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Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians
and Liouvillians via postselection of quantum trajectories
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Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many
areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassi-
cal regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs)
capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such
Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a
full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps.
In a recent paper [F. Minganti et al., Phys. Rev. A 100, 062131 (2019)], we generalized the notion of EPs to the
spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations.
Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of
dynamics can yield different EPs. In a recent experimental work [M. Naghiloo et al., Nat. Phys. 15, 1232 (2019)],
it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain
quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and
Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian
superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories
without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its
fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency

detectors.
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I. INTRODUCTION

Exceptional points (EPs) are at the center of intense the-
oretical and experimental research in many different areas of
physics, such as optics, condensed matter physics, plasmon-
ics, and even electronics. Originally, EPs were studied in con-
nection to parity-time (P7)-symmetric nonconservative sys-
tems [1-3]. Since an EP corresponds to a nondiagonalizable
operator, standard Hermitian Hamiltonians cannot display any
EPs. It is the nonunitary action of the environment on the
system that induces the emergence of EPs. Such points have
been studied by balancing attenuation, amplification, gain
saturation, as well as various Hamiltonian coupling strengths
of an open system (for experimental realizations, see, e.g.,
Refs. [3-6]).

The interest in studying EPs, however, is not limited to
PT-symmetric systems. Indeed, in proximity to other types
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of EPs, a system can display exotic phenomena, such as EP-
induced lasing [3,7,8] or even new forms of photon blockade
[9]. Beyond the purely phenomenological interest in study-
ing these systems, EPs are considered for novel apparatus
harnessing peculiar properties of mode coalescence at an EP
[10,11].

Many results obtained so far focused on non-Hermitian
Hamiltonians (NHHs), i.e., systems in which losses, gain,
and its saturation, decoherence, etc. are considered only as
imaginary-valued fields. An EP of an NHH (which for brevity
we refer to as a Hamiltonian EP or an HEP) refers to those
NHH degeneracies where two (or more) eigenfrequencies co-
incide and the corresponding eigenstates coalesce. Arguably,
one can categorize those systems as (semi)classical, since the
effect of the environment has not been taken into account
according to a full-quantum description.

Recently, the quest for true quantum EPs has attracted
much attention [6,9,12—-17]. An open quantum system inter-
acting with its environment must include dissipative terms
describing the progressive loss of energy, coherence, and
information transfer to the environment [18-22]. For a weakly
coupled Markovian environment, the (Gorini-Kossakowski-
Sudarshan-Lindblad, or, for the sake of brevity) Lindblad
master equation can efficiently capture the dynamics of the
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system. The Lindblad master equation consists of a Hermitian
Hamiltonian part (i.e., the coherent evolution of the system)
and the so-called Lindblad dissipators, which characterize the
coupling with the environment [23]. These Lindblad dissipa-
tors can, in turn, be divided into two parts: the first one repre-
sents a coherent nonunitary dissipation of the system, similar
to the imaginary-frequency fields of an NHH; the second
part describes quantum jumps, which result from the effect
of a continuous measurement performed by the environment
on the system [19,21,24,25]. Quantum jumps induce both a
random and instantaneous change of the stochastic wave func-
tion describing the system and a continuous non-Hermitian
dynamics of the system [19,21,26-28]. Such instantaneous
switching caused by quantum jumps is fundamental to obtain
a theory of the system-environment interaction consistent
with a probabilistic interpretation of quantum-mechanical
measurements [20,21,27,28]. Moreover, such quantum jumps
have been experimentally observed in many setups [29-45].

To every Lindblad master equation corresponds a non-
Hermitian Liouvillian superoperator which can display Li-
ouvillian exceptional points (LEPs) [12,23,46-52]. LEPs are
defined via degeneracies of Liouvillians (i.e., including the
effects of quantum jumps) as introduced in Ref. [13] where
their connection with HEPs has also been investigated (see
also Refs. [9,15]).

It has been noticed that an NHH naturally emerges when
discussing quantum trajectories and postselection [6]. As
mentioned above, quantum trajectories describe a system
whose environment is continuously and perfectly probed.
Even if quantum jumps cannot be avoided, if one postselects
only those trajectories where no quantum jumps took place,
the effective resulting dynamics is that of an NHH. For
instance, in Ref. [6], such a postselection was used to explore
the properties of the NHH of a superconducting three-level
system.

From a Liouvillian point of view, postselecting the tra-
jectories without quantum jumps corresponds to consider a
Liouvillian without quantum jumps (L) [13]. Even if a perfect
postselection of all quantum jumps is captured by £’, this ideal
case may not be always realizable. For instance, one may be
not able to postselect all the quantum jumps characterizing the
system. Moreover, no real instrument can perfectly monitor
the system, and therefore a perfect postselection is impossible.
This motivates the question of how EPs and their associated
effects depend on these protocols.

The main objective of this paper is to answer this question,
addressing the relationship between HEPs, LEPs, and imper-
fectly postselected trajectories. For this, we introduce a hybrid
Liouvillian L£g(g), a generalization of £ and £, capable of
describing those (imperfect) processes. Roughly speaking, the
quantum-jump parameter g € [0, 1] describes how much one
allows quantum jumps to affect the dynamics of a density ma-
trix. This very formal definition allows to relate and compare
HEPs with LEPs, and the corresponding evolutions between
these two limits, i.e., the classical-to-quantum transition of
EPs. By considering the protocol of quantum trajectories, we
demonstrate that the hybrid Liouvillian L (¢g) has a very clear
and specific physical meaning as the average over only a
certain type of postselected trajectories. Indeed, Ly (g = 0)
represents a perfectly monitored system where we postselect

only those trajectories where no quantum jump occurred (thus
recovering an NHH). On the contrary, Ly (g = 1) describes
the average of trajectories where no postselection has been
applied, thus recovering a full Liouvillian description. Finally,
we attribute the case 0 < g < 1 to a postselected system in the
presence of an imperfect measurement instrument.

