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In the past few decades, many works have been devoted to the study of exceptional points (EPs), i.e., exotic
degeneracies of non-Hermitian systems. The usual approach in those studies involves the introduction of a
phenomenological effective non-Hermitian Hamiltonian (NHH), where the gain and losses are incorporated
as the imaginary frequencies of fields and from which the Hamiltonian EPs (HEPs) are derived. Although this
approach can provide valid equations of motion for the fields in the classical limit, its application in the derivation
of EPs in the quantum regime is questionable. Recently, a framework [Minganti et al., Phys. Rev. A 100, 062131
(2019)] which allows one to determine quantum EPs from a Liouvillian EP (LEP), rather than from an NHH, has
been proposed. Compared to the NHHs, a Liouvillian naturally includes quantum noise effects via quantum-jump
terms, thus allowing one to consistently determine its EPs purely in the quantum regime. In this work we study
a non-Hermitian system consisting of coupled cavities with unbalanced gain and losses, where the gain is far
from saturation, i.e, the system is assumed to be linear. We apply both formalisms, based on an NHH and a
Liouvillian within the Scully-Lamb laser theory, to determine and compare the corresponding HEPs and LEPs in
the semiclassical and quantum regimes. Our results indicate that, although the overall spectral properties of the
NHH and the corresponding Liouvillian for a given system can differ substantially, their LEPs and HEPs occur
for the same combination of system parameters.
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I. INTRODUCTION

Non-Hermiticity plays a crucial role in the study of the
dynamics of quantum systems. Non-Hermiticity refers to the
systems described by Hamiltonians that are non-Hermitian,
i.e., the energy spectra are represented by complex values. The
positive or negative imaginary parts of the eigenvalues of a
non-Hermitian Hamiltonian (NHH) indicate that a given sys-
tem undergoes either amplification or dissipation processes,
respectively. The best known examples of non-Hermitian
systems are open quantum systems, where a quantum system
of interest interacts with an environment, where the latter
induces decoherence of the former.

Recently, a new surge of interest in non-Hermitian sys-
tems has been triggered by the discovery of a class of
non-Hermitian Hamiltonians, which commute with a parity-
time (PT ) operator, with real eigenvalues [1]. Initially, PT -
symmetric systems were merely an object of mathematical
interest, as there was little understanding on how to imple-
ment such systems in practice. It was only later realized that
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PT symmetry can be carried out in photonics, due to the
analogy of the Schrödinger equation in quantum mechanics
and the paraxial Maxwell equation in classical physics [2–6].
In the latter case, this analogy can be explored by making
the profile of the real and imaginary parts of the optical
index of a medium symmetric and asymmetric, respectively.
Thus, one can obtain a system which exhibits PT -symmetry-
like behavior, by properly balancing gain and losses of
the system.

One of the most peculiar properties of non-Hermitian
systems, in particular those which are PT symmetric, is the
presence of the so-called exceptional points (EPs), i.e., system
degeneracies, where both eigenvalues and their corresponding
eigenvectors of an NHH coincide. The behavior of physical
systems near EPs can lead to the observation of nontrivial
phenomena in photonics [2,3]. These include unidirectional
invisibility [7,8], lasers with an enhanced-mode selectivity
[9,10], low-power nonreciprocal light transmission [11,12],
thresholdless phonon lasers [13,14], enhanced light-matter
interactions [15–17], and loss-induced lasing [18,19]. Excep-
tional points have been discussed in electronics [20], optome-
chanics [13,21,22], acoustics [23,24], plasmonics [25], and
metamaterials [26]. The concept of EPs has been success-
fully applied in the description of dynamical quantum phase
transitions and topological phases of matter in open quantum
systems (see, e.g., [27–36]).
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So far, the concept of EPs in photonics has been mostly
exploited within the framework of effective NHHs, where
gain and losses are introduced phenomenologically into the
Hamiltonians as the imaginary part of the field frequencies.
The use of such an approach can be justified in the semiclas-
sical regime, i.e., when considering intense classical fields.
However, that approach can fail in the quantum regime, where
the explicit inclusion of quantum noise and spontaneous
emission becomes necessary. Needless to say, quantum noise
leads to symmetry breaking, in particular, PT -symmetry
breaking [37]. The quantum noise in a system can be precisely
simulated by either the master equation (ME) [38,39] or the
quantum trajectory method [40,41]. Of course, one can also
resort to quantum Langevin forces within the framework of
an NHH, but such an approach bears a phenomenological
character and in some cases can lead to erroneous results
[38,42].

The ME with a Liouvillian superoperator captures all the
dynamics of an open quantum system with Markovian gain
and losses. Recently, the concept of EPs based on the de-
generacies of the Liouvillian rather than of an effective NHH
was introduced in Refs. [43,44]. The study of the spectrum
of a Liouvillian provides a framework for the investigation of
the properties of non-Hermitian systems and their EPs in a
rigorous quantum approach [44–50].

In this work, we focus on a linear non-Hermitian system
consisting of two coupled active and passive cavities with gain
and loss, respectively. The system is assumed to be linear,
because the active cavity is assumed to operate far below the
lasing threshold.

We study and compare EPs derived from two different
formalisms based on an effective NHH and a Liouvillian.
Furthermore, we analyze Hamiltonian EPs (HEPs) and Liou-
villian EPs (LEPs) in both semiclassical, i.e., when quantum
jumps can be effectively ignored, which usually is the case
for systems with large mean photon number 〈n̂〉 � 1, and
quantum regimes, i.e., when quantum jumps cannot be ig-
nored, e.g., for quantum systems with very small mean photon
number 〈n̂〉 � 1. In both regimes, we treat the fields as q
numbers.

In the semiclassical regime, we determine HEPs from
the eigenspectra of the Hamiltonian, which is written in a
finite-matrix form, whereas LEPs are derived via a two-time
correlation function (TTCF), since a direct diagonalization of
the Liouvillian is almost impossible for 〈n̂〉 � 1. In contrast,
in the quantum single-photon limit, both Hamiltonian and
Liouvillian can be represented as finite matrices, thus allow-
ing us to determine their HEPs and LEPs solely from their
eigenspectra.

Our results indicate that the same combination of system
parameters leads to the occurrence of HEPs and LEPs in either
regime. Remarkably, the overall spectral properties of the
Liouvillian and NHH can differ substantially. Indeed, we find
that LEPs can be of higher order than that of the corresponding
HEPs.

Additionally, when considering the semiclassical regime,
we provide a comparison of LEPs determined from both
TTCFs and spectral bifurcation points of power spectra. Thus,
we present a comparison of LEPs defined in two comple-
mentary domains. This comparison reveals that, in general,

TABLE I. Abbreviations used in this paper.

Full name Abbreviation

Non-Hermitian Hamiltonian NHH
Exceptional point EP
Hamiltonian exceptional point HEP
(an EP of an NHH)
Liouvillian exceptional point LEP
(an EP of a Liouvillian)
Spectral bifurcation point SBP
(a bifurcation point of a power spectrum)
Master equation ME
Two-time correlation function TTCF

only TTCFs can be used for identifying a true LEP in the
semiclassical limit.

The paper is organized as follows. In Sec. II we introduce
both Liouvillian and effective NHHs for the linear system
of coupled active and passive cavities. In Secs. III and IV
we study and compare HEPs and LEPs in the semiclassical
and quantum regimes, respectively. We summarize and draw
conclusions in Sec. V.

Through the text of this paper we deal with several ab-
breviations. Therefore, in order to avoid any confusion when
encountering them, we list all of them in Table I.

II. GENERAL THEORY OF THE SCULLY-LAMB MODEL
IN THE QUANTUM LIMIT

The object of our study is the system of two coupled
cavities, sketched in Fig. 1, where one cavity is active, i.e., it
can provide gain for fields, and the other cavity is passive, i.e.,
it induces only losses. Additionally, each resonator is coupled
to a waveguide (see Fig. 1).

The Hamiltonian of the system can be written as

Ĥ =
2∑

k=1

h̄ωkâ†
k âk + ih̄κ (â1â†

2 − H.c.), (1)

FIG. 1. Setup of the system of linearly coupled active and passive
resonators. The active cavity R1 has a gain rate A and the total loss
rate �1 = C1 + γ1, consisting of the intrinsic loss rate C1 and the
loss rate γ1 due to the coupling of R1 to the waveguide WG1. The
passive cavity R2 has a total leakage rate �2 = C2 + γ2, with C2 and
γ2 being an intrinsic loss and a leakage loss to the waveguide WG2,
respectively. The coupling strength between the active R1 and passive
R2 resonators is denoted by κ .
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where âk (â†
k) is the boson annihilation (creation) operator

of the mode k = 1, 2, with frequency ωk , and H.c. denotes
Hermitian conjugate. Moreover, κ is the real coupling strength
between the resonators.

To incorporate loss and gain in the cavities on the quantum
level, one can resort to the Scully-Lamb ME [38,51], which
has the form

d

dt
ρ̂ = 1

ih̄
[Ĥ, ρ̂] +

[
A

2
(â†

1ρ̂â1 − â1â†
1ρ̂ )

+B

8
[ρ̂(â1â†

1)2 + 3â1â†
1ρ̂â1â†

1 − 4â†
1ρ̂â1â†

1â1]

+
2∑

i=1

�i

2
(âiρ̂â†

i − â†
i âiρ̂) + H.c.

