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Here, we present the technical details on nonreciprocal optomechanical entanglement, including: (1) a summary of all param-
eter values used in our work; (2) experimental feasibility of our system, especially the conditions of stable coupling between
the tapered fiber and the spinning resonator; (3) more discussions on mechanical or optical stability; (4) the influence of thermal
effects and quality factors on nonreciprocal entanglement.

CONTENTS

S1. System parameters 2

S2. Experimental feasibility 2
A. Self-adjustment process 2
B. Intermolecular forces 4

S3. Stability conditions 4
A. Mechanical stability 4
B. Optical stability 5

S4. The role of thermal effects and quality factors 6

References 7



2

S1. SYSTEM PARAMETERS

Table I shows the main symbols and parameters which have been used in this work.

Symbol Definition Name Value

ωm Mechanical resonance frequency 63 MHz

γm Mechanical linewidth 5.2 kHz

Qm ωm/γm Mechanical quality factor 1.21× 104

T Mechanical bath temperature 130 mK

nm [exp(~ωm/kBT)− 1]−1 Thermal phonon occupation 269.4

m Effective mass 10 ng

xzp
√

~/(mωm) Zero point fluctuations 0.41 fm

ωc Optical resonance frequency 1.22 PHz

λ Laser wavelength 1.55 µm

κ Cavity linewidth 38.0 MHz

Q ωc/κ Optical quality factor 3.2× 107

P Input laser power 20 mW or 100 mW

G0 ωcxzp/R Single-photon optomechanical coupling rate 452.1 Hz

R Sphere radius 1.1 mm

r Fiber radius 544 nm

Ω Spinning frequency 8 kHz or 23 kHz

E Young modulus of silica 75 GPa

Υ Elastic limit of silica 9 GPa

ε0 Dielectric constant of air 1

ε1 (ε2) Dielectric constant of silica 3.9

n0 Refractive index of air 1

n1 (n2) Refractive index of silica 1.48

TABLE I. Feasible parameters. Unless specified otherwise, these parameters are applied to all evaluations in the text.

With these experimentally feasible parameters, we have confirmed that other quantum effects, such as two-mode squeezing or
non-classicality, can also be manipulated in a highly asymmetric way in this optomechanical system, which may find applications
in chiral quantum optics and technology [S1–S3].

S2. EXPERIMENTAL FEASIBILITY

A. Self-adjustment process

As shown in a very recent experiment [S4], we consider a whispering-gallery-mode silica sphere, which is mounted on a
turbine and spins along its axis with, e.g., the angular velocity Ω = 6.6 kHz for the sphere radius r = 1.1 mm. Faster rotations
have also been reported in experiments by using, e.g., levitated nanomechanical rotors [S5, S6]. Then, by positioning the
spinning resonator near a single-mode telecommunication fiber, light can be coupled into or out of the resonator evanescently.

For such a spinning device, the aerodynamic process plays a key role in the stable fiber-resonator coupling. Specifically, the
fast spinning resonator can drag air into the region between the tapered fiber and the resonator, thereby forming a lubrication
layer of air in this region. Then the thin film of air, exerting pressure on the surface of the tapered fiber facing the resonator, can
make the fiber fly above the resonator with the separation of a few nanometres. Therefore, if any perturbation causes the taper to
rise higher than the stable-equilibrium height, it can float back to its original position, which is referred to as “self-adjustment”.
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FIG. S1. Analysis of the “self-adjustment” behavior. (a) The strain ε (red curve) and the displacement d (blue curve) as a function of the
angular velocity Ω for h = 250 nm. (b) The air pressure Tair and the ratio of intermolecular forces |Tint|/Tair for varying taper-resonator
separation h at Ω = 23 kHz. (c) Total force between the fiber and the sphere versus the angular velocity Ω and the separation h. The resulting
force of air pressure and intermolecular forces has a minimal value of Ttot = 1.135 µN, which indicates the interactions of the fiber and the
spinning sphere are always repulsive.