This paper is organized as follows. In Sec. II, we recall
the basic elements of an open-system description in terms of
Lindblad operators, define LEPs and HEPs, recall the unrav-
eling of the master equation in terms of quantum trajectories,
and summarize postselection. In Sec. III, we introduce the
hybrid-Liouvillian formalism and provide two interpretations
for it. In Secs. IV and V we discuss instructive examples of
the classical-to-quantum transition of EPs. Finally, we discuss
the implications of our results in the Conclusions. In the
Appendix we also provide the analytical expressions for the
EPs in one of the studied examples of the hybrid Liouvillian.

In the main article, we use all the previously introduced
abbreviations. We concisely list them to facilitate the reading
of the article.

Full Name Abbreviation
Non-Hermitian Hamiltonian NHH
Liouvillian L
Liouvillian without quantum jumps L
Exceptional point EP
Hamiltonian exceptional point HEP
Liouvillian exceptional point LEP
Hybrid Liouvillian Ly(q)
Quantum jump parameter q

II. LIOUVILLIANS AND QUANTUM TRAJECTORIES

An open quantum system weakly interacting with a Marko-
vian (i.e., memoryless) environment can be described using a
Lindblad master equation:

dp(t) = —ilH, p®)] + Y _ DIF1p(). (1)
1

Here, p(t) represents the density matrix of the system, that
is, the operator encoding all the information available to an
external observer without any knowledge (or control) of how
the environment microscopically and instantaneously acts on
the system. The operator H is the Hamiltonian, describing the
coherent evolution of the system, while f‘ﬂ are quantum jump
operators, describing the overall effect of the environment on
the dynamics of the system. The jump operators act via the
Lindblad dissipators as

DIf1p@) = TupF] — S0 T0@) + pOT] 1. (2)

The effect of D[f‘u] on the density matrix p(¢) can be
split into two parts [21]: the continuous nonunitary dissi-
pation terms '/ 1", p(t) + p(0)F' T, and the quantum jump
terms fuﬁ(t)f;. This dissipation describes the continuous
and small loss of energy, information, and coherence of the
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system into the environment. The quantum jumps describe the
abrupt changes of the state of the system due to dissipation,
and can be thought of as the measurementlike action of a
macroscopic environment on the state of the system [19,21].

Equation (1) is linear in p(¢) and, consequently, one can
associate a superoperator to it—the so-called Liouvillian su-
peroperator £ [23]. This is a superoperator in the sense that it
acts on an operator (the density matrix) to produce an operator
analogous to the way in which an operator acts on a vector
to produce a new vector [27]. Using the Liouvillian £, we
have

O p(t) = Lp(). 3)

Hereafter, we assume that £ is time independent.

A. Liouvillian spectrum, Hamiltonian and Liouvillian EPs

The spectrum of the Liouvillian £ is found according to the
formula

Lpi = Aipi, “)

where X; and p; are the eigenvalues and eigenmatrices of
the Liouvillian, respectively. For convenience, we sort the
eigenvalues in such a way that |[Re[Xo]| < |[Re[A(]] < -+ <
IRe[A,]].

The models which we consider are finite dimensional
and time independent. In this regard, one is guaranteed that
there always exists a zero eigenvalue of the Liouvillian. This
represents the fact that there exists at least one steady state
Dss towards which the system evolves. Even if the steady-
state density matrix associated with the zero is important in
many aspects of open quantum systems, in this case it is not
particularly interesting since it cannot display any exceptional
point (see the discussion in Ref. [13]).

For a Liouvillian with a unique steady state, the eigen-
matrix pg, associated with Ag = 0, defines the steady-state
density matrix pss o Pg of the system. The eigenmatrices p;,
with i > 0, describe the transient dynamics towards the steady
state. For a more detailed discussion of the properties of the
Liouvillian spectrum, see Refs. [13,23,46-48].

In this formalism, LEPs describe the coalescence of two
eigenmatrices of the Liouvillian, for some appropriate choice
of parameters. At an EP, the Liouvillian is defective and can-
not be diagonalized. For a LEP of order 2, the eigenvalue A
admits only one eigenvector p;. However, one can introduce
a generalized eigenmatrix p ;» which is defined via the Jordan
chain:

LB = \ipj+ pj. (5)

This generalized eigenmatrix completes the basis of the other
eigenmatrices p;, i.e., any operator can be written as a linear
combination of the p; and ;. In this basis, the Liouvillian
attains its Jordan canonical form.

One of the central results proved in Ref. [13] is that LEPs
should be understood as purely dynamical phenomena since
in this Lindblad ME formalism, LEPs can emerge only for the
“excitations” p; (i > 0) above the steady state py.

Given a Lindblad master equation as in Eq. (1), we can
introduce the corresponding effective NHH of the form

Heﬁzﬁ—iz R (6)

n

Note that H.¢ is an NHH since I-?gff #* H.i. The equation of
motion for a generic density matrix p(¢), thus, becomes
ap(t)
ot

= Lp() = ~ilHerp(1) = POH] + Y Tup@F .

0
(N
If one assumes that the effect of the jump operators
> u f‘M ,?)(t)f‘; is always zero during this evolution, the evo-
lution of the system is provided by H.s;. Such non-Hermitian
operators may support EPs in their spectra, which we refer to
here as NHH Hamiltonian EPs (HEPs) in contrast to LEPs.

B. Quantum trajectories

From a theoretical point of view, there are two very dif-
ferent physical interpretations which can be associated with
the Lindblad master equation. The first interpretation is to
consider that a true action of the environment on the system is
impossible to be known exactly, so that the dissipators D[I" ul
describe the average effect of the environment. In this sense,
the density matrix p(¢) is a statistical mixture since one does
not know the details of the system-environment interaction.