]
, (2)

given in terms of the gain A and gain saturation B coefficients
for the field in the active cavity. This equation describes
the dynamics of the photonic part of a quantum laser and,
accordingly, the coefficients can be expressed as

A = 2g2r

Y 2
, B = 4g2

Y 2
A, (3)

where the parameter g stands for the coupling strength be-
tween the atoms of the gain medium and the optical field in the
active cavity, Y is the decay rate of the atoms, and r accounts
for the pump rate of the gain medium. In Eq. (2) the total
decay rates for both cavities are given by (i = 1, 2)

�i = Ci + γi, (4)

where Ci is the intrinsic loss of the ith cavity and γi stands for
the loss due to the possible coupling of the ith cavity to the ith
waveguide.

A. Liouvillian and effective non-Hermitian Hamiltonian for the
system of coupled active and passive cavities in the

weak-gain-saturation regime

The ME, given in Eq. (2), can be recast as an equation with
a Lindblad Liouvillian superoperator L [41],

d

dt
ρ̂ = Lρ̂(t )

= 1

ih̄
[Ĥ, ρ̂] − 1

2

4∑
i=1

(L̂†
i L̂iρ̂ + ρ̂L̂†

i L̂i − 2L̂iρ̂L̂†
i ), (5)

where the Lindblad operators L̂i (for i = 1, . . . , 4) are defined
as

L̂1 =
√

Aâ†
1

(
1 − B

2A
â1â†

1

)
,

L̂2 = 1

2

√
3Bâ1â†

1,

L̂3 =
√

�1â1,

L̂4 =
√

�2â2. (6)

The Lindblad form in Eq. (5) is equivalent to the ME (2) if the
terms of second order in Bâ1â†

1/2A are neglected in Eq. (5),
which holds true for the weak-gain-saturation regime.

When the active cavity is far below the lasing threshold and
it is not driven by an intense coherent field, the gain saturation
parameter B can be safely dropped and the ME (5) reduces to
the following ME with a linear gain:

d

dt
ρ̂ = Lρ̂(t )

= 1

ih̄
[Ĥ, ρ̂] + A

2
(2â†

1ρ̂â1 − â1â†
1ρ̂ − ρ̂â1â†

1)

+
2∑

i=1

�i

2
(2âiρ̂â†

i − â†
i âiρ̂ − ρ̂â†

i âi ). (7)

From now on, we will always assume that the system of
the coupled active and passive cavities is linear. Thus, we
only consider the linear ME (7). The ME (7) as well as
(2) incorporates both the quantum jump term Ôρ̂Ô† and the
continuous amplification or dissipation terms ÔÔ†ρ̂ + ρ̂ÔÔ†.

We notice that the Liouvillian in Eq. (7) is quite general
and is not only limited to the description of quantum lasers
in the linear-gain approximation. Indeed, Eq. (7) describes
also an incoherently driven bosonic dimer. Recently, several
incoherent driving mechanisms were proposed [52–54] and
the presence of photon-photon interaction was shown to in-
duce a critical behavior in lattices of resonators [55,56]. Since
LEPs suggest the presence of a dissipative phase transition
[45] and can occur also far from the thermodynamic limit,
the study of the EPs in the dimer model relates to criticality
and spontaneous symmetry breaking characterizing the phase
transition of the full lattice model.

On the other hand, in the vast literature devoted to PT -
symmetric systems with balanced gain and losses, one can
often encounter the use of the phenomenological effective
NHH

Ĥeff = Ĥ + ih̄

2
Aâ†

1â1 − ih̄

2

2∑
j=1

� j â
†
j â j, (8)

with the unitary Hamiltonian Ĥ given in Eq. (1). As one can
see, this NHH incorporates the gain and loss rates as the
imaginary part of the field frequencies.

The NHH Ĥeff in Eq. (8) gives the same dynamics for
the fields â j , j = 1, 2, as the ME in Eq. (7), but fails to
explicitly incorporate quantum noise, thus making the NHH
usable, in general, only in the semiclassical limit. A detailed
discussion of the actual semiclassical limit in this model will
be in Sec. III.

Below we calculate the HEPs and LEPs of the NHH Ĥeff

in Eq. (8) and Liouvillian L in Eq. (7), respectively, in both
semiclassical and quantum regimes for a given linear system
in order to reveal their differences.

B. Liouvillian spectrum and exceptional points

Before we analyze the EPs of the Scully-Lamb model, let
us first briefly recall some key properties of the Liouvillian
spectrum [43,45].

1. Diagonalization of the Liouvillian superoperator

The spectrum of the Liouvillian L, given in Eq. (7), is
found according to the formula

Lρ̂i = λiρ̂i, (9)
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where λi and ρ̂i are the eigenvalues and eigenmatrices of the
Liouvillian, respectively. We can always order the eigenvalues
and eigenmatrices in such a way that Re[λ0] > Re[λ1] �
Re[λ2] � · · · . Moreover, since the superoperator L is not
necessarily Hermitian, it can acquire both right (Lρ̂i = λρ̂i)
and left (L†σ̂i = λ∗

i σ̂i) eigenmatrices, respectively. The left
and right eigenmatrices obey the relation Tr[ρ̂iσ̂ j] = δi j . If L
is diagonalizable, the density matrix ρ̂(t ) of the system can be
written as

ρ̂(t ) =
∑

i

ci(t )ρ̂i, (10)

where ci(t ) = exp(λit )Tr[σ̂iρ̂(0)].
The eigenvalue λ0 = 0 of the Liouvillian L in Eq. (9)

defines the steady-state density matrix ρ̂ss ∝ ρ̂0 of the
system. The proportionality factor depends on the normal-
ization choice which is done on ρ̂0. Indeed, one often in-
duces the standard Hilbert-Schmidt norm so that ‖ρ̂0‖2 =
Tr[ρ̂†

0 ρ̂0] = 1, while instead Tr[ρ̂ss] = 1. For the remaining
nonzero eigenvalues λi 
= 0 the corresponding eigenmatrices
ρ̂i are traceless, i.e., Tr[ρ̂i] = 0.

If λi ∈ R, then the corresponding eigenmatrix ρ̂i is Hermi-
tian. In this case, by diagonalizing the eigenmatrix

ρi =
∑

n

p(i)
n

∣∣ψ (i)
n

〉〈
ψ (i)

n

∣∣, (11)

one can consider the decomposition ρ̂i = ρ̂+
i − ρ̂−

i , where

ρ̂+
i =

∑
n�n̄

p(i)
n

∣∣ψ (i)
n

〉〈
ψ (i)

n

∣∣, (12)

with p(i)
n � 0, and

ρ̂−
i = −

∑
n>n̄

p(i)
n

∣∣ψ (i)
n

〉〈
ψ (i)

n

∣∣, (13)

with p(i)
n < 0, such that Tr[ρ̂+

i ] = Tr[ρ̂−
i ] = 1. The latter

stems from the fact that the eigenmatrix ρ̂i is traceless and
one can always rearrange the coefficients p(i)

n such that p(i)
n >

0 when n � n̄, and p(i)
n < 0 when n > n̄. Now with such

a decomposition, the wave functions constituting both ρ̂±
i

can be compared with those comprising the corresponding
effective NHH.

When λi ∈ C, the eigenmatrix ρ̂i becomes non-Hermitian.
Clearly, in this case, in order to ensure Hermiticity of the
total density matrix ρ̂(t ) one has to consider the Hermitian
symmetric ρ̂s

i = ρ̂i + ρ̂
†
i and antisymmetric ρ̂a

i = i(ρ̂i − ρ̂
†
i )

combinations. Again, by performing the same decomposition
procedure as above, one arrives at the density matrices

ρ̂s
i = ρ̂s+

i − ρ̂s−
i , ρ̂a

i = ρ̂a+
i − ρ̂a−

i . (14)

In this formalism, a Liouvillian exceptional point is the
point of the parameter space where two eigenmatrices of
the Liouvillian coalesce. Since LEPs are associated with a
nondiagonalizable Liouvillian, at the critical point one has
a Jordan canonical form. With an LEP of order 2, one has
an eigenvalue λEP and a generalized eigenmatrix ρ̂ ′

EP. Conse-
quently, Eq. (10) becomes

ρ̂(t ) =
∑

i

ci(t )ρ̂i + cEP(t )ρ̂EP + c′
EP(t )ρ̂ ′

EP, (15)

where

cEP(t ) = exp(λEPt )Tr[σ̂EPρ̂(0)],

while

c′
EP(t ) = t exp(λEPt )Tr[σ̂ ′

EPρ̂(0)].

Moreover, LEPs should be understood as purely dynami-
cal phenomena. In this Lindblad ME formalism, LEPs can
emerge only for those eigenstates of the Liouvillian with
a negative real part, i.e., those describing the evolution of
an initial density matrix towards its steady state (for more
detailed discussions, see Refs. [43,45,48]).

