n2

k. (77)

In order to understand the fluctuation noise better, we need to derive an analytical expression of δnk. In Sec. III, nk
has been given in Eq. (76). Below, we derive the evolution of 〈b†kb

†
kbkbk〉 in a step-by-step manner as in Sec. III.

We now consider the first evolution interval 0 < t ≤ τ0. During this interval, the delocalized modes c± in Eq. (56) are
employed owing to the coupling of the CNT mechanical modes, and the dynamics is described by the master equation

in Eq. (58). To achieve 〈b†kb
†
kbkbk〉 at time τT , the dynamical evolutions of 〈c†±c

†
±c±c±〉, 〈c

†
+c+c

†
−c−〉, 〈c

†
+c
†
+c+c−〉,

〈c†+c
†
−c−c−〉, and 〈c†+c

†
+c−c−〉 are involved. The equations of motion for 〈c†±c

†
±c±c±〉 and 〈c†+c+c

†
−c−〉 are

d

dt
〈c†±c

†
±c±c±〉 = 4γmnth〈c†±c±〉 − 2γm〈c†±c

†
±c±c±〉, (78)

d

dt
〈c†+c+c

†
−c−〉 = γmnth

(
〈c†+c+〉+ 〈c†−c−〉

)
− 2γm〈c†+c+c

†
−c−〉. (79)

Substituting Eq. (63) yields

〈c†±c
†
±c±c±〉 (τ0) = 2X (τ0) , (80)

〈c†+c+c
†
−c−〉 (τ0) = X (τ0) , (81)

where

X (t) = nth (nth − 1) exp (−2γmt) + nth (1− 2nth) exp (−γmt) + n2
th. (82)
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The equations of motion for 〈c†+c
†
+c+c−〉 are found to be

d

dt
〈c†+c

†
+c+c−〉 = i2J〈c†+c

†
+c+c−σz〉+ 2γmnth〈c†+c−〉 − 2γm〈c†+c

†
+c+c−〉, (83)

d

dt
〈c†+c

†
+c+c−σz〉 = i2J〈c†+c

†
+c+c−σ

2
z〉+ 2γmnth〈c†+c−σz〉 − 2γm〈c†+c

†
+c+c−σz〉, (84)

d

dt
〈c†+c

†
+c+c−σ

2
z〉 = i2J〈c†+c

†
+c+c−〉+ 2γmnth〈c†+c−σ2

z〉 − 2γm〈c†+c
†
+c+c−σ

2
z〉. (85)

Together with Eq. (64), solving straightforwardly the coupled differential equations (84) and (85) results in

〈c†+c
†
+c+c−σz〉 (t) = −nth [1− exp (−γmt)] exp (−i2Jt) exp (−γmt) , (86)

which, in turn, gives

〈c†+c
†
+c+c−〉 (τ0) = −iY (τ0) , (87)

where

Y (t) = nth [1− exp (−γmt)] exp (−γmt) . (88)

In a treatment similar to that used for 〈c†+c
†
+c+c−〉, we obtain

〈c†+c
†
−c−c−〉 (τ0) = −iY (τ0) , (89)

〈c†+c
†
+c−c−〉 (τ0) = 0. (90)

Upon combining Eqs. (80), (81), (87), (89), and (90), this yields, after inversion back to the localized-mode basis,

〈b†kb
†
kbkbk〉 (τ0) = 2X (τ0) , (91)

〈b†1b1b
†
2b2〉 (τ0) = X (τ0) , (92)

〈b†1b
†
1b1b2〉 (τ0) = 〈b†1b

†
2b2b2〉 (τ0) = iY (τ0) , (93)

〈b†1b
†
1b2b2〉 (τ0) = 0. (94)

During the second evolution interval τ0 < t ≤ τ0 + τ1, the dynamics of the system is driven by the master equation
given in Eq. (52), but with H (t) replaced by H1. Thus, as mentioned in Sec. III, the system has a dynamical evolution
similar to what has already been discussed with the delocalized-mode basis in the first interval. We follow the same
recipe as above and then find

〈b†kb
†
kbkbk〉 (τ0 + τ1) = 2X (τ0 + τ1) , (95)

〈b†1b1b
†
2b2〉 (τ0 + τ1) = X (τ0 + τ1) , (96)

〈b†1b
†
1b1b2〉 (τ0 + τ1) = 〈b†1b

†
2b2b2〉 (τ0 + τ1) = i exp (−iJτ1)Y (τ0 + τ1) , (97)

〈b†1b
†
1b2b2〉 (τ0 + τ1) = 0, (98)

at the end of this interval.
For the third evolution interval τ0 + τ1 < t ≤ τT , we return back to the master equation in Eq. (58), and also back

to the delocalized-mode basis. According to Eqs. (95), (96), (97), and (98), the evolution at this stage starts from

〈c†±c
†
±c±c±〉 (τ0 + τ1) = 2X (τ0 + τ1)∓ i2 sin (Jτ1)Y (τ0 + τ1) , (99)