On the contrary, if we were to know perfectly the action
of the system on the environment, then we could model it
as a series of perfect measurement instruments [18,19,21].
In this description, the action of the dissipators D[f‘u] is to
induce random changes in the system (associated with the
detection of one of the operators f‘ﬂ). Once an average over
several realizations of the same protocol is considered, the
randomness associated with the dissipator action introduces
a statistical mixture of pure states, resulting in the density
matrix p(t).

Both approaches lead to the same average results [19,21];
i.e., the average descriptions of the system evolution are
equivalent. However, while according to the first interpre-
tation it is conceptually difficult to consider the state of a
quantum system during a single experimental realization, the
second approach allows to describe an idealized evolution of
the system whose environment is continuously and perfectly
probed (or monitored). Such an equation of motion is called
a quantum trajectory (for a more detailed discussion, see,
e.g., Refs. [26-28,53,54]). In this formalism, the state of the
system along a trajectory is described by a wave function
| (t)), which evolves stochastically, and the results of the
Lindblad master equation are recovered by averaging over
many trajectories.

Theoretically, the simplest measurement instrument con-
tinuously monitoring the environment is the one which pro-
duces only two outcomes: one if the desired state is detected,
zero otherwise. We can imagine that, for each dissipator, there
is an instrument measuring if a quantum jump takes place
continuously, perfectly, and instantaneously. By counting the
number of quantum jumps which are taking place of each
type, we can reconstruct the state of a given system [21].
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Using this trajectory counting apparatus for an infinitesimal
time dt, the evolution of the wave function can be described
by

r,
Za’N O —L— -1
(CAT)

. rif
+dt <_iHeff +) <“2—“>>} ). ®
"

where the effective Hamiltonian is that introduced in Eq. (6).

Note that d | (¢)) is a differential describing either the
abrupt evolution with a stochastic quantum jump [the term
proportional to dN,,(¢)] or the smooth nonunitary evolution
dictated by H.r. The expectation values of the jump operators,
instead, ensure that the wave function d | (¢)) remains well
normalized along the dynamics. For a more detailed discus-
sion, see Eq. (4.17) of Ref. [21].

The stochastic “counting” parameters N, (¢) contain the
information about the total number of jumps which took
place along the dynamics from the initial time ¢t = 0 to time
t. Hence, dN,(t) = N,(t +dt) —N,(t) is the dichotomic
stochastic variable representing the detection outcome at time
t. Specifically, dN, (1) = 0 [dN,(t) = 1] if no (one) quantum
jump IA*M took place. Hence, one cannot simply take the
derivative of dN(t) with respect to df. One can, however,
define the probability that a quantum jump occurs during a
time dt as

dly) =

pldN, (1) = 1] = (' T,) dr. )

The NHH can thus be interpreted as the operator deter-
mining the dynamics between two successive quantum jumps.
Furthermore, the terms (f‘; f‘ﬂ) in Eq. (8) act as normalization
constants necessary to ensure that (W(z)|W(¢)) = 1. Equiva-
lently, we can think that the system evolves under the action
of A.¢ and we have to renormalize the wave function at each
time step. The above interpretation allows also for simple
efficient Monte Carlo simulation of the ensuing dynamics
[19,21,26,55,56].

Finally, we note that the trajectory-counting-based moni-
toring of the operators I" 1 1s not the only possible unraveling
of the master equation. Indeed, there exist other possible
choices of jump operators which result in the same master
equation once the average over many quantum trajectories
is taken [19,21]. Different unraveling can result in extremely
different dynamics at a single trajectory level [19,57,58]. In
this sense, the use of a Lindblad master equation allows to
capture those properties which do not depend on the details of
the system-environment exchange.

C. Postselection of quantum trajectories

Suppose now that we observe a quantum trajectory where,
at time ¢, N, () = 0 for all u. We conclude that the system
has evolved under the genuine action of the NHH H. in
Eq. (8). In this regard, by postselecting the trajectory with no
quantum jumps (i.e., discarding all those which do present
some quantum jumps) one can obtain an NHH also in the
quantum limit, that is, when normally quantum jumps would

play a fundamental role in correctly describing the physics
of the system. As has been shown in Ref. [6], this procedure
allows to study the emergence of HEPs also in quantum
systems.

There are, however, some necessary remarks concerning
this postselection procedure. First, we notice that, in this way,
we cannot experimentally connect many-particle semiclassi-
cal EPs to the fully quantum ones. Indeed, in the semiclassical
limit of a many-particle system, many quantum jumps must
happen, and the probability to observe a trajectory without
quantum jumps rapidly tends to zero.

Indeed, postselecting in the semiclassical limit would be
equivalent to avoiding environment-induced superselection
(einselections), collapsing the “quantum” wave function into
a classical state [59]. For example, in an optical cavity with
jump operator a (a being the bosonic destruction operator),
the number of jumps per unit of time dt is roughly given by
dt - (U(t)|a*a|W(t)). In a many-particle system, this number
is extremely high, making it almost impossible to observe a
trajectory without quantum jumps.

Moreover, to truly observe a HEP it is necessary to have a
perfect measurement instrument which collects all the quan-
tum jumps and that never allows a quantum jump to go un-
detected. Hence, in principle, true postselection is impossible,
which leads to two questions:

(i) How can we relate the results of NHHs and Liouvillians
in a more formal way?

(i1)) How can we describe the consequences of imperfect
monitoring, i.e., finite efficiency detectors in quantum trajec-
tories?