2. Two-time correlation functions

A direct diagonalization of the Liouvillian necessary to
access its spectrum, however, is often extremely challenging,
especially considering the exponentially diverging size of the
Hilbert space of the system. A TTCF could capture the nature
of EPs: A generic operator Ô, which does not commute with
the Hamiltonian, projects the system out of its steady state.
This new density matrix is the superposition of several Liou-
villian eigenmatrices, in principle including those associated
with a LEP. For example, this idea was used in Ref. [57]
to explicitly access the Liouvillian gap, i.e., the λi with the
smallest real part, of a Kerr resonator. This implies that
the conditional dynamics, which follows the application of the
operator Ô, bears a signature of the EP presence. Indeed, any
TTCF can be written as [58]

〈Â(t )B̂(t + τ )〉 = Tr{Â(0)eLτ [ρ̂(t )B̂(0)]}, (16)

where the square brackets indicate that the action of the
exponential Liouvillian map must be taken on the matrix
ρ(t )B̂(0). In this regard, for the steady state we define

〈Â(0)B̂(τ )〉ss = Tr{Â(0)eLτ [ρ̂ssB̂(0)]}. (17)

The matrix ρ̂ssB̂ is in general different from ρ̂ss. Therefore, we
can express it in terms of the generalized eigenmatrices ρ̂i of
the Liouvillian (including ρ̂ ′

EP), that is,

ρ̂ssB̂ =
∑

i

ciρ̂i. (18)

Because we have used the spectral decomposition of the
Liouvillian, by recalling the linearity of the trace, we have

〈Â(0)B̂(τ )〉ss =
∑

i

ciTr{Â(0)eLτ [ρ̂i]}. (19)

We have two possible cases. (i) For a system without EPs
or away from them, Eq. (19) reads

〈Â(0)B̂(τ )〉ss =
∑

i

cie
λiτ Tr{Â(0)ρ̂i}. (20)

Indeed, for long times, only the slowly decaying fields are
relevant and

〈Â(0)B̂(τ )〉ss 
 c0Tr{Aρ̂0} + c1eλ1τ Tr{Aρ̂1} + · · · . (21)

In this regard, 〈Â(0)B̂(τ )〉ss as a function of time τ de-
scribes an exponential decay towards the steady-state value
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c0Tr{Â(0)ρ̂0}. (ii) In the presence of an LEP, one has

〈Â(0)B̂(τ )〉ss =
∑

i

ciτ
ni eλiτ Tr{Â(0)ρ̂i}, (22)

where ni is the degree of degeneracy of the EP associated with
the eigenmatrix ρ̂i. For example, for an EP of degree 3, we
would have a contribution of

eλiτ [ciTr{Â(0)ρ̂i} + ci+1τTr{Â(0)ρ̂i+1}
+ci+2τ

2Tr{Â(0)ρ̂i+2}] (23)

in the expansion of Eq. (19).
In this regard, a deviation from an exponential decay

signals the presence of an EP. This implies that the conditional
dynamics, which follows the application of the operator Ô,
bears a signature of the presence of an EP.

III. HAMILTONIAN AND LIOUVILLIAN EXCEPTIONAL
POINTS IN THE SEMICLASSICAL REGIME

Here we study the EPs of both the non-Hermitian Hamil-
tonian and Liouvillian in the semiclassical limit. Hence, we
consider the two-cavity system, shown in Fig. 1, populated
by many photons 〈n̂〉 � 1, i.e., the system can be probed by
intense coherent fields. Such an assumption does not allow us
to represent the Liouvillians in their matrix form, due to the
rapidly exponentially diverging size of the latter. The weak-
gain case, where the Liouvillian can be exactly diagonalized,
will be investigated in Sec. IV. Here we resort rather to the
two-mode formalism to deduce the presence of an LEP.

We note that the effective Hamiltonian studied here de-
scribes the gain and loss as the imaginary parts of the fre-
quencies of quantum fields [see Eq. (8)]. Such a Hamiltonian
arises from the mean-field approximation and, as a result, its
use is justified in the semiclassical regime when considering
intense coherent fields. The NHH associated with this model
explicitly exhibits a U(1) Hamiltonian symmetry, implying
that the subspaces corresponding to different numbers of ex-
citations do not mix, even if the total number of excitations is
not conserved. On the other hand, this symmetry is broken in
the corresponding Liouvillian because of the presence of the
quantum-jump terms. The Liouvillian approach describes a
mixed-state dynamics obtained by averaging over many pure-
state quantum trajectories, where quantum jumps induce tran-
sitions between manifolds corresponding to different numbers
of excitations. Nonetheless, in the semiclassical limit with
many excitations, the action of the creation and annihilation
operators, associated with a quantum jump, scales as

√
n in a

cavity with n excitations, while the other energy terms scale
as n. Therefore, adding or removing a single excitation does
not drastically change typical properties of the system even
at the level of its eigenvectors. As a result, in the frequency
spectrum, one might expect some similarity between an NHH
and the corresponding Liouvillian in the semiclassical limit.

A. Hamiltonian exceptional points

Let us first find an EP of the effective NHH Ĥeff in Eq. (8).
By introducing the operator vector â = (â1, â2)T , one can

recast the NHH Ĥeff in Eq. (8) in the matrix form as

Ĥeff = â†Hâ where H =
(

ωc + i A−�1
2 −iκ

iκ ωc − i �2
2

)
, (24)

From Eq. (24) one then can immediately find the eigenvalues
of the Hamiltonian Ĥeff ,

ν1,2 = ωc + i

4
(A − �+) ± i

4
β, (25)

where β =
√

(A − �−)2 − 16κ2 and �± = �1 ± �2.
The complex eigenvalues νi indicate the non-Hermitian

character of the Hamiltonian Ĥeff . Moreover, because of this
non-Hermiticity, the operator Ĥeff can attain both right |ψ〉
and left 〈ψ̃ | eigenvectors via relations

Ĥeff |ψi〉 = νi|ψi〉, 〈ψ̃i|Ĥeff = νi〈ψ̃i|, (26)

respectively. Hereafter, without loss of generality, we consider
only right eigenvectors |ψi〉 of the NHH Ĥeff , since the HEPs
are defined equivalently using either set of vectors. The corre-
sponding right eigenvectors become

|ψ1,2〉 = 1

N1,2

(
A − �− ± β

4κ

)
, (27)

where N± is the corresponding normalization coefficient.
By analyzing Eqs. (25) and (27), one comes to the conclu-

sion that, in the semiclassical regime, the NHH Ĥeff has an
HEP where both eigenvalues and eigenvectors coalesce when

κs
HEP = 1

4 |A − �−|. (28)

At the HEP, the two linearly independent eigenvectors |ψ1,2〉
coalesce to a single eigenvector

|ψHEP〉 ≡
(

1
1

)
. (29)

In this case, the 2 × 2 NHH Ĥeff becomes nondiagonalizable,
thus acquiring a Jordan form. This means that, at the HEP,
the generalized eigenspace of the NHH Ĥeff is spanned by
the vector |ψHEP〉 and a pseudoeigenvector |ψ ′

HEP〉, which is
obtained from |ψHEP〉 via a Jordan chain relation and reads

|ψ ′
HEP〉 ≡

(−1
1

)
. (30)

For details regarding pseudoeigenvectors see, e.g.,
Refs. [59,60].

It is also worth noting that the NHH Ĥeff in Eq. (8) fails
to incorporate spontaneous emission, since Ĥeff |0〉 = 0. Obvi-
ously, because of the presence of the gain process in the active
cavity, the probability of spontaneous emission is nonzero.
To overcome this difficulty, one can apply the Heisenberg
equations to the quantum field operators â j ( j = 1, 2),

dâ j

dt
= 1

ih̄
[â j, Ĥeff ],

with the phenomenologically introduced quantum Langevin
forces [61]

d

dt
â1 = A − �1

2
â1 − κ â2 +

√
Aĝ†

1 +
√

�1 l̂1,

d

dt
â2 = −�2

2
â2 + κ â1 +

√
�2 l̂2, (31)
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where ĝ†
j (l̂ j) is the quantum noise amplification (dissipation)

operator of the jth cavity, with the commutation relations
[Ô j (t ), Ô†

k (t ′)] = δ jkδ(t − t ′), for Ô = ĝ, l̂ and j = 1, 2.
Now the equations of motion for the quantum fields given

in Eq. (31) can provide the same fields dynamics as by the
Liouvillian L [39], which we consider below.

Importantly, in order to properly describe the spectral
properties of the fields, the rate equations (31), for the active
cavity field â1, should contain both amplification and dissi-
pation noise operators. Otherwise, one can arrive at wrong
conclusions (see Appendix A for details). We stress that the
omission of the dissipation noise operator in the active cavity
in Eq. (31) has become widespread in the literature, especially
in that devoted to PT -symmetric systems.

B. Liouvillian exceptional points

As we discussed, it is in general challenging to find an LEP
of the Liouvillian L in Eq. (7), especially in the semiclassical
regime. However, one could infer the presence of LEPs using
the TTCFs of the fields, as it was described in Sec. II B. Below
we compute 〈â†

j (0)â j (τ )〉ss for the field in the jth cavity, j =
1, 2, in the steady state, to demonstrate its ability to capture
the EPs of the Liouvillian. We note that this method, which
enables us to reveal the dynamics of the Liouvillian, can be
extended to high-order TTCFs [62], as it was experimentally
done in, e.g., Ref. [57]. Moreover, our calculations are made
simpler by the absence of a driving field in Eq. (1), i.e., the
TTCF does not involve a coherent part due to an external
driving laser field, and will capture only the incoherent part
of the TTCF induced by the gain in the active cavity. We
note that, in the presence of a coherent field, the dynamical
character of the incoherent part of the TTCF would not change
qualitatively, and thus we could perform the same analysis for
that model. Finally, we stress that this method indicates the
presence of an LEP, but it does not provide either the structure
of the eigenmatrices of the Liouvillian or their relation to the
eigenvectors of the NHH. These two can differ substantially,
as it will be shown in the next section.