Hence the fiber will not touch or stick to the resonator even if it is pushed towards the spinning sphere [S4]. To see this clearly,
we write the air pressure as ∆Tair = (ρ∆θ)Tair/L, with ρ (θ) the radius (angle) of the winding shape of the deformation region.
Then, the total air pressure Tair on the taper can be estimated analytically as [S4]

Tair = 6.19µR5/2Ω

∫ r

0

(
h−

√
r2 − x2 + r

)−3/2
dx, (S2.1)

where µ is the viscosity of air, R (r) is the radius of the sphere (taper), and h = h0 +d represents the taper-resonator separation,
with h0 denoting the stationary gap between the fiber and the sphere. The local deformation can also lead to a tension on the
infinitesimal cylinder of the fiber, which can be calculated by

∆Tela = 2F sin (∆θ/2) ≈ F∆θ, (S2.2)

where F is the elastic force on the taper, obeying σ = F/(πr2) = εE. Here σ is the uniaxial stress, E is the Young modulus
of silica, and ε = δL/L is the strain, where δL = L′ − L denotes the variation of the original length L of the deformation
region. Furthermore, δL can be straightforwardly derived via the following relations: L′ = ρθ, (L/2)2 + (ρ − d)2 = ρ2, and
sin(θ/2) = L/(2ρ). Hence, in the case of equilibrium (i.e., ∆Tair = ∆Tela), Tair can be given in another form:

Tair = 2πr2E [arcsin (φ)− φ] ≈ π

3
r2φ3E, (S2.3)

where φ = 4Ld
/

(L2 + 4d2 ) , and the approximation, arcsin(φ) = φ+ φ3/6 + · · · , is made within the limit of |φ| � 1, which
physically requires a comparatively small distortion. As shown in Fig. S1(a), we confirmed that these approximation conditions
can be easily satisfied with experimentally accessible parameters [S4, S7]: E = 75 GPa, r = 544 nm, and L = 3 µm. In this
case, the displacement d is given by

d =
L

2

(
β −

√
β2 − 1

)
, (S2.4)

where β =
[
πr2E

/
(3Tair)

] 1/3
. The strain of the taper thus can be reduced to ε = arcsin (φ) /φ − 1 ≈ φ2/6, from which we

find that the strain (i.e., the elastic force) is positively associated with the taper-resonator separation:

∂F
∂h

= πr2E

(
∂ε

∂d

)
=

16πr2EL2d
(
L2 − 4d2

)
3 (L2 + 4d2)

3 > 0. (S2.5)

Equation (S2.5) clearly reveals that the elastic force becomes stronger when the air gap gets larger than the stable-equilibrium
distance. Also, as shown in Fig. S1(b), the air pressure on the taper is largely suppressed. As a result, the taper can be dragged
back to its original position when any perturbation causes it away from the spinning resonator, leading to the self-adjustment
behavior. The self-adjustment of the tapered fiber enables the critical coupling of light into or out of the resonator, by which the
counter-propagating beams can experience an optical drag identical in size, but opposite in sign.
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B. Intermolecular forces

The intermolecular forces, such as the Casimir and van der Waals forces, could also affect the stable fiber-resonator coupling.
In our system, such kinds of intermolecular forces can be described as [S4]:

Tint = rR

(
− A

6πh3
+

B
45πh9

− π2c~
240h4

)
, (S2.6)

where the Hamaker constant A can be calculated by [S8]:

A =
3ε

(1)
− ε

(2)
− kBT

4ε
(1)
+ ε

(2)
+

+
ν
[
n
(1)
− n

(2)
−

]2
n
(1)
+ n

(2)
+

[
n
(1)
+ + n

(2)
+

] , (S2.7)

with ν = 3
√

2~νe
/

16 , ε(u)± = εu ± ε0, n(u)± =
√
n2u ± n20, and u = 1, 2. Hereafter, we use ε0 (n0), ε1 (n1), and ε2 (n2)