III. HYBRID-LIOUVILLIAN FORMALISM AND ITS
CONNECTION TO POSTSELECTION

To answer both questions raised in the previous section, we
introduce a hybrid-Liouvillian formalism; i.e., we introduce a
modified Liouvillian superoperator. To better understand this
hybrid Liouvillian, here we focus on Eq. (3), which in the case
where there is just one quantum jump becomes

.o | S PR b
2

L=—iH, ]+ -TT- , (10)

where - is a placeholder to indicate where an operator should
be applied. As already mentioned, ignoring the effect of quan-
tum jumps [" - I'f, one obtains a non-Hermitian Hamiltonian
evolution which can be recast in superoperator form as

YU o S o
—i|H—-—i—— ) -+i-|H—-i——
2 2

= — i - +i - H;. (11)

E,

The superoperator £’ is the Liouvillian without quantum
jumps, and its spectrum is fully determined by that of He
[13]. This equation is not trace preserving. This problem is
solved as in the case of evolution with Hu in a quantum
trajectory, where the density matrix can be renormalized at
each time step to ensure that Tr[p(z)] = 1. Now, by not
completely ignoring the effects of quantum jumps, one can
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formally introduce a hybrid Liouvillian of the form

N IR A A
Lu(q) =—ilH, ]+ql - 1" — —

- A r
—i[H, ]+ Dl/ql'l — (1 — q)

~.
—

PP T
e
(12)

The hybrid Liouvillian L£y(g) has a clear mathematical
significance, viz., it is the weighted average of £ and L.
Clearly it interpolates between NHH evolution (¢ = 0) to
a completely Liouvillian one (¢ = 1) and the transition of
EPs between these two limits can be traced by tuning the
quantum jump parameter g. The physical meaning of this
hybrid operator is explained below.

A. Interpretation of the hybrid Liouvillian in terms of
postselected trajectories

The Liouvillian in Eq. (10) can be conveniently recast as
L=—ilH, 1+ DIl =—i[H, ]+ ¢D[['] + (1 — ¢)D[I']

= —ig[H, 1+ DL/q 11— il —¢IHA, 1+ DI/1—¢qTl].
(13)

From a quantum-trajectory point of view, Eq. (13) means that
instead of having only one measuring instrument collecting
the jumps of the operator [", we have two different detectors
[cf. Fig. 1(a)], so that

dy(t) = { [(dN%) + dN@)(t))(ﬁ - 1)}

(1)
—ldt< eft + T)} W), (14)

A A

where H. is
Hyy = ﬂe‘ﬁf) + He(tzf),
" NN
Heff =H - lq—2 , (15)
[
AP =A—i1 - q)—

The total probability of a jump in an infinitesimal amount of
time is given by

pldNV (@) +dNP () = 1] = (I''T) dt (16)

and
pldNV(t) = 1] = ¢ (I''T) 1,
plAN® (@) =11= (1 — ¢)([''T") ar. (17)

That is, Egs. (14), (15), and (17) correspond to assuming that a
fraction g of detections will happen in the first detector, while
all the other detections happen in the second one. The average
total number of detections in an experiment, however, must
be identical to a setup where only one detector is present [cf.
Eq. (16)].

Let us assume that we postselect the results of the sec-
ond detector; i.e., we choose only those trajectories where
no quantum jump took place for the second detector and

(a) (POSTSELECTION)
n=1
O
- (@]
o
_<| Wé © °

o
n=1 o

(POSTSELECTION)I\—/]
(b)F—6— UNDETECTED

o S
o © r o ._
Q
0) o L ’I7<1
R DETECTED
———1]

FIG. 1. Pictorial representation of the physical systems for which
evolution is described by the hybrid Liouvillian £y (g) depending on
the quantum jump parameter g. To clarify the ideas, we sketch an
optical cavity with one-photon loss as dissipator (the jump operator
). (a) A system with two perfect photodetectors (efficiency 7 = 1)
simultaneously measuring the same jump operator I* for a photon
leaking from the cavity and passing through a beam splitter (BS) with
the transmission (reflection) probability g (1 — g). Thus, the quantum
jump parameter g corresponds to the probability of measuring a
leaking photon by the left photodetector. According to this setup,
we postselect only those trajectories which read N®(¢) = 0; that
is, no quantum jumps were detected in the photodetector (detecting
photons with probability 1 — g, the upper one in the drawing). (b) A
finite-efficiency photodetector (n < 1). While a certain fraction of
the photons will be detected (the orange ones), some of them will
not (the blue one). We then perform a postselection requiring that
no quantum jumps were detected. Since not all the photons which
escaped the system where detected, we may average also over some
quantum trajectories where a photon escaped the system. This hybrid
Liouvillian describing this system is Ly (g = 1 — n).

N® (1) = 0. Detector 1 will exactly produce the Lindblad
master equation with dissipator D[,/ql'], while the second
detector will produce a time evolution via its non-Hermitian
Hamiltonian Héﬁ) Hence, the Liouvillian in Eq. (13) becomes
L A pLR

. . r
—ilH,- 1+ Dl/qT'1 - (1 —q) >

= Lu(9).
(18)

We have therefore proved that Ly (g) describes the evolu-
tion of the state monitored by two perfect instruments, one of
which is postselected. Hence, Ly (g) is a physically legitimate
quantum map. Note that one must, however, renormalize the
density matrix to ensure that its trace is 1.

B. Postselected quantum trajectory and inefficient detectors

We can also assign a different, experimentally relevant
meaning to Eq. (14). Let us consider a finite-efficiency detec-
tor, such that, with probability n, a quantum jump happens but
the detector does not report it happening. The Lindblad master
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equation of this system is (see, e.g., p. 190 of Ref. [21])
L(n) = —ilH, -]+ DIl
= —i[A, 1+ 7D[['1+ (1 —nD[I']. (19

Again, we can model such a system as one in which we
have two perfect detectors which continuously monitor the
system and collect all the quantum jumps which take place.
Even if, theoretically, the effects of these two detectors on a
single quantum trajectory are identical to the presence of a
single detector, the description is extremely different once we
try to postselect the results. Indeed, one of the two detectors
does not pass any information to an observer, which cannot
know if a quantum jump took place. The description of such
a system is, therefore, exactly captured by the hybrid Liou-
villian L (g), where now ¢ = 1 — n depends on the detector
efficiency.

C. The g > 1 case

As we previously discussed, we can produce an NHH by
considering g = 0. In this case, the dynamics of the system is
completely determined by Hg. Thus, studying £ (0) we can
infer if the effect of the NHH is to create or destroy an EP.