1. Computation of the two-time correlation function

To obtain the TTCF one may invoke the quantum regres-
sion theorem, which states that the equations of motion for
system operators are also the equations of motion for their
correlation functions. To express this theorem mathematically,
one can write the equation [63]

d

dτ
〈Ô(t )Â(t + τ )〉 = M〈Ô(t )Â(t + τ )〉, (32)

where Â = [Â1, Â2, . . . , Âν] is the vector of a complete set
of system operators Âμ, in the sense that the averages 〈Âμ〉,
μ = 1, 2, . . . , ν, form the set of coupled linear equations with
the evolution matrix M. The operator Ô can be arbitrary, not
necessarily belonging to Âμ.

For the studied system of coupled active and passive cavi-
ties, governed by a ME with the Liouvillian L in Eq. (7) and
with the Hamiltonian in Eq. (1), the complete set is formed by
the vector Â = [â1, â2] of the field operators â1 and â2. The

FIG. 2. Mean photon numbers 〈n̂1〉 in the active cavity (red solid
curve) and 〈n̂2〉 in the passive cavity (blue dashed curve) in the steady
state as a function of the intercavity coupling κ . The intrinsic gain
and loss are balanced in the system, i.e., to satisfy the condition
A − C1 − C2 = 0, where the gain A = 30.1 (arbitrary units), the
intrinsic loss in the passive cavity C2 = 0.1 (arbitrary units), and the
coupling of both cavities to the waveguides is γ = 1 (arbitrary units)
(see Fig. 1).

evolution matrix M is found to be

M = −iH, (33)

where H is given in Eq. (24). Now, by combining Eqs. (32)
and (33) and using the operators â†

j , j = 1, 2, instead of the

operator Ô, one obtains the solution for the TTCF,(
〈â†

j (t )â j (t + τ )〉
〈â†

j (t )âk (t + τ )〉

)
= exp(Mτ )

(
〈â†

j (t )â j (t )〉
〈â†

j (t )âk (t )〉

)
(34)

for j, k = 1, 2 and j 
= k.
The TTCF in the steady state can be obtained by sending

t → ∞ in Eq. (34). As Eq. (34) indicates, in order to find
correlation functions, one needs first to know the average of
the photon numbers in each cavity as well as the averages
〈â†

j (t )âk (t )〉.
Again, by applying the master equation (7) to the operators

â†
j âk and â†

j âk , one obtains their averages in the steady state as

〈â†
1â1〉ss = A

(
4κ2 − G1�2 + �2

2

)
f ,

〈â†
2â2〉ss = 4κ2A f ,

〈â†
1â2〉ss = 〈â†

2â1〉ss = 2κ�2A f ,

(35)

where G1 = A − �1 represents the total net gain in the active
cavity and f −1 = (4κ2 − G1�2)(�2 − G1) is a normalization
factor. As an example, in Fig. 2 we plot the averages of the
photon numbers in the steady state in both cavities given in
Eq. (35), as a function of the intercavity coupling strength κ .
The system is chosen to balance intrinsic gain and losses, i.e.,
one imposes the condition A − C1 − C2 = 0 simulating the ef-
fective PT -symmetric regime [4]. Such a symmetry is called
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effective since the total gain and losses are not balanced due
to nonzero waveguide coupling γ 
= 0, thus breaking the gen-
uine PT symmetry (for details see also Ref. [64]). As Fig. 2
indicates, the average steady-state number of photons in both
cavities can be large, due to the interplay between spontaneous
emission and the gain in the active cavity [cf. Eq. (35)]. By
varying the coupling strength κ between the cavities, one ob-
tains different values of the photon numbers in the resonators,
which become identical in the limit κ → ∞ (see Fig. 2):

〈n̂1〉 = 〈n̂2〉 = A

�+ − A
.

Photon-number fluctuations are large too. For instance, for
κ = 0, the dispersion of the number of photons in the active
cavity becomes σ (〈n̂〉) = √

�1/A〈n̂〉, which indicates the
thermal character of the gain.

Now, combining Eqs. (34) and (35), one arrives at the
formula for the TTCF in both cavities in the steady state, and
away from the LEP, which is written

〈â†
1(0)â1(τ )〉ss = u2 exp(−iν1τ ) + u1 exp(−iν2τ ),

〈â†
2(0)â2(τ )〉ss = v2 exp(−iν1τ ) + v1 exp(−iν2τ ), (36)

where ν1,2 are the eigenfrequencies of the NHH in Eq. (25)
and u1,2 and v1,2 are functions of the system parameters given
in Appendix B. Equation (36) implies that the dynamics of
the TTCF, away from the LEP, imposed by the Liouvillian
is similar to that of the NHH Ĥeff imposed on the fields. By
comparing Eqs. (36) and (21), one can see that the rate of
decay of these TTCFs is exactly captured by the NHH. Most
importantly, as it follows from Eq. (36), the position of at least
one of the LEPs coincides with that of the HEP:

κs
LEP = κs

HEP = 1
4 |A − �−|. (37)

When κ < κs
LEP, the TTCFs in Eq. (36) exhibit a simple

exponential decay, as described by a superposition of two
exponents of the Liouvillian eigenvalues ν1 and ν2.

When the intercavity coupling κ equals κs
LEP, by consider-

ing a rotating reference frame at the cavity frequency ωc, the
TTCFs in Eq. (36) reduce to

〈â†
i (0)âi(τ )〉ss = exp

(
1
4λτ

)
(Pi + Qiτ ), i = 1, 2, (38)

where λ = A − �+ < 0, and the values of the constants Pi and
Qi are given in Appendix B. We note here that the expressions
for P1,2 and Q2 are always positive valued, whereas the values
of Q1 can be either positive or negative, depending on whether
the expression A − �− is positive or negative, respectively
(see Appendix B, for details). Thus, for linear systems with
PT symmetry, including the effective PT symmetry, the
coefficient Q1 is always positive and becomes proportional to
the intercavity-coupling strength κ . To experimentally deter-
mine a LEP from the TTCFs in Eq. (38), one might need to
implement curve-fitting techniques to capture the deviation of
the TTCF from a simple exponential decay, when increasing
the intercavity coupling κ . In particular, if A − �− < 0, i.e.,
Q1 < 0, then an LEP can be directly defined from the arising
negative values of the TTCF in the active cavity, according to
Eq. (38).

On the other hand, in general, right above the EP, i.e.,
when κ > κs

LEP, both TTCFs in Eq. (36) can acquire negative

FIG. 3. Two-time correlation function 〈â†
j (0)â j (τ )〉ss in the

steady state, according to Eq. (36), in the rotating reference frame
ωc, for the active (red solid curve) and passive (blue dashed curve)
cavities, for different values of the intercavity coupling κ (in arbitrary
units): (a) κ = 0.01, (b) κ = 0.0501, (c) κ = 0.1, and (d) κ = 0.5.
The other system parameters are the same as in Fig. 2. For this
system, the Liouvillian EP is found at κ = 0.05 (arbitrary units),
according to Eq. (36), i.e., the point at and above which the TTCF
fails to demonstrate solely an exponential decay [see the inset in
(b)]. In order to capture the deviation of the TTCF from the explicit
exponential behavior right above the EP, one might need longer
correlation times τ [see the inset in (b)]. All panels are shown in
logarithmic scale, except the inset in (b).

values due to the increasing oscillatory term β in the rotating
frame ωc. In order to catch these increasing negative values in
the TTCFs, the observation of longer coherence times might
be needed [see the inset in Fig. 3(b)]. Additionally, these
oscillations make the TTCFs substantially deviate from the
simple exponential decay when increasing κ [see Figs. 3(c)
and 3(d)].

2. Power spectrum

We note that in real experimental situations, it might be
very challenging to measure a TTCF, which is necessary to
determine the exact position of the LEP. In this case, one can
use complementary frequency space analysis, where instead
of the TTCF one just measures the power spectra of the
detected fields. Those power spectra can provide an intuitive
and comprehensive interpretation of the EP. Namely, the
presence of the EP, e.g., of the second order, can be revealed
by a squared Lorentzian line shape in the power spectrum,
corresponding to a coalescence of two resonance peaks. The
latter technique has already been successfully used in, e.g.,
Ref. [11].
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The formula for the power emission spectra in the jth
cavity expressed via the TTCF reads

S j (ω) = 1

2π

∫ ∞

−∞
〈â†

j (0)â j (τ )〉sse
iωτ dτ. (39)

By combining Eqs. (33)–(35) and (39), one obtains the emis-
sion spectra in the active and passive cavities

S1(ω) = AF

2π

[
�2 + �2

2

4

]
, S2(ω) = κ2AF

2π
, (40)

where

F = [
ω2

+ω2
− + 1

4

(
G2

1 + �2
2

)
�2 + 1

16 G1�2(G1�2 − 8κ2)
]−1

,

where � = ω − ωc is the frequency detuning, ω± = � ± κ ,
and the net gain in the active cavity is G1 = A − �1 < 0.