〈c†+c+c
†
−c−〉 (τ0 + τ1) = X (τ0 + τ1) , (100)

〈c†+c
†
+c+c−〉 (τ0 + τ1) = 〈c†+c

†
−c−c−〉 (τ0 + τ1) = −i cos (Jτ1)Y (τ0 + τ1) , (101)

〈c†+c
†
+c+c−σ

j
z〉 (τ0 + τ1) = 〈c†+c

†
−c−c−σ

j
z〉 (τ0 + τ1) = i(−1)j+1 sin2 (ϕ) cos (Jτ1)Y (τ0 + τ1) , (102)

〈c†+c
†
+c−c−〉 (τ0 + τ1) = 〈c†+c

†
+c−c−σ

j
z〉 (τ0 + τ1) = 0, (103)
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where j = 1, 2. Note that, before this evolution, the spin state has already been transformed from |D〉 → cos (ϕ) |0〉+
sin (ϕ) |D〉 via a single-qubit rotation. Then, by following the same procedure as in the first interval, the last evolution
ends with

〈c†±c
†
±c±c±〉 (τT ) = 2X (τT )± 2 sin (Jτ1)Y (τT ) , (104)

〈c†+c+c
†
−c−〉 (τT ) = X (τT ) , (105)

〈c†+c
†
+c+c−〉 (τT ) = 〈c†+c

†
−c−c−〉 (τT ) = −i cos (Jτ1)

[
cos2 (ϕ)− i sin2 (ϕ)

]
Y (τT ) , (106)

〈c†+c
†
+c−c−〉 (τT ) = 0, (107)

and as a result, with

〈b†kb
†
kbkbk〉 (τT ) = 2X (τT ) + 2 (−1)

j
sin2 (ϕ) cos (Jτ1)Y (τT ) . (108)

It is seen that on the right-hand side of Eq. (108), the first term arises from the particle behavior of a phonon and
the second term arises from its wave behavior.

By substituting Eq. (108) into Eq. (77), the fluctuation δnk in the occupation nk is given by

(δnk)
2

=
(
n2

th − 2Pknth − P 2
k

)
exp (−2γmτT )

− (2nth + 1) (nth − Pk) exp (−γmτT ) + nth (nth + 1) . (109)

Since γmτT � 1, we have

(δnk)
2 '

(
δnsignal

k

)2

+
(
δnnoise

k

)2
, (110)

where (
δnsignal

k

)2

= Pk (1− Pk) , (111)(
δnnoise

k

)2
= Pk (2Pk − 1) γmτT + nthγmτT (2Pk + 1) . (112)

Here, δnsignal
k , the quantum fluctuation induced by the Heisenberg uncertainty principle, accounts for the coherent

signal, and δnnoise
k represents the fluctuation noise, including the vacuum (the first term) and thermal (the second

term) fluctuations. To confirm the predictions of Eq. (110), we perform numerics, as shown in Fig. 5. Specifically,
we plot the fluctuation noises δnnoise

1 and δnnoise
2 versus the relative phase φ. The analytical expression is in excellent

agreement with our numerical simulations. Furthermore, the respective CNT signal-to-noise ratios can be defined as
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FIG. 5. (Color online) Fluctuation noise δnnoise
1 and δnnoise

2 as a function of the phase φ. (a) ϕ = 0, (b) π/4, and (c) π/2. Solid
and dashed curves are analytical results for δnnoise

1 and δnnoise
2 , respectively, and symbols correspond to numerical simulations.

These analytical and numerical results exhibit an exact agreement. For all plots, in addition to γs/2π = 200γm/2π = 80 Hz,
we have assumed that g/2π = 100 kHz, ωm/2π = 2 MHz, Ω = 10ωm, and ∆− = 142ωm, resulting in ωq ' 1.5ωm and then
J/2π ' 12 kHz. We have also assumed that nth = 100, corresponding to an environmental temperature of ' 10 mK.



14

(a)

0

5

10

(b)

0

5

10

(c)

0

5

10

si
gn

al
-t

o-
no

is
e 

ra
tio

(d)

0

5

10

(e)

0 /2 3 /2 2
0

5

10

FIG. 6. (Color online) Signal-to-noise ratios R1 and R2. (a) ϕ = 0, (b) π/8, (c) π/4, (d) 3π/8, and (e) π/2. The solid curves
show R1, while the dashed curves show R2. The gray shaded area represents the region, where the signal cannot be resolved.
For all plots, all other parameters have been set to be the same as in Fig. 5.