However, we cannot know in this formalism what is the
effect of only the quantum jumps on the system. To do that,
one should consider the ¢ — oo limit, where the NHH can
never act on the system. From the previous discussion it is
clear that, to ensure a correct interpretation of the hybrid-
Liouvillian in terms of postselected trajectories, we need g €
[0, 1]. Therefore, Ly (g > 1) cannot be obtained by simply
considering a postselection procedure.

Even if we cannot provide a clear physical interpretation of
Ly (g > 1), we can still study what happens to the spectrum of
L (g > 1) mathematically. In this limit, the overall evolution
of the system is given by the quantum jump operator, and
the fate of the EPs of Ly (g — 00) tells us if quantum jumps
either favor or are detrimental for the emergence of EPs.

IV. EXAMPLE 1: A MODEL WITH A LEP WITHOUT HEPS

In this section, we consider a simplified version of the
model exhibiting LEPs but not HEPs given in Ref. [13]. We

consider a spin-1/2, with Hamiltonian
AW,
H=—-6,,
2

which evolves under the action of the decay channel 6., i.e.,

(20)

Lp@t) = —ilH, p()] + %D[ax], 1)

where 6, ; are the Pauli matrices. Since this master equation is
invariant under the exchange 6 — —a&_, this model explic-
itly presents a Z, symmetry [46,47].

As discussed in Ref. [13], the NHH structure is trivial and
cannot present any EPs, since

N 1) .
Her = 50~ iyl (22)
is already diagonal, and its two eigenvalues are always differ-

ent. The Liouvillian, instead, can present several interesting

properties. We have the eigenvalues

Ao =0,
AMo2=—VTQ, (23)
)\3 = —2)/):,

and the corresponding eigenmatrices

o= (v O

Lo Pss = 2J/x 0 Ve s

A 0 —lwxQ

p1,2<x<yx “s ) (24)

N -1 0
P3 X 0 1)

where Q = /2 — w? and P is the steady-state density ma-
trix. Therefore, this Liouvillian exhibits an EP for yxEP = w.
For the model under consideration, we obtain a family of
solutions for the generalized eigenmatrix p; depending on one
parameter a [cf. Eq. (5)]:

= (iao—i g) (25)

A. Equivalence between postselection trajectories
and hybrid Liouvillian

v

Here, we show the equivalence between postselection and
the hybrid Liouvillian £y (g) stemming from Eq. (21):

(I =@y

s 1. (Q6)

Lp(t) = —ilA, p(r)] + q%D[ax] -

1. Two-detector postselected trajectories

In Fig. 2, we study the time evolution of a qubit using
both Ly (g) and postselected trajectories for the two-detector
model [see also the sketch in Fig. 1(a)]. The markers represent
the results obtained by averaging over 5000 single quantum
trajectories, from which we postselected only the evolutions
activating a chosen detector. The error bars are associated with
the statistical error due to the finite number of trajectories sim-
ulated. The curves, instead, have been obtained by evolving
the initial state via Lg(q).

The algorithm to simulate this protocol for a number Ny
of trajectories is the following:

Step 1. Simulate a quantum trajectory with two possible
jump operators:

0 =Van/26, and [y =/(1-q)y/26.

Step 2. Once the simulation of one trajectory is completed,
check the total number of jumps which took place in I3, i.e.,
N (t):if NP (1) = 0, save the trajectory, otherwise reject it.

Step 3. Once Ny,; trajectories have been simulated, average
only on the correct one.

Figures 2(a), 2(e), and 2(i) (left column) represent the
results for g = 0, that is, no detection occurred, for y, = w/2,
¥y = w, and y, = 3w/2, respectively. Correctly, the evolution
is identical for the three different values of y,, as it stems
from the NHH. If we consider now Figs. 2(b)-2(d), which
represent y, = w/2, we observe a perfect agreement between
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FIG. 2. Two-detector postselected trajectories [cf. Fig. 1(a)] vs evolution using Ly (g) for the two-level system in Eq. (26): as a function of
time are plotted the expectation values of &, (red curves and markers), 6, (blue curves and markers), and &, (green curves and markers). The
markers represent the results obtained by the postselection of the trajectories, while the curves represent the results obtained via the hybrid
Liouvillian: [(a). (e). ()] ¢ = 0. [(b). (). ()] g = 1/4. [(c). (2). (K)] ¢ = 1/2, and [(d). (h), (D] g = 3/4; @~(d) ¥, = ©/2, ()~(h) y; = w, and
(i)~(1) y, = 3w/2. The initial state is |y) = cos(8/2)|1) + sin(0/2)e® ||), for 6 = \/§7r/2 and ¢ = /37. The data have been obtained by
averaging over 5000 trajectories per parameter set (see the details about the algorithm in the main text). The error bars A (6;) for a generic
operator &; have been obtained by computing the standard error of the mean A (6;) = +/(6; — (6:))2/+/N — 1, with N representing the number

of trajectories on which the average was taken.

the trajectories’ behavior and that of L (q), demonstrating the
validity of the previous discussion. Note also that changing g
produces a sizable effect on the system. If we increase the
value of y, [Figs. 2(f)-2(h), ¥, = w] there is some deviation
from the results of the hybrid Liouvillian. This noise is due to
the fact that, by increasing y,, the mean number of quantum
jumps increases and, therefore, there are fewer and fewer
trajectories which can be postselected. This effect becomes
evident in Figs. 2(i)-2(1), where y, = 3w/2. In particular, in
Fig. 2(j), out of the 5000 trajectories which we simulated,
only 15 could be averaged. Moreover, the results in Fig. 2(1)
are far less noisy than those in Fig. 2(j): a higher ¢ means
a smaller rejection rate, and therefore we can average over a
much higher number of trajectories.