Before we start the spectral-power analysis based on
Eq. (40), we would like to make the following remark. Note
that because of our definition of the power spectra given
in terms of the non-Hermitian annihilation operators â in
Eq. (39), the spectrum of the vacuum is set to zero [39,65].
The quantum-field spectral power S(ω) vanishes for the vac-
uum, as implied by Eq. (37). Indeed, the spectral power is
defined as the Fourier transform of a two-time average of
the non-Hermitian boson operators â and â†. In this case,
the spectral power becomes proportional to the mean photon
number in the steady state, which for the vacuum is zero,
regardless of the presence of the dissipation noise operators.
On the other hand, when performing a real experiment, one
measures the spectrum of the Hermitian electric field Ê ≡
â + â†, which for the vacuum in the cavity with frequency
ω0 and loss rate � gives the nonvanishing spectral power

SÊ (ω) ≡
∫

〈Ê (0)Ê (τ )〉 exp(iωτ )dτ = �

(ω − ωc)2 + �2

4

,

where the amplitude of the vacuum fluctuations is set to 1.
Now, by inspecting Eq. (40), one can see that the emission

spectra in both cavities are provided mainly by the gain A.
In particular, for a fixed intercavity coupling κ , both power
spectra S1(ω) → 0 and S2(ω) → 0, if A → 0. On the other
hand, the power spectrum S2 in the passive cavity is always
zero, whenever κ = 0, regardless of the values of the gain A in
the active cavity, as expected. Moreover, the formulas derived
in Eq. (40) show that the emission spectra in both cavities
are in general squared Lorentzians [66]. The latter confirms
that the system can experience a mode-splitting phenomenon,
i.e., there is a point in parameter space where two resonances
coalesce.

The mode splitting, i.e., the appearance of the squared
Lorentzians, occurs at different κ for the two cavities and it
is defined via (see Appendix B for details)

κ1 =
√

�2

2

[√
(G1 − �2)2 + �2

2 + (G1 − �2)
]1/2

,

κ2 =
√

2

4

√
G2

1 + �2
2 . (41)

This mode-splitting difference is due to the fact that the
system has an effective PT symmetry. This means that the un-
compensated losses, due to the coupling of the cavities to the
waveguides, affect the two-mode resolution in both cavities at

the same value of κ . Moreover, the larger the uncompensated
loss is, the larger the mode-splitting difference is.

A comparison of Eqs. (37) and (41) leads us to the con-
clusion that the LEPs that are exactly determined from the
TTCF and those obtained via power-spectra analysis are in
general are different. These spectral bifurcation points (SBPs)
of power spectra, given in Eq. (41), converge to the LEP
defined from the TTCF in Eq. (37) only in the limit when the
total loss and the total gain in the system become balanced,
i.e., when A − �1 − �2 → 0. This means that the extra losses
induced by the imbalance of the net gain and damping in
the active and passive cavities strongly affect the resolution
of the genuine LEP exploiting the power spectrum. We also
remark that, in the limit when A − �1 − �2 → 0, the active
cavity approaches the lasing threshold, where the system
linearity assumption can in general fail and possibly lead to
nonphysical results. Hence, since the “true” LEP is captured
by the TTCF, the SBPs can be seen as an approximation of the
LEP.

Nevertheless, the analysis of the power spectra can give
us some additional and valuable hints to understand the
physics of the system. In Fig. 4 we plot the power spec-
tra of both cavities for different values of the intercav-
ity coupling κ . In Fig. 5 we plot the peaks of the power
spectra resonances (whose splitting signals the SBPs) and
the imaginary part of ν1,2 associated with the decay of the
TTCF (whose bifurcation indicates the LEP). We choose
balanced intrinsic gain and losses A − C1 − C2 = 0 (which
is the effective PT -symmetric regime). Due to the addi-
tional coupling of the cavities to the waveguides, the total
gain in the system becomes smaller than the total loss, i.e.,
A − �1 − �2 = A −C1 −C2 − 2γ < 0. Our formalism remains
valid for γ large enough to ensure that the active cavity
is far below the lasing threshold. As one can see, for very
small values of κ , the power spectrum in both cavities is
asymmetric, i.e., the emission is mainly observed in the active
cavity, which has a Lorentzian shape [see Fig. 4(a)]. This is
because the coupling is too small for the generated photons
in the active resonator to pass into the passive cavity and be
emitted. Again, this is a demonstration of the impossibility to
realize PT symmetry in photonic systems due to a sponta-
neous emission enhanced by the gain A. If one were to drive
the system by intense classical fields, this would eventually
restore the symmetry, but completely conceal the presence
of the spontaneous-emission fields. Note that similar conclu-
sions, regarding the self-sustained radiation in the system and
observed asymmetry in the emission spectra, were previously
obtained in Refs. [66,67] by applying scattering theory.

By increasing the coupling strength κ , the emission spec-
trum in the active cavity starts exhibiting a squared-Lorentzian
line shape [see Fig. 4(b)], which signals the mode splitting
arising in the active resonator, i.e., the appearance of an SBP
in the system (see Fig. 5). At the same time, the emission
spectrum in the passive cavity becomes comparable in power
to the power spectrum in the active resonator but with a
Lorentzian line shape [see Figs. 4(b) and 5]. Further increas-
ing κ leads to a clear mode splitting in the active resonator
and the emergence of a squared-Lorentzian line in the passive
resonator [see Figs. 4(c) and 5]. For even larger values of κ , S1

and S2 are Lorentzian and coincide with each other, showing
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FIG. 4. Power spectra Sj (ω), according to Eq. (40), in the active
(red solid curve) and passive (blue dashed curve) cavities versus the
frequency detuning � = ω − ωc for different values of the intercav-
ity coupling κ (in arbitrary units): (a) κ = 0.1, (b) κ = 0.278, (c) κ =
0.5, and (d) κ = 5. We assumed that the system has an intrinsic
balanced gain and losses satisfying the relation A − C1 − C2 = 0.
The system parameters are the same as in Fig. 2. Near SBPs, given
in Eq. (41), the spectra exhibit squared Lorentzian line shapes [see
(b) and (c)], while far away from the SBPs, the spectra are Lorentzian
with one peak below the SBPs and two peaks above the SBPs [see
(a) and (d)]. This figure demonstrates that, in general, the Liouvillian
EP cannot be faithfully determined from the power-spectra analysis,
in contrast to the TTCF, shown in Fig. 3.

two well-separated lines, which, in the limit κ → ∞, become
proportional to the intercavity splitting κ [see Figs. 4(d)
and 5].

3. Discussion about the semiclassical limit

To summarize this section, we have defined and compared
the HEP and one of the LEPs in the semiclassical regime.
Whereas the HEP has been directly obtained from the spectra
of the NHH, the LEP has been determined from the TTCF,
which enables the detection of the LEPs in the system. The
analysis provided implies that, in this regime, both the HEP
and at least one of the LEPs appear for the same combination
of system parameters and have the same decay rate. We note
that although, in general, one fails to identify the exact value
of an LEP from the power spectra based on the resonant
peaks splitting, it might be possible to detect it by utilizing
other statistical measures applied to the spectrum curves, e.g.,
such as bimodal coefficients or Binder cumulants. That study,
however, is beyond the scope of this work. Finally, in the
special cases when the system approaches the genuine PT
symmetry with balanced total gain and losses in both cavities,

FIG. 5. Resonances of the power spectra in the active (red solid
curve) and passive (blue dashed curve) cavities from Fig. 4 (see also
Appendix B for details). The system parameters are the same as in
Fig. 2. There is a shift between mode splittings in the two cavities,
which is increasing with increasing value of waveguide couplings
γ1 = γ2 = γ . For comparison, the imaginary frequencies ν1,2 of the
Liouvillian (gray dash-dotted curves), which are the same as the real
frequencies of the NHH given in Eq. (25), are also displayed on the
graph. The imaginary frequencies of the Liouvillian and resonances
of the emission spectra coincide in the limit κ → ∞. On the other
hand, the LEP of L in Eq. (37) and SBPs of S1,2 in Eq. (41) tend to
coincide in the limit A − �1 − �2 → 0, i.e., in the limit where the
assumption of the linearity of the system can fail.

the mode splitting phenomenon in the power spectra tends to
occur at the exact value of the LEP.

IV. HAMILTONIAN AND LIOUVILLIAN EXCEPTIONAL
POINTS IN THE QUANTUM SINGLE-PHOTON LIMIT

Let us consider a situation when there is no more than one
photon in each cavity, i.e., 〈n̂i〉 � 1, i = 1, 2. This can be
easily achieved when the ratio between the gain and the losses
in the active cavity is very low, i.e., A/�1 � 1, according to
Eq. (35). In this case, the Hilbert space of the system can be
reduced to a four-dimensional space, spanned by the vectors
| j〉|k〉 with j, k = 0, 1. As a result, we can easily represent
both the NHH and Liouvillian as small matrices, allowing
their diagonalization and the study of their EPs in the quantum
single-photon limit.

A. Non-Hermitian Hamiltonian exceptional points

In the two-photon cutoff Hilbert space, the effective NHH
in Eq. (8) attains the matrix form (see Appendix C for details)

Ĥeff ≡

⎛
⎜⎜⎝

0
ωc − i �2

2 iκ
−iκ ωc + i

2 (A − �1)
2ωc + i

2 (A − �+)

⎞
⎟⎟⎠,

(42)

with eigenvalues

η0 = 0, η1 = 2ωc + i

2
(A − �+), η2,3 = ν1,2, (43)
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where ν1,2 are given in Eq. (25). Note that, because of the
resized NHH Ĥeff , compared to that in Eq. (24), apart from
the same eigenvalues η2,3, this NHH has also two additional
eigenvalues η0 and η1. Again, because the eigenvalues ηi in
Eq. (43) are complex, the NHH Ĥeff can attain both right and
left eigenvectors.

The right eigenvectors of the NHH Ĥeff in Eq. (42), away
from the HEP, are

|ψ0〉 = |00〉,
|ψ1〉 = |11〉, (44)

|ψ2,3〉 ≡ (A − �− ± β )|10〉 + 4κ|01〉,
with β given below Eq. (25). The normalization coefficients
for the eigenstates |ψ2,3〉 in Eq. (44) can be safely dropped,
since the system considered in this quantum regime does not
exhibit the PT symmetry, where the eigenstates might not be
normalized [59].