to represent the dielectric constant (the refractive index) of the air, the taper and the spinning resonator, respectively; kB is the
Boltzmann constant, T is the mechanical bath temperature, and νe = 3 PHz [S8]. Note that for simplicity, we have replaced n2
with n in the main text. Moreover, the constant B is typically of the order of 10−76 J m6 for interactions between condensed
matter phases across the vacuum or air [S9]. Taking intermolecular forces into account, the total force between the taper and the
resonator becomes: Ttot = Tair + Tint. Herein, we choose experimentally accessible parameters [S10]: ε0 = 1, ε1 = ε2 = 3.9,
n0 = 1, n1 = n2 = 1.48, and T = 130 mK. As expected, the intermolecular forces are found to be negligible (< 0.1%), and
the taper-resonator interactions remain repulsive [see Figs. S1(b) and S1(c)]. Thus, the effects of the Casimir and van der Waals
forces can be safely omitted on critical coupling. Other factors, such as lubricant compressibility, tapered-fiber stiffness, and the
wrap angle of a fiber, may also affect critical coupling. However, these factors are confirmed to be negligible in experiments,
which can be also safely ignored in our discussions [S4].

S3. STABILITY CONDITIONS

A. Mechanical stability

The realization of stable fiber-resonator coupling sets a limit to the angular velocity of spinning devices. Specifically, the
requirement β ≥ 1 in Eq. (S2.4) yields the first limit:

Ω0 =
%πr2E

18.57µR 5/2
, (S3.8)

where

% =

[∫ r

0

(
h−

√
r2 − x2 + r

)−3/2
dx

]−1
. (S3.9)

Also, the tiny displacement should obey d = h− h0 < h, which gives the second limit:

Ω1 =
%πr2ΛE

18.57µR 5/2
, (S3.10)

where Λ =
[
4Lh

/(
L2 + 4h2

)]3
. Finally, the elastic limit of the tapered fiber provides the third stability condition (σ = Υ):

Ω2 =
%πr2Υ

3.095µR 5/2

√
6Υ

E
, (S3.11)

where Υ is typically 9 GPa for silica devices [S11]. Thus, the mechanical limit to the angular velocity can be obtained as:

Ωmax = min {Ω0,Ω1,Ω2} . (S3.12)

When operating at taper-resonator separations near 250 nm, we have Ω0 = 81.6 MHz, Ω1 = 2.8 MHz, Ω2 = 49.9 MHz, and
thus Ωmax = 2.8 MHz. Therefore, it is reasonable to use Ω = 8 kHz or 23 kHz in the main text.
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FIG. S2. The mechanical and optical stability conditions. (a) The ratio of the mean mechanical displacement xs to the air-induced displacement
d as a function of the angular velocity Ωr . In the aerodynamic process, this ratio is extremely small (∼ 0.1%), meaning that radial breathing
of the resonator is negligible compared to the air-induced displacement. (b-c) Stability functions Θ5 and Θ6 versus the angular velocity Ωr

and the scaled optical detuning ∆c/ωm at J/κ = 2 and P = 20 mW. The white contour line in (c) is the boundary between the stability and
instability regions, and a.u. denotes arbitrary units. The parameters are listed in Table I.

Moreover, we also consider the influence of the radial breathing of the resonator on stable fiber-resonator coupling. In
paticular, we compare the mean mechanical displacement xs with the air-induced displacement d, i.e.,

η = xs/d = qsxzp/d, (S3.13)

where xzp =
√

~/(mωm) denotes the standard deviation of the zero-point motion of the mechanical mode. As shown in
Fig. S2(a), the effect of the mechanical displacement is negligible indeed (< 1%), thereby the radial breathing of the resonator
does not disturb the critical evanescent coupling. Note that, for simplicity, we have introduced Ωr = ±Ω.

B. Optical stability

According to Routh-Hurwitz criterion [S12], the system is stable and reaches its steady state when all eigenvalues of the matrix
A have negative real parts. Therefore, we start our analysis by determining the eigenvalues of the matrix A, i.e., |A− λI| = 0,
yielding the following characteristic equation:

λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0, (S3.14)

where

a1 = 4κ+ γm, a2 = σ0 + ω2
m + 4κ(κ+ γm),

a3 = σ0(2κ+ γm) + 4κ
(
ω2
m + κγm

)
, a4 = σ0σ1 + σ2 + 4κ2ω2

m,

a5 = γmµ2 − 2κµ0µ3

(
γmµ0 + 4κω2

m

)
+ κµ1

(
κγm + 2ω2

m

)
,

a6 = ωm (σ+ + σ− + σ2ωm − µ0µ4)− µ3∆̃+∆̃−, (S3.15)

and

σ0 = 2µ0 + µ1, σ1 = κ2 + 2κγm + ω2
m, σ2 = µ2

0 + κ2µ1 + µ2,

σ2 = µ2 − µ3 + µ0

(
J2 − κ2

)
, σ± = (∆±J

2 −∆∓κ
2)G2

∓,

µ0 = J2 + κ2, µ1 = ∆̃2
+ + ∆̃2

−, µ2 = (∆̃+∆̃− − 2J2)∆̃+∆̃−,

µ3 = ωm(∆̃+|G	|2 + ∆̃−|G�|2 + µ4), µ4 = 2J(Gx
�G

x
	 +Gy

�G
y
	). (S3.16)

Using the coefficients ak, we can form a set of k × k matrices, θk, for k ≤ 6, with their entries defined as:

θln =

{
0, 2l − n < 0 or 2l − n > k,

a2l−n, otherwise.
(S3.17)
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FIG. S3. Thermal effect on nonreciprocal optomechanical entanglement. (a-b) The logarithmic negativityEN as a function of the environment
temperature T for different driving directions. (c-d) Density plot of the logarithmic negativity EN versus the angular velocity Ωr and the
environment temperature T. (e-f) The COM entanglement difference with respect to different driving directions, ∆EN , versus the scaled
optical detuning ∆c/ωm and the environment temperature T. The rotation speed is chosen as Ω = 8 kHz in (a) and (e), and Ω = 23 kHz in
(b) and (f). Other parameters are listed in Table I.

The stability conditions can be satisfied when all the determinants of the matrices θk are positive [S12]. Through careful analysis,
we find only θ5 and θ6 are nontrivial. As shown in Figs. S2(b) and S2(c), we numerically plot these functions in a logarithmic
form, i.e.,

Θk =

{
ln θk, θk > 0,

− ln |θk| , θk < 0.
(S3.18)

Note that θk and Θk maintain the same sign within the parameters used in the main text, thus the contour line in Fig. S2(c) clearly
determines the boundary between the stability and instability regions. In this case, we can confirm that these experimentally
feasible parameters keep this optomechanical system in a stable zone.

S4. THE ROLE OF THERMAL EFFECTS AND QUALITY FACTORS

Thermal noises can destroy fragile quantum correlations in practical devices. Thus protecting quantum resources from envi-
ronmental thermal perturbations is essential for achieving quantum nonreciprocity. To see the influence of the thermal effect on
nonreciprocal optomechanical entanglement, we plot the logarithmic negativityEN with respect to the environment temperature
T in Figs. S3(a) - S3(d). We find that nonreciprocal optomechanical entanglement in a chosen direction can exist at higher tem-
perature compared to the case of a stationary system. This means that, by spinning the resonator, optomechanical entanglement
can be more robust against thermal noises. In addition, by defining the difference of COM entanglement for the opposite driving
directions: ∆EN ≡ EN ,	−EN ,�, we demonstrate the dependence of quantum nonreciprocity on environmental temperature in
Figs. S3(e) and S3(f). Clearly, the condition ∆EN 6= 0 can be satisfied even at T ∼ 600 mK. Thereby, quantum nonreciprocity
provides a new strategy to protect quantum entanglement in a noisy environment, i.e., enhancing the entanglement quality in a
chosen (wanted) direction at the price of losing its quality in the other (unwanted) direction. This new possibility, as far as we
know, has not been revealed in all previous works.
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In addition, the Q-factor of the resonator also affects the realization of quantum nonreciprocity. In case of J = 0, as shown
in Fig. S4(a), it is found that quantum nonreciprocity can persist for Q ≥ 107 at T = 130 mK but its degree is lowered by
decreasing the values of Q. Fig. S4(b) shows that both lower Q-factor and higher temperature are harmful for the robustness of
COM entanglement. In addition, it is seen that COM entanglement even completely vanishes at high temperatures regardless
of Q-factors. Moreover, in the presence of backscattering, e.g., J = 50 MHz, it is found that for the same values of Q and T,
by spinning the resonator, nonreciprocal entanglement can always be better than that in a nonspinning device [see Fig. S4(c)].
These results indicate that considerable entanglement revival can be achieved with high Q-factor spinning resonators.
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