2. Imperfect detection

Similarly to the previous case, in Fig. 3 we consider now
an imperfect detector, similar to the one sketched in Fig. 1(b).
The detector efficiency 1 represents the probability that when
a quantum jump happens it is detected. Thus, n =1 is a
perfect detector, and all the quantum jumps are detected.

We simulate 5000 trajectories and we average only on those
which, according to our imperfect photodetector, had zero
quantum jumps.

The algorithm simulating this imperfect detection for a
number Ny, of trajectories is the following:

Step 1. Simulate a quantum trajectory with one jump
operator:

I'= /26

Step 2. Once the simulation of one trajectory is performed,
we store those trajectories where all the quantum jumps which
took place have not been detected, or no jump took place. To
do that, we count the number N; of quantum jumps. We extract
an array of N; random numbers {n; € [0, 1]}, representing the
aleatory nature of the imperfect detector in non-detecting the
quantum jump. If, for all j, n; > n (or, equivalently,n; > 1 —
q) we save the trajectory. Otherwise reject it.

Step 3. Once Ny,; trajectories have been simulated, average
only on the correct ones.

Again, in Fig. 3 we see an excellent agreement between the
postselected averaged quantum-trajectory (markers) and the
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FIG. 3. Inefficient detector [cf. Fig. 1(b)] vs evolution using Ly (g) = Ly (1 — n) for the two-level system in Eq. (26) for y, = w/2. As a
function of time, we plot the expectation values of &, (red lines and markers), &, (blue lines and markers), and &, (green lines and markers).
The markers represent the results obtained by the postselection of the trajectories, while the curves represent the results obtained via the hybrid
Liouvillian: (a) g =0(n =1),(b)g=1/4 (n =3/4), (c) g =1/2 (n =1/2), and (d) ¢ = 3/4 (n = 1/4). The data have been obtained by
averaging over 5000 trajectories per parameter set (see the details about the algorithm in the main text) and the initial state is the same as in

Fig. 2. The error bars have been calculated as in Fig. 2.

evolution via operator L (q) = Ly (1 — n) (curves). We have
therefore demonstrated the validity of our proposed protocol
and its physical meaning also in describing the physics of an
imperfect detector.

B. Transition of NHH to £ and the appearance of a LEP

Having demonstrated the validity of the physical inter-
pretation of Ly(q), we address now the question of the
emergence of a LEP in this model as a function of the control
parameter q.

As pointed out in Ref. [13], the example studied in this
section does not present a HEP, but has a LEP. Therefore, we
can study the effect of the ¢ parameter on the emergence of
the EP.

For that purpose, let us first write explicitly the eigenval-
ues and eigenmatrices of this hybrid Liouvillian Ly(g) in
Eq. (26). Its eigenvalues and eigenmatrices read as follows:

23 = —¥x(1 F9q),

27
Mo=—-r+9Q, @7
and
R 0 —iw+x
P12 X (J/x ! 0 >, (28)
where

Q' =,/¢*y} — o, (29)

and the eigenmatrices po 3 are the same as in Egs. (23). In
Figs. 4(a)-4(e) we plot the real and in Figs. 4(f)—4(j) the
imaginary parts of the spectrum of Ly (g).

As Eq. (29) indicates, the EP of the hybrid Liouvillian
Lu(g) takes the form

@) = w/q. (30)

Thus, for g = 0 there is no EP (equivalently, the EP is located
at infinity), as also shown in Figs. 4(a) and 4(f). Indeed,

also the diagonalization of Her predicts no coalescence of
eigenvalues, as indicated by Eq. (28). On the contrary, for
q = 1 there is a LEP [see also Figs. 4(e) and 4(j)]. At the EP,
we can solve the Jordan chain relation for £(g) in Eq. (5),
obtaining the generalized eigenvector p;:

2 0 1

By introducing a small g, we see the emergence of an EP,
but for a value of y, which, in accordance with Eq. (30), is
much larger than ¥ ¥ = w predicted by the Liouvillian theory
[Fig. 4(b)]. As we increase g, however, we observe that the
position and the characteristics of the EP become more and
more similar to those of the LEP [cf. Figs. 4(c) and 4(d) and
Figs. 4(h) and 4(i)].

These results confirm the interpretation of the LEPs pro-
vided in Ref. [13]. Indeed, it is the back-action of a measure-
ment apparatus on the system, induced by the quantum jumps,
that generates the EP [19,21,24]. The projection of the system
on the eigenspace of its pointer states is attenuated by the
parameter g; thus a greater value of y, is required to observe
the EP.

We conclude that, in this example, quantum jumps are the
term responsible for the EP, while the H.g tends to destroy it.

V. EXAMPLE 2: A MODEL WITH INEQUIVALENT
LEP AND HEP

Let us now consider a model with HEPs and LEPs (as
studied in Ref. [13]), where

H= =6, (32)

which evolves under the action of the following Liouvillian
decaying channel:

Lp(t) = —ilH, p(1)] + %D[é—]i)(t). (33)
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FIG. 4. Spectrum of the hybrid-Liouvillian superoperator in Eq. (26) as a function of the rescaled dissipation rate y,/w. (a)—(e) The real
part of the eigenvalues A;, and (f)—(1) the imaginary part. [(a), (f)] ¢ = 0 (the NHH case), [(b), (g)] ¢ = 1/4, [(c), (h)] g = 1/2, [(d), (1)]
g = 3/4, and [(e), (j)] ¢ = 1 [i.e., diagonalization of the Liouvillian £ in Eq. (21)].

The NHH

Hep = =6, — ii&r(fﬂ (34)

2

which results from Eq. (33) if we ignore the quantum jump
term in D[&_], has the following eigenvalues,

hi2 = §(—iy- F0), (35)

and eigenvectors,
(36)

lp1,2) < [iy-F¢, —2o],

where ¢ = ,/4w? — y?. Thus, this model has a HEP for y_ =

2w, admitting a family of generalized eigenvectors depending
on a single parameter a:

1$1) = [a, i(4 + a)].