By inspecting Eq. (44), one can clearly see the coalescence
of the eigenvalues η2 = η3 = i(A − �−)/4 and that the eigen-
vectors |ψ2〉 and |ψ3〉 coalesce to the maximally entangled
state |ψHEP〉 ≡ |10〉 + |01〉, which occurs at the following
HEP:

κ
q
HEP = 1

4 |A − �−|. (45)

As expected, for this NHH Ĥeff , the HEPs coincide in the
semiclassical and single-photon limits.

At the HEP, the NHH Ĥeff becomes nondiagonalizable, i.e.,
it attains a Jordan form. Hence, the generalized eigenspace of
the NHH Ĥeff consists of the eigenvectors

|ψ0〉 = |00〉, |ψ1〉 = |11〉, |ψHEP〉 ≡ |10〉 + |01〉 (46)

and the singlet-type pseudoeigenvector [59]

|ψ ′
HEP〉 ≡ |10〉 − |01〉. (47)

B. Liouvillian exceptional points

1. Eigenvalues

Within the two-photon approximation, the Liouvillian L in
Eq. (7) is a 4 × 4 matrix. By combining Eqs. (7) and (9), one
obtains the eigenvalues of L (see Appendix C for details),

λ0 = 0, λ1,2 = iωc − 1
2 A+ + 1

4 E±,

λ3,4 = − 1
2 (A+ ± D), λ5,6 = − 1

2 A+,

λ7 = 2iωc − 1
2 A+, λ8,9 = iωc − 1

2 A+ − 1
4 E±,

λ10 = −A+, λ11,12,13,14,15 = λ∗
1,2,7,8,9, (48)

where D =
√

A2
− − 16κ2, A± = A + �±, and

E± =
√

2
√

(A + �1)2 + �2
2 − 16κ2 ± F ,

with

F = [A2
+A2

− + 16κ2(8A�2 − A2
+)]1/2.

As an example, we plot the frequency spectrum λi of the
Liouvillian in Fig. 6.

Note that the Liouvillian frequency spectrum in general
strongly depends on the interaction κ between the fields in the
two cavities, particularly when �i � � j , i, j = 1, 2 and i 
= j.

FIG. 6. Liouvillian EPs and the real part of its eigenvalues λ j ,
according to Eq. (48): Re[λ0] (red solid curve), Re[λ1,2] (blue dash-
dotted curves), Re[λ3,4] (green dashed curves), Re[λ5,6,7] (purple
solid curve), Re[λ8,9] (cyan dotted curves), and Re[λ10] (orange solid
curve). The gain in the active cavity A = 0.01 (arbitrary units), while
the losses in the active and passive cavities are the same as in Fig. 2.
The maximum value of the mean photon number in the active cavity
is 〈n̂1〉max ≈ 3 × 10−4. For comparison, the HEP (vertical gray dotted
line) of the NHH, given in Eq. (45), is also displayed. This graph
indicates that, in the single-photon regime, the LEPs and HEPs tend
to coincide. Moreover, as it follows from the plot, the values of the
two LEPs, given in Eqs. (53) and (57), also show the tendency to
overlap.

This means that compared to the case when both cavities are
isolated from each other, the decay rates λi of the Liouvillian
states can be either substantially facilitated or impeded by this
interaction [68–70].

2. Eigenmatrices

The eigenmatrices ρ̂i, corresponding to the real-valued
eigenvalues λi, can be written as

ρ̂ j = 1

Nj

⎛
⎜⎜⎜⎜⎝

ρ
( j)
00

ρ
( j)
01

ρ
( j)
10

ρ
( j)
11

⎞
⎟⎟⎟⎟⎠, j = 0, 10, (49)

ρ̂3,4 =

⎛
⎜⎜⎜⎝

ρ ′
00 ± f1D

ρ ′
01 ± f2D ρ ′

0110 ± f3D

ρ ′
0110 ± f3D ρ ′

10 ± f4D

ρ11

⎞
⎟⎟⎟⎠,

(50)

ρ̂5 =

⎛
⎜⎜⎜⎝

ρ00

ρ01 ρ0110

ρ0110 ρ10

ρ11

⎞
⎟⎟⎟⎠,

ρ̂6 =
⎛
⎝0

σ̂y

0

⎞
⎠, (51)
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where D is given in Eq. (48), σ̂y is a 2 × 2 Pauli matrix, and the
rest of the parameters are given in Appendix C. The remaining
non-Hermitian eigenmatrices with complex eigenvalues are

ρ̂k =

⎛
⎜⎝

0 ρ0001(λk ) ρ0010(λk )
0 0 ρ0111

0 ρ1011(λk )
0

⎞
⎟⎠,

k = 1, 2, 8, 9, (52)

ρ̂7 =

⎛
⎜⎝

1
⎞
⎟⎠,

and for the eigenvalues λl , with l = 11, 12, 13, 14, 15, the
eigenmatrices are found as a Hermitian conjugate of the
eigenmatrices ρ̂k , with k = 1, 2, 7, 8, 9, respectively, where ρ̂k

are given in Eq. (52). The exact values of all the eigenmatrices
in Eqs. (49)–(52) are given in Appendix C. Obviously, the
spectrum of the Liouvillian L is much richer than that of the
NHH Ĥeff .

3. Spectral decomposition and LEPs

a. Study of ρ̂0,10. The Hermitian diagonal eigenmatrix ρ̂0

in Eq. (49) is the steady-state density matrix. As expected,
the steady state is nothing else but a classical mixture of the
states | jk〉〈 jk|, where j, k = 0, 1. The Hermitian eigenmatrix
ρ̂10 instead is responsible for the dynamical evolution of the
diagonal elements | jk〉〈 jk| towards the steady state with the
decaying rate λ10.

b. Study of ρ̂3,4. We now study the eigenmatrices ρ̂3,4 since,
as it will be shown below, their eigenstates are the closest
to those defined in Eq. (44). As it was stressed earlier, the
EP of the Liouvillian is defined as a point in the parameter
space where the eigenvalues and eigenmatrices of L coin-
cide. By inspection of Eqs. (48) and (50), one can see that
both eigenvalues λ3,4 and corresponding eigenmatrices ρ̂3,4

coincide whenever D = 0. Moreover, the eigenvalues λ3,4 and
eigenmatrices ρ̂3,4 coalesce with the eigenvalue λ5 in Eq. (48)
and the eigenmatrix ρ̂5 in Eq. (51), respectively. Therefore,
the Liouvillian L acquires a third-order EP given by

κ
q
LEP,1 = 1

4 |A−| = 1
4 |A + �1 − �2|. (53)

The subscript 1 in κ
q
LEP,1 stands for the first LEP since, as it

will be shown below, there are at least two LEPs in the system,
which in the limit A → 0 coincide.

Remarkably, despite the fact that the HEP κ
q
HEP and LEP

κ
q
LEP,1 are of different order and have a slightly different

forms (opposite signs at �1 and �2), they occur for the same
combination of parameters in the weak-gain regime, where
the two-photon cutoff can be safely applied. Namely, when
considering a two-photon cutoff, one must bear in mind that
the gain A in the active cavity should be very small compared
to the total loss in the active cavity, i.e., A/�1 � 1, in order
to justify the two-photon approximation. Therefore, in the
case when A becomes negligible compared to both �1 and
�2, the LEP and HEP tend to coincide, i.e., κ

q
HEP

∼= κ
q
LEP,1

(see also Fig. 6). Most importantly, our numerical results also
indicate that even by increasing the gain A and enlarging the

7.0 7.2 7.4 7.6 7.8 8.0
30

25

20

15
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0

FIG. 7. Liouvillian EPs and the real parts of their eigenvalues λ

for a multiphoton system with up to eight photons in each cavity. The
system parameters are the gain in the active cavity A = 0.5 (arbitrary
units) and the losses in the active and passive cavities, which are the
same as in Fig. 2. For comparison, the HEP of the NHH (vertical gray
dotted line), given in Eq. (45), is also displayed. This graph indicates
that with an increasing photon number in the system, the LEPs and
HEP tend to coincide as in Fig. 6.

subspace of the Hilbert space to higher photon excitations,
the LEP and HEP demonstrate the same tendency to overlap,
i.e., κ

q
LEP,1 → κ

q
HEP with increasing 〈n̂1〉 (see also Fig. 7).

Therefore, the same EP can have different order for the NHH
Ĥeff and the Liouvillian L.

Note that the previous discussion can also be generalized if
we consider two truly coupled two-level systems. Namely, if
instead of considering the small-gain regime of a bosonic sys-
tem we take under consideration a system where the photon-
photon interaction determines a photon-blockade regime, the
NHH fails to capture not only the nature of the LEP, but also
the parameters for which it occurs.

When κ < κ
q
LEP,1, both eigenmatrices ρ̂3,4 are Hermitian

and one can immediately find their eigenstates as follows:∣∣ψ (3,4)
0

〉 = |00〉,∣∣ψ (3,4)
1

〉 = |11〉,∣∣ψ (3)
2,3

〉 ≡ 4κ|01〉 + (D ± |A−|)|10〉,∣∣ψ (4)
2,3

〉 ≡ 4κ|01〉 + (−D ± |A−|)|10〉. (54)

Direct inspection of Eq. (54) reveals that the subspace of the
eigenstates of the density matrices ρ̂ (2,3) resembles the space
of the eigenstates of the NHH Ĥeff in Eq. (44). Moreover, in
the limit A → 0, this resemblance turns into equivalence.