Rk =
Pk

δnnoise
k

. (113)

Note that, here, we did not use δnk to define Rk because δnsignal
k in δnk results from quantum fluctuations of the

desired signal, as mentioned previously; and therefore this is not the environmental noise. In order to resolve a signal
from the fluctuation noise, the ratio Rk is required to be Rk > 1. However, Eq. (113) demonstrates that this criterion
is not always met for all values of Pk, in particular, at finite temperatures. For example, Pk = 0 leads directly to
Rk = 0. To address this problem, we now consider the total fluctuation noise,

S2 =
(
δnnoise

1

)2
+
(
δnnoise

2

)2
. (114)

We further assume that

S2 < P 2
1 + P 2

2 . (115)

Under this assumption, if Rk < 1, then R3−k > 1 for k = 1, 2; otherwise R1 > 1, R2 > 1. This means that at least
one of the signals, P1 or P2, is resolved for each measurement. Because the coherent phonon number equal to 1 is
conserved, and therefore the signals in the two CNTs are complementary, the unresolved signal can be completely
deduced from the resolved one. Thus, the criterion in Eq. (115) ensures that the morphing behavior between wave
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and particle can be observed from the environment-induced fluctuation noise. In fact, for any value of Pk, the total
noise S is limited by an upper bound,

S < B ≡
√
γmτmax

T + 4nthγmτmax
T , (116)

which is independent of Pk. Meanwhile,
√
P 2

1 + P 2
2 is also limited by a lower bound

√
2/2. Thereby, in order to meet

the criterion given in Eq. (115), it is required that

B <
√

2

2
. (117)

Based on this condition, we can define a signal visibility

R =

√
2

2B
, (118)

in analogy to Rk. When R > 1, the morphing between wave and particle can be observed, and cannot otherwise.
This, in turn, leads to an upper bound on the equilibrium phonon occupation,

nth <
1− 2γmτ

max
T

8γmτmax
T

, (119)

and therefore an upper bound on the temperature,

T <
~ωm

kB ln [(1 + 6γmτmax
T ) / (1− 2γmτmax

T )]
. (120)

Because τmax
T ' 5π/2J , the critical temperature is

Tc =
~ωm

kB ln [(1 + 15πγm/J) / (1− 5πγm/J)]
. (121)

In Fig. 6 we plot the signal-to-noise ratios R1 and R2 at the temperature T ' 10 mK. We find that almost all signals
can be resolved, and also, as expected, find that when the signal in one CNT is unresolved, the signal in the other

CNT is resolved. In fact, the upper bound B is the fluctuation noise in the total phonon occupation 〈b†1b1 + b†2b2〉 at

time τT . The criterion R > 1 heralds that to resolve the morphing behavior, the fluctuation noise in 〈b†1b1 + b†2b2〉 (τT )

is required to be smaller than
√

2/2.

V. Numerical simulations

In order to confirm our analytical results, we need to numerically simulate the dynamics with the full master
equation given by

ρ̇ (t) =
i

~
[ρ (t) , HF ]− γs

2
L (σ′z) ρ (t)

− γm
2
nth

∑
k=1,2

L
(
b†k

)
ρ (t)− γm

2
(nth + 1)

∑
k=1,2

L (bk) ρ (t) , (122)

where σ′z = |D〉〈D| − |0〉〈0|, and HF is the full Hamiltonian of Eq. (8). Here, we use the Python framework
QuTiP [24, 25] to set up this problem. However, the full Hamiltonian is time-dependent, and it takes a long time
to integrate the corresponding Schrödinger equation or the master equation, in particular, for our case, where all
quantum gates result from the deterministic time evolution of the system. Thus, in our numerical simulations, we
replace HF with Hlow + Hhigh, as in Eq. (13). This is a reasonable replacement because in our proposal Ω (tens
of MHz) is required to be much smaller than ∆′ (up to ∼ GHz). In Fig. 7, we plot the unitary evolution of the

phonon occupations, 〈b†1b1〉 and 〈b†2b2〉, of the CNTs. Symbols are the exact results from the full Hamiltonian HF and
solid curves are given by the approximate Hamiltonian Hlow +Hhigh. We find an excellent agreement for a very long

evolution time, and thus HF can be very well approximated by Hlow +Hhigh. For additional comparison, we also plot
the phonon occupation evolution driven only by the low-frequency component Hlow, corresponding to dotted curves.
As seen in Fig. 7, owing to the error accumulation, the dynamics of Hlow deviates largely from the full dynamics of
HF , even within one oscillation cycle. With the above replacement, we obtain the numerical simulations plotted in
Fig. 2 of the article, and also in Fig. 5 of the Supplemental Material.
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FIG. 7. (Color online) Unitary evolution of the CNT phonon occupations, 〈b†1b1〉 and 〈b†2b2〉, for (a) ∆− = 10Ω, (b) 25Ω, and (c)
35Ω. The symbols, solid, and dotted curves are obtained, respectively, from HF , Hlow +Hhigh, and Hlow. For all plots here we
have assumed that ωm/2π = 2 MHz, Ω = 15ωm, ω0 = D−∆−, ∆+ = D+ω0, ∆ = ∆−+3Ω2/∆+, ωq = 2Ω2/∆+2Ω2/∆+, and

J = 2ωqg
2/

(
ω2
q − ω2

m

)
, with a symmetric coupling strength g/2π = 100 kHz and an initial state |Ψ〉i =

(
b†1 ⊗ I2|vac〉

)
⊗ |D〉.
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