The Liouvillian eigenvalues are instead

(37

3
Ay3 = e + /4, (38)

and the eigenmatrices are
. 1 Y24+’ iy o
T2\ —iveo o)

A 0 1
pP1 X 1 o)

2,3 X <—y_ £p

/A)O (08 i)ss

—4diw (39)

diw
Y-FB)

where B = ,/y2 — 16w?. Hence, there is a LEP for y_ = 4.

The associated generalized eigenvector is

R 10
p2_4<0 —1)‘

Transition from the HEP to the LEP

(40)

We study the effect of the jump parameter g using the
hybrid Liouvillian
(I —q)y-646_-+-6,6-
2

L=—ilA, ]+ q%‘D[&_] :
@1)

The analytical computation of the spectrum of the hybrid
Liouvillian in Eq. (41) becomes more involved. Both its eigen-
value 1, and the corresponding eigenmatrix p; coincide with
those given in Eqgs. (38) and (39), respectively. On the other
hand, the remaining three eigenvalues Ag > 3 are the solutions
of a third-order polynomial. Their explicit form, along with
their corresponding eigenmatrices, is given in the Appendix.

Our analysis reveals an explicit dependence of the EP on
the parameter g, namely,

v(q) =2 TG+ 3¢ +2f) o, (42)
where
f=q (0 +/1=¢)s. (43)

Clearly, as it follows from Eq. (42), for ¢ =0 (¢ = 1) one
recovers the corresponding HEP (LEP). In this case we cannot
analytically recover the form of the generalized eigenmatrix
due to the presence of the f terms.
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FIG. 5. Spectrum of the hybrid-Liouvillian superoperator in Eq. (41) as a function of the rescaled dissipation rate y_/w. (a)—(e) The real
part of the eigenvalues and (f)(j) the imaginary one. [(a), (f)] ¢ = 0 [NHH case in Eq. (34)], [(b), (g)] ¢ = 1/4, [(c), (] g = 1/2, [(d), ()]
q =3/4,1(e), (§j)] g = 1 [i.e., diagonalization of the Liouvillian in Eq. (33)].

We study the passage from the HEP to the LEP in Fig. 5.
We plot the real [Figs. 5(a)-5(e)] and imaginary [Figs. 5(f)—
5(j)] parts of the spectrum of Ly(g) from a standard NHH
description [¢ = 0 in Figs. 5(a) and 5(f)] to a fully Liouvillian
approach [¢ = 1 in Figs. 5(e) and 5(j)]. By increasing g one
moves away from the HEP picture, recovering the spectral
features resembling those of the LEP.

However, we notice that the mechanism which led to the
EP is very different in the Hamiltonian and Liouvillian cases.
When ¢ =0, at the EP all the four different eigenvalues
are coinciding. Two of the corresponding eigenmatrices are
associated with those of the NHH, while another one is doubly
degenerate [see the green solid curve in Fig. 5(a)]. Thus, while
from a Hamiltonian perspective there is a second-order EP [cf.
Eq. (36)], according to L (0) there is a third-order EP. Indeed,
as it stems from Figs. 5(a) and 5(f), the blue dot-dashed curve
and the light blue dashed curve are those producing the EP.
The presence of an EP of higher order is not surprising since
L (0) captures also the dynamics of mixed states, which is
impossible for the NHH.

In Figs. 5(b) and 5(g) we see that, even if the blue dot-
dashed and the light blue dashed curves change very little, the
EP is no more associated with the coalescence of the states
corresponding to those two. Indeed, the blue dot-dashed and
the red curves show the generation of the EP. This abrupt
change can be interpreted as the nonanalyticity associated
with the passage from an EP of order 3 to one of order 2 [60].
In this regard, the effect of an imperfect postselection can be
extremely relevant in these systems.

To better grasp the effect of quantum jumps on this system,
in Fig. 6 we plot the real part of the Liouvillian spectrum for
g 2 0. As we notice from Fig. 6(b), the introduction of a very
small imperfection in the photodetector changes profoundly

the nature of the EP. In this limit, the states described by
Ly (g) are almost identical to those described by Ly (0).
Nevertheless, we may argue that in actual physical systems
the introduction of this minimal noise in the photodetector
counting is sufficient to distinguish between the three states
which previously coincided at the EP. Two will still produce
an EP for slightly shifted parameters. The other eigenmatrix,
instead, is pushed away from the spectral degeneracy.

We can interpret this result as a consequence of the excep-
tional sensitivity of the HEP to the presence of quantum noise.

Finally, for ¢ — oo the EP disappears [cf. Eqgs. (Al)-
(A3)]. In this sense, we can say that in this model the presence
of quantum jumps is detrimental to the emergence of an EP.

VI. CONCLUSIONS

We studied the transition between two types of EPs:
semiclassical EPs (i.e., HEPs), which are degeneracies of
effective non-Hermitian Hamiltonians, and truly quantum
EPs (i.e., LEPs), which are degeneracies of a Liouvillian
superoperator corresponding to a Lindblad master equation,
as recently introduced in Ref. [13] and applied in Refs. [9,15].
We emphasize that the inclusion of quantum jumps in the
evolution of a quantum system makes, in general, LEPs funda-
mentally different from HEPs, as we have proved in Ref. [13].

In the present paper, we have addressed the question of
the relation of HEPs and LEPs based on the postselection
of quantum trajectories (quantum jumps) and their classical-
to-quantum correspondence. This interpretation has partially
been inspired by a very recent experimental work [6] reporting
quantum state tomography of a single dissipative qubit in the
vicinity of its EP. This experiment was based on a postselec-
tion on a three-level superconducting circuit.
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FIG. 6. Real part of the spectrum of the hybrid-Liouvillian superoperator in Eq. (41) as a function of the rescaled dissipation rate y_/w.
The panels are for values of ¢ = 0, showing how the inclusion of quantum jumps change the nature of the EP.