When κ = κ
q
LEP,1, then λ3 = λ4 = λ5 = λEP = −A+/2

and ρ̂3 = ρ̂4 = ρ̂5 (see also Fig. 6). The latter implies that the
eigenstates of the Liouvillian at this LEP, which belong to the
eigenmatrix ρ̂5 and describe the intercavity fields interaction,
are the maximally entangled states, according to Eq. (59).
Additionally, at the LEP κ

q
LEP,1, the algebraic multiplicity

of the eigenvalue λLEP exceeds its geometric multiplicity,
according to Eqs. (48), (50), and (51). Namely, the algebraic
multiplicity of λLEP becomes 4, but geometric multiplicity
equals 2, because there are only two linearly independent
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eigenmatrices ρ̂5,6 for this eigenvalue. The rank of the eigen-
matrices ρ̂3,4,5 is the same and equals 4, whereas the rank of
the eigenmatrix ρ̂6 equals 2. Therefore, one has to find two
additional generalized pseudoeigenmatrices of rank 4 for the
Liouvillian L, which takes on a Jordan form in this case.
These pseudoeigenmatrices, denoted by ρ̂ ′

5 and ρ̂ ′′
5 , can be

found via Jordan chain relations (see Appendix D for details).
When found, the density matrix ρ̂(t ) of the system can be
decomposed in the form given in Eq. (15), with an addi-
tional contribution c′′

EP(t )ρ̂ ′′
EP, where ρ̂ ′′

EP = ρ̂ ′′
5 and c′′

EP(t ) =
t2 exp(λEPt )Tr[σ̂ ′′

5 ρ̂(0)].
When κ > κ

q
LEP,1, one has to consider the symmetric ρ̂s

3,4
and antisymmetric ρ̂a

3,4 density matrices, as was explained
above. Thus, one eventually finds the form of the eigenstates
for the symmetric density matrices ρ̂s

3,4,∣∣ψ (3,4)
0

〉
s = |00〉,∣∣ψ (3,4)

3

〉
s = |11〉, (55)∣∣ψ (3,4)

1,2

〉
s ≡ −δ|01〉 + (D2 ±

√
δ2 + D4)|10〉,

where δ = 4κA−. The antisymmetric matrices ρ̂a
3,4 instead

have the eigenstates∣∣ψ (3,4)
0

〉
a = |00〉,∣∣ψ (3,4)

1,2

〉
a ≡ −4κ|01〉 + (A− ± γ )|10〉,

(56)

where γ =
√

16κ2 + A2
−. As one can see from Eqs. (55) and

(56), the eigenstates of ρ̂s,a
3 and ρ̂s,a

4 are the same. This stems
from the fact that ρ̂4 = ρ̂

†
3 according to Eq. (50), in the case

when κ > κ
q
LEP,1. As both Eqs. (55) and (56) infer, in this

case, there is also no exact matching between the eigenstates
of Ĥeff and ρ̂s,a

3,4 of the Liouvillian L, thus providing a different
description of the interaction between the cavities. In the limit
κ → ∞, the two antisymmetric intercavity eigenstates reduce
to |ψ (3,4)

1,2 〉a ≡ |10〉 ± |01〉, whereas the symmetric intercavity

eigenstates |ψ (3,4)
2,3 〉 reduce to either |01〉 or |10〉. According

to Eqs. (10) and (48), away from the EPs, the elements
|ψ (3,4)

n 〉s,a〈ψ (3,4)
n | of the eigenmatrices ρ̂s,a

3,4 in Eqs. (55) and
(56), apart from the exponential decay, also acquire an oscil-
lating term proportional to D.

c. Study of ρ̂1,2,8,9. Now let us focus on the non-Hermitian
eigenmatrices ρ̂i, i = 1, 2, 8, 9, given in Eq. (52). These
eigenmatrices define the second LEP in the system:

κ
q
LEP,2 =

∣∣(A + �1)2 − �2
2

∣∣
4
√

A2+ − 8A�2

. (57)

At the LEP κLEP,2, one can observe the coalescence of the
eigenmatrices ρ̂1 and ρ̂2, as well as the coalescence of the
eigenmatrices ρ̂8 and ρ̂9, and the same applies to their Her-
mitian conjugate (see Fig. 6). Thus, the LEP κ

q
LEP,2 is of

second order. In particular, when A � �1,2, which is true
in the two-photon cutoff, the LEP κ

q
LEP,2 is also inclined to

coincide with κ
q
LEP,1 and κ

q
HEP (see Fig. 6). Importantly, the

same conclusion regarding the convergence of the LEPs to the
HEP remains valid even when we try to increase the gain A,
i.e., by extending the Hilbert space to larger photon numbers
(see Fig. 7).

By performing the eigendecomposition of the Hermi-
tian symmetric and antisymmetric eigenmatrices ρ̂s,a

i , i =
1, 2, 8, 9, the corresponding wave functions |ψ (i)

n 〉 in general
take the form of the superpositions |ψ (s,a)

n 〉 = ∑
ci j |i〉| j〉.

Moreover, away from the EPs, the eigenmatrix elements
|ψ (s,a)

n 〉〈ψ (s,a)
n |, in addition to gradually decaying, rapidly os-

cillate around the cavity resonance frequency ωc, according to
Eqs. (10) and (48).

d. Study of ρ̂5,6. The real eigenvalue λ5,6 in Eq. (48) has
both algebraic and geometric multiplicity of 2. This means
that there are two linearly independent eigenmatrices corre-
sponding to this eigenvalue, which are given in Eq. (51). The
Hermitian nondiagonal eigenmatrix ρ̂5, along with the eigen-
states |00〉 and |11〉, has the following intercavity maximally
entangled states: ∣∣ψ (5)

1,2

〉 ≡ |01〉 ± |10〉. (58)

On the other hand, the eigenmatrix ρ̂6 possesses only the
following entangled states:∣∣ψ (6)

1,2

〉 ≡ |01〉 ± i|10〉. (59)

The elements |ψ ( j)
n 〉〈ψ ( j)

n | of the eigenmatrix ρ̂ j , j = 5, 6,
decay in time with the rate λ5,6.

e. Study of ρ̂7. Finally, we find that the non-Hermitian
eigenmatrices ρ̂7 and ρ̂

†
7 give the intercavity eigenstates∣∣ψ (7)
1,2

〉 ≡ |00〉 ± |11〉. (60)

The products |ψ (7)
1,2〉〈ψ (7)

1,2|, which constitute the eigenmatrix
ρ̂7, also decay with the same rate as the states ρ̂5,6, but
oscillate at the double frequency 2ωc, according to Eqs. (10)
and (48).

f. General discussion about the spectral decomposition. In
the single-photon limit, the LEPs and HEPs tend to coincide,
as in the semiclassical case for many photons. On the other
hand, the spectral properties of the Liouvillian drastically dif-
fer from those of the NHH and exhibit a rich dynamical nature.
Most importantly, even if the LEPs and HEPs coincide for
the same set of system parameters, they can have completely
different order, thus pointing to the different nature of HEPs
and LEPs.

V. CONCLUSION

We have studied the quantum and semiclassical excep-
tional points of a linear non-Hermitian system of coupled
cavities with losses and gain within the Scully-Lamb quantum
laser model. Specifically, we have found the expressions for
the HEPs and LEPs of the non-Hermitian system in both
semiclassical and quantum regimes, i.e., when the system
contains classical fields with either many photons or single
photons, respectively. Our results have demonstrated that in
either regime the positions of both HEPs and LEPs tend to
be the same. Moreover, physical quantities such as the decay
rates of the first-order correlation functions are the same. In
the semiclassical regime, we have calculated the HEP from the
spectra of the effective non-Hermitian Hamiltonian, whereas
the LEP has been determined from the two-time correlation
function. Importantly, our analysis has also revealed that it
is exactly a TTCF that enables us to identify a true LEP
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in the semiclassical regime, whereas the field power spectra
in general fail to reveal the exact value of the LEP. In the
quantum mode, we have assumed that the system contains
no more than one photon in each cavity, thus allowing us to
write down both the NHH and Liouvillian in a finite matrix
form. Our calculations have also indicated that, whereas the
parameters for HEPs and LEPs can coincide, the spectral
structure of the Liouvillian is much richer compared to the
NHH, revealing its full dynamical nature. Moreover, we have
found that, in the quantum regime, the very order of EPs can
be different for HEPs and LEPs, with LEPs being in general
of higher order.
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APPENDIX A: REMARKS REGARDING THE USE
OF QUANTUM LANGEVIN FORCES IN SEC. III A

Here we would like to make a few comments regarding
the widespread use of quantum Langevin forces, given in
Eq. (31), which encompass the quantum noise in the system.

In the usual approach, applied in the related literature
[71,72], especially devoted to the PT -symmetric cavities,
one may encounter the Langevin equations for the quantum
fields â1 and â2 in the coupled cavities (ignoring the complex
frequency part)

d

dt
â1 = g1

2
â1 − κ â2 + √

g1 f̂ †
1 , (A1a)

d

dt
â2 = −g2

2
â2 + κ â1 + √

g2 l̂2, (A1b)

where g1 > 0 (g2 > 0) describes amplification (damping) in
the active (passive) cavity and f̂ †

j (l̂ j) is the quantum Langevin
force describing quantum noise amplification (dissipation) in
the jth cavity. Moreover, one applies the Markovian approxi-
mation, i.e.,

[Ô j (t ), Ô†
k (t ′)] = δ jkδ(t − t ′), (A2)

where Ô = f̂ , and l̂, j = 1, 2.

In the case when there are no thermal photons in the
environment, one obtains

〈 f̂ j (t ) f̂ †
j (t ′)〉 = 〈l̂ j (t )l̂†

j (t ′)〉 = δ(t − t ′). (A3)

For the case when κ = 0, by direct calculation using
Eqs. (A1), one acquires the following expression for the mean
photon number in the active cavity:

〈n̂1(t )〉 = exp(2g1t ) − 1. (A4)

Needless to say, this expression diverges in the limit t → ∞.
In this case, one needs to incorporate a nonlinear term in
Eq. (A1a), accountable for gain saturation.

For the case when the active cavity is below the lasing
threshold and again assuming κ = 0, by blindly replacing the
gain g1 in Eq. (A1a) by the net negative gain g1 = A − �1 < 0,
where A is the total gain and �1 is the total loss in the active
cavity, one obtains the unphysical solution with 〈n̂1(t )〉 < 0.
To resolve the latter problem, one has to modify Eq. (A1) with
an additional noise operator l̂1 responsible for dissipation, i.e.,

d

dt
â1 = A − �1

2
â1 − κ â2 +

√
A f̂ †

1 +
√

�1 l̂1,

d

dt
â2 = −�2

2
â2 + κ â1 +

√
�2 l̂2. (A5)

Now the rate equations in the form given in Eq. (A5) provide
the same spectral properties of the system as the rate equations
derived from the linear Scully-Lamb ME (7).

It is important to stress that even the Langevin equations
(31) for the effective NHH Ĥeff given in Eq. (8) may lead
to erroneous results when the laser cavity operates near the
threshold. In this case, it is necessary to apply the general
Scully-Lamb ME (2) [38].

APPENDIX B: ADDITIONAL CALCULATIONS
FOR SEC. III B

1. Coefficients for the TTCFs in Eq. (36)

The coefficients u1,2 and v1,2 in Eq. (36) have the forms

u1,2 = −A

2N
{[�2(A − �+) − 4κ2]β

± (A − �+)[�2(A − �−) − 4κ2]}, (B1)

v1,2 = 2Aκ2

N
[β ± (A − �+)],

where

N = (A − �+)[(A − �1)�2 − 4κ2]β. (B2)

2. Formulas for constants Pi and Qi in Eq. (38)

For the TTCFs 〈â†
i (0)âi(τ )〉ss, i = 1, 2, the expressions for

Pi and Qi become

P1 = −A
4�2

2 + (A − �+)2

(A − �+)3
,

Q1 = −A
(A − �+)(A − �−)(A − �1 − 3�2)

4(A − �+)3
,

P2 = −A
(A − �−)2

(A − �+)3
,

Q2 = A
(A − �−)2

4(A − �+)2
. (B3)
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For the linear system under consideration, the condition
A − �+ < 0 is always satisfied. The latter implies that the
constants P1,2 and Q2 are always positive valued. On the
other hand, the positivity (negativity) of the constant Q1 is
determined by the positivity (negativity) of the expression
A − �−, which can be either positive or negative.

3. Resonant frequencies of the power spectra S1 and S2

presented in Fig. 5

The frequencies of the resonant peaks in the emission
spectra S j (ω) can be found as the maxima of the functions
S1(ω) and S2(ω). By solving the equations

dS j (ω)

dω
= 0, j = 1, 2,

with respect to ω, one finds the following relations for the
spectral peaks in both cavities:

ω±
1 = ωc ± 1

2 Re
{[

2κ
√

4κ2 + 2�2(�2 − G1) − �2
2

]1/2}
,

ω±
2 = ωc ± 1

4 Re
[√

16κ2 − 2
(
G2

1 + �2
2

)]
. (B4)

From Eq. (B4) one can easily find the conditions at which
the two resonant peaks coalesce in either cavity, as given in
Eq. (41).

APPENDIX C: LIOUVILLIAN EIGENMATRICES ρ̂i GIVEN
IN EQS. (49)–(52)

Within the effective Hilbert space spanned by the vectors
| jk〉, j, k = 0, 1, the annihilation boson operators for the fields
â1 and â2 in the active and passive cavities take the matrix
forms

â1 =
(

0 1
0 0

)
⊗ Î, â2 = Î ⊗

(
0 1
0 0

)
, (C1)

respectively, where Î is the 2 × 2 identity matrix. By using
the matrix representation of the boson operators in Eq. (C1),
one can straightforwardly calculate the eigenvalues and eigen-
matrices of the Liouvillian L in Eqs. (7) and (9). Below we
write the elements of the Liouvillian eigenmatrices ρ̂ j given
in Eqs. (49)–(52).

1. Liouvillian eigenmatrix ρ̂0 in Eq. (49)

The elements of the steady-state eigenmatrix ρ̂0, given in
Eq. (49), are

ρ00 = �1�2A2
+ + 4κ2�2

+,

ρ01 = 4Aκ2�+,

ρ10 = A(�2A2
+ + 4κ2�+),

ρ11 = 4Aκ2,

N0 = A2
+[4κ2 + �2(A + �1)].

(C2)

2. Liouvillian eigenmatrix ρ̂10 in Eq. (49)

The elements of the traceless eigenmatrix ρ̂10, in Eq. (49),
become

ρ̂10 = diag(1,−1,−1, 1). (C3)

3. Liouvillian eigenmatrices ρ̂3,4 in Eq. (50)

The elements of the traceless eigenmatrices ρ̂3,4, given in
Eq. (50), take the form

ρ ′
00 ± f1D = −8κ2�− − �2A2

− ± �2A−D,

ρ ′
01 ± f2D = −4κ2(A − �+) ± 4κ2D,

ρ ′
0110 ± f3D = −2κ (�2A− + 8κ2) ± 2κ�2D,

ρ ′
10 ± f4D = �2A2

− − 4κ2(A − �1 + 3�2)

± (
�2

2 − �2(A + �1) + 4κ2
)
D,

ρ11 = 8Aκ2. (C4)

4. Liouvillian eigenmatrix ρ̂5 in Eq. (51)

The elements of the traceless Hermitian eigenmatrix ρ̂5,
given in Eq. (51), are written as

ρ00 = −8�+κ2,

ρ01 = ρ10 = −4κ2(A − �+),

ρ0110 = −κ[4A�1 + (A − �+)(A − �−)],

ρ11 = 8Aκ2. (C5)

5. Liouvillian eigenmatrices ρ̂1,2,8,9 in Eq. (52)

The elements of the traceless eigenmatrices ρ̂1,2,8,9, given
in Eq. (52), have the forms

ρ0001 = 4κ[±E±(�+ − A) ± F + A2
+ − 4A�2],

ρ0010 = ±E±
(
�2

2 − (A + �1)2 ± F
) ± 2�2F

+ 2�2
(
�2

2 − (A + �1)2) + 16κ2(A − �+),

ρ0111 = 32Aκ2,

ρ1011 = 8Aκ (2�2 ± E±),

(C6)

where E± and F are given in Eq. (48). The eigenmatrices
ρ̂1,2 have the elements given in Eq. (C6) with E± and ±F ,
respectively. The eigenmatrices ρ̂8,9 have the elements given
in Eq. (C6) with −E± and ±F , respectively.

APPENDIX D: HERMITIAN
PSEUDOEIGENMATRICES ρ̂′

5 AND ρ̂′′
5

The generalized pseudoeigenmatrices ρ̂ ′
5 and ρ̂ ′′

5 can be
found from the eigenmatrix ρ̂5, given in Eq. (51), by applying
Jordan chain relations, i.e.,

Lρ̂5 − λLEPρ̂5 = 0,

Lρ̂ ′
5 − λLEPρ̂

′
5 = ρ̂5,

Lρ̂ ′′
5 − λLEPρ̂

′′
5 = ρ̂ ′

5.

(D1)

By combining Eqs. (51) and (D1), one can straightforwardly
arrive at the pseudoeigenmatrices ρ̂ ′

5 and ρ̂ ′′
5 , which have the

following general form:

ρ̂
j
5 ≡

⎛
⎜⎝

a j 0 0 0
0 bj α j 0
0 α j c j 0
0 0 0 d j

⎞
⎟⎠, j = {′,′′ }. (D2)
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The elements of the pseudoeigenmatrix ρ̂ ′
5 have the form

a′ = 2�2A− − 2�+,

b′ = 1
2 A2

− − (A − �+),

c′ = − 1
2 A2

+ + 2�2
2 − (A − �+), (D3)

d ′ = 2A,

α′ = �2A− − A+

and the elements of the pseudoeigenmatrix ρ̂ ′′
5 read

a′′ = 6�2
2 + (−6A − 4�1 + 8)�2 − 2�1(A + �1)

A−
,

c′′ = −5�2
2 + (6A + 4�1 − 6)�2 − A2 + �2

1 − 2A − 2�1

A−
,

b′′ = 2 − (A − �+),

d ′′ = 2A,

α′′ = −−2�2(A− − 2)

A−
. (D4)

It is assumed that all elements of the pseudoeigenmatrices
ρ̂ ′

5 and ρ̂ ′′
5 , given in Eqs. (D3) and (D4), respectively, have

the same dimensionality. The eigenstates of these Hermitian
pseudoeigenmatrices, which describe the intercavity interac-
tion, become of the form

∣∣ψ j
5

〉
± ≡ 2α j |10〉[c j − bj ±

√
4(α j )2 + (bj − c j )2]|01〉,

(D5)

where j = {′,′′ }, with α j , bj , and c j given in Eqs. (D3) and
(D4).
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