Here, we have applied the idea of postselection to propose
a hybrid-Liouvillian formalism based on a modified Liou-
villian superoperator being a function of a quantum-jump
parameter g. This approach directly shows the transition of
a LEP to a HEP via a proper postselection on quantum jumps
(or quantum trajectories) as schematically shown Fig. 1(a).
Indeed, our formalism describes in particular (i) an NHH,
when one postselects only those trajectories without quantum
jumps (i.e., corresponding to the quantum jump parameter
q = 0), and (ii) a true Liouvillian, including quantum jumps,
when one does not perform postselection (i.e., when g = 1).
Clearly, this formalism can describe also intermediate cases
for any g € [0, 1], when we postselect a specific fraction of
trajectories.

Moreover, our approach allowed us to interpret postselec-
tion in an operational way based on finite-efficiency detectors.
Indeed, in addition to the analysis of the hybrid Liouvillian
in terms of the postselection of quantum trajectories, we
have also discussed its relation to inefficient photodetectors
corresponding to the case when a quantum jump occurs but
the detector does not signal it, as schematically shown in
Fig. 1(b).

We discussed two pedagogical examples showing the ap-
plication of our general hybrid-Liouvillian approach. In our
first example, we analyzed a driven dissipative qubit model
exhibiting a LEP but without HEPs. In our second example,
we considered a qubit presenting a LEP and a HEP, which
occur for a different combination of parameters. The latter
example explicitly shows the transition of a LEP to a HEP
as a function of the quantum-jump parameter g.

Note that our examples show a double effect of quantum
jumps in creating and destroying EPs. Specifically, example 1
shows that a LEP [Ly(g) for ¢ = 1] can be created solely by
quantum jumps, and no HEP [ Ly (¢) for ¢ = 0] is generated in
this case. Contrary to this quantum-jump-induced EP, example
2 demonstrates a quantum-jump-destroyed EP, i.e., an NHH
can create a HEP, which would disappear for ¢ = oo (where
quantum jumps would be the only process taking place). We
stress that for ¢ = 1 a LEP is observed, but its characteristics
are profoundly different from those of the HEP. This analysis
on the nature of HEPs and LEPs and on the roles played by the

H.i¢ and the quantum jumps could not have been performed
using the standard Liouvillian or NHH alone.

The advantages of EPs for applications remain a very
active topic of research [16,61-74] and correctly modeling
noise and quantum jumps is fundamental to correctly address
the question of, e.g., EP sensitivity. We believe that our
work, showing explicitly the operational interpretation and
the relation between classical and quantum EPs in terms of
postselection and/or inefficient detectors, can stimulate more
interest in experimental demonstrations of LEPs and their
potential quantum applications, pointing out analogies and
differences with respect to those studied for semiclassical
HEPs.

Concerning the hybrid Liouvillian, it could be analyzed
in the context of decoherence-free subspaces, in particular
in relation to non-Hermitian dynamics in the presence of
dark states [75]. In this case, the effect of the postselection
would be to change the eigenmatrices of the Liouvillian,
leaving the eigenvalues untouched. Moreover, it would be
interesting to try to generalize L£(g) to include, e.g., noisy
measurement instrument and time-dependent Hamiltonian or
jump operators, or to more general types of quantum maps,
such as jumptime unraveling of a quantum system [76,77],
or in connection to dynamical phase transitions [78]. Such
a hybrid Liouvillian may be also be studied in the context
of critical phenomena, where the g parameter may change
the spectral properties normally associated with multistability
and metastability, multimodality, and critical slowing down
[47,48,58,79-82].
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APPENDIX: EIGENVALUES AND EIGENMATRICES OF
THE HYBRID LIOUVILLIAN IN EQ. (41)

1. Eigenvalues A;

By solving the eigenproblem of the hybrid Liouvil-
lian Lyx(q) in Eq. (41), one arrives at the following
eigenvalues A;:

y- y-
o= 42R, a=-1
0 5 + 2k 1 )
has = =L — Ry £ iv/3(R, - 2D), (A1)
where
Fo= (D% +3(y2 — 4] (A2)
12D - ’
and

D = [S4qy_ow* + 3«/3\/108412)/30)4 — (y? — dw?)3]5.
(A3)
Importantly, due to dependence of the eigenvalues X; on the
parameter g in Eq. (A1), their sorting [|[Re[X;]] < [Re[A;i11]],
cf. the text below Eq. (4)] is nontrivial. Thus, the indices
in A; are reshuffled as g changes. Consequently, also the
corresponding eigenmatrices p;, present below, will undergo
the same permutation of indices.

2. Eigenmatrices p;

The corresponding eigenmatrices p; of the given hybrid
Liouvillian are listed below.

Eigenmatrix py. The elements of the eigenmatrix py read
as follows:

P = %1(03 — 54gy_0®)(3y_ — D) + w
+y2[D* — 0?27 + 12)] 4+ 3y_w’D(3q + 2)
+240* — *D?,

poy = BwD*(4Fy — y-(2q + 1)),

iy = =i

P\ = 6D?[4y_qFy + *D]. (A4)

Eigenmatrix p;. The elements of this eigenmatrix coincide
with that p; presented in Eq (39).
Eigenmatrix p,. The eigenmatrix p, has the elements

uy (D? — 9y3 + 36y w*)D
3
3(y2 — 4wyl

Py = 4D (2 — )
+u_[y_D? — 160?y? —

:0(()%) —ioD[D*u_ + 6y_DQ2q + 1) + 3u, (y* — 4],

2) _ 2)
Pg = —Por>

p\Y = —2D[u_qy_D* — 60D + 3u,qy_(y* — 40?)],
(AS)

where uy =1+ V3.
Eigenmatrix p3. The elements of the eigenmatrix p; are the
same as in Eq. (A5), except for the change of the sign in the

off-diagonal elements, i.e., ,o(()? = —,o(()? and pfg) = —p%